Skip to main content
Log in

Modeling and dynamics analysis of Zika transmission with contaminated aquatic environments

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Since the outbreak in Brazil, Zika has received the worldwide attention. Zika virus is mainly transmitted via the bites of Aedes mosquito. Recently, experimental evidence demonstrates that Zika virus in contaminated aquatic environments can be transmitted to aquatic mosquitoes through breeding. To study the effects of contaminated aquatic environments on Zika transmission, we propose a new Zika model by introducing a general incidence function. For a general incidence function, we calculate the basic reproduction number \(R_0\), analyze the stability of disease-free equilibria and give general conditions with the occurrence of backward bifurcation. For the two special sublinear incidence functions, \(R_0=1\) is a sharp threshold. It means that the disease can be eradicated by reducing \(R_{0}\) below 1. For the special nonlinear incidence function, we investigate theoretically backward bifurcation and saddle-node bifurcation and simulate numerically Hopf bifurcation. Analysis results suggest that transmission force from contaminated aquatic environments to aquatic mosquitoes plays an important role in generating complex dynamics. Furthermore, our model is extended to explore the effects of temperature variability on spread of Zika disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dick, G.W.A., Kitchen, S.F., Haddow, A.J.: Zika virus (I): isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 46(5), 509–520 (1952)

    Article  Google Scholar 

  2. Macnamara, F.N.: Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 48(2), 139–145 (1954)

    Article  Google Scholar 

  3. Duffy, M.R., et al.: Zika virus outbreak on Yap Island, Federated States of Micronesia. New England J. Med. 360, 2536–2543 (2009)

    Article  Google Scholar 

  4. World Health Organization (WHO). Emergency Committee on Zika virus and observed increase in neurological disorders and neonatal malformations (2016). https://www.chinadaily.com.cn/world/2016-02/02/content_23348858.htm

  5. Rocklöv, J., Quam, M.B., Sudre, B., et al.: Assessing seasonal risks for the introduction and mosquito-borne spread of Zika virus in Europe. EBioMedicine 9, 250–256 (2016)

    Article  Google Scholar 

  6. Watson-Brown, P., Viennet, E., Mincham, G., et al.: Epidemic potential of Zika virus in Australia: implications for blood transfusion safety. Transfusion 59(2), 648–658 (2019)

    Article  Google Scholar 

  7. Centers for Disease Control and Prevention (CDC). Zika virus (2018). https://www.cdc.gov/zika/

  8. Tataryn, J., Vrbova, L., Drebot, M., et al.: Emergency planning: travel-related Zika virus cases in Canada: October 2015–June 2017. Can. Commun. Dis. Rep. 44(1), 18 (2018)

    Google Scholar 

  9. Hashimoto, T., Kutsuna, S., Tajima, S., et al.: Importation of Zika virus from Vietnam to Japan, November 2016. Emerg. Infect. Dis. 23(7), 1223 (2017)

    Article  Google Scholar 

  10. Jang, H.C., Park, W.B., Kim, U.J., et al.: First imported case of Zika virus infection into Korea. J. Korean Med. Sci. 31(7), 1173–1177 (2016)

    Article  Google Scholar 

  11. Jia, H.M., Zhang, M., Chen, M.Y., et al.: Zika virus infection in travelers returning from countries with local transmission, Guangdong, China, 2016. Travel Med. Infect. Dis. 21, 56–61 (2018)

    Article  Google Scholar 

  12. Singh, H., Singh, O.P., Akhtar, N., et al.: First report on the transmission of Zika virus by Aedes (Stegomyia) aegypti (L.)(Diptera: Culicidae) during the 2018 Zika outbreak in India. Acta Trop. 199, 105114 (2019)

    Article  Google Scholar 

  13. Centers for Disease Control and Prevention (CDC). Zika travel information (2019). https://wwwnc.cdc.gov/travel/page/zika-information

  14. Kucharski, A.J., et al.: Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013–14 French Polynesia outbreak. PloS Negl. Trop. Dis. 10(5), e0004726 (2016)

    Article  Google Scholar 

  15. Zhang, Q., Sun, K.Y., Chinazzi, M., et al.: Spread of Zika virus in the Americas. Proc. Natl. Acad. Sci. 114(22), E4334–E4343 (2017)

    Article  Google Scholar 

  16. Chen, J., Beier, J.C., Cantrell, R.S., et al.: Modeling the importation and local transmission of vector-borne diseases in Florida: the case of Zika outbreak in 2016. J. Theor. Biol. 455, 342–356 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dantas, E., Tosin, M., Cunha, J.A.: Calibration of a SEIR-SEI epidemic model to describe the Zika virus outbreak in Brazil. Appl. Math. Comput. 338, 249–259 (2018)

    MathSciNet  MATH  Google Scholar 

  18. He, D.H., Gao, D.Z., Lou, Y.J., et al.: A comparison study of Zika virus outbreaks in French Polynesia, Colombia and the State of Bahia in Brazil. Sci. Rep. 7(1), 273 (2017)

    Article  Google Scholar 

  19. Wang, L., Zhao, H., Oliva, S.M., et al.: Modeling the transmission and control of Zika in Brazil. Sci. Rep. 7(1), 7721 (2017)

    Article  Google Scholar 

  20. Agusto, F.B., Bewick, S., Fagan, W.F.: Mathematical model for Zika virus dynamics with sexual transmission route. Ecol. Complex. 29, 61–81 (2017)

    Article  Google Scholar 

  21. Saad-Roy, C.M., Ma, J., van den Driessche, P.: The effect of sexual transmission on Zika virus dynamics. J. Math. Biol. 77(6–7), 1917–1941 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao, H., Wang, L., Oliva, S.M., et al.: Modeling and dynamics analysis of Zika transmission with limited medical resources. Bull. Math. Biol. 82, 99 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, L., Zhao, H.: Dynamics analysis of a Zika-dengue co-infection model with dengue vaccine and antibody-dependent enhancement. Phys. A Stat. Mech. Appl. 522, 248–273 (2019)

    Article  MathSciNet  Google Scholar 

  24. Marchette, N.J., Garcia, R., Rudnick, A.: Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am. J. Trop. Med. Hyg. 18(3), 411–415 (1969)

    Article  Google Scholar 

  25. World Health Organization (WHO). Zika virus (2018). www.who.int/mediacentre/factsheets/zika/en/

  26. Musso, D., Roche, C., Robin, E., et al.: Potential sexual transmission of Zika virus. Emerg. Infect. Dis. 21(2), 359 (2015)

    Article  Google Scholar 

  27. Du, S., Liu, Y., Liu, J., et al.: Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nat. Commun. 10(1), 1324 (2019)

    Article  Google Scholar 

  28. Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.: On the definition and the computation of the basic reproduction ratio \(R_{0}\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28(4), 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chitnis, N., Cushing, J.M., Hyman, J.M.: Bifurcation analysis of a mathematical model for malaria transmission. SIAM J. Appl. Math. 67(1), 24–45 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hirsch, W.M., Hanisch, H., Gabriel, J.P.: Differential equation models of some parasitic infections: methods for the study of asymptotic behavior. Commun. Pure Appl. Math. 38, 733–753 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Castillo-Chavez, C., Song, B.J.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou, X., Cui, J.: Analysis of stability and bifurcation for an SEIV epidemic model with vaccination and nonlinear incidence rate. Nonlinear Dyn. 63(4), 639–653 (2011)

    Article  MathSciNet  Google Scholar 

  34. Mukandavire, Z., Liao, S., Wang, J., et al.: Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. Proc. Natl. Acad. Sci. 108(21), 8767–8772 (2011)

    Article  Google Scholar 

  35. Finger, F., Genolet, T., Mari, L., et al.: Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks. Proc. Natl. Acad. Sci. 113(23), 6421–6426 (2016)

    Article  Google Scholar 

  36. Tien, J.H., Earn, D.J.D.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72(6), 1506–1533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Misra, A.K., Singh, V.: A delay mathematical model for the spread and control of water borne diseases. J. Theor. Biol. 301, 49–56 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Eisenberg, M.C., Robertson, S.L., Tien, J.H.: Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease. J. Theor. Biol. 324, 84–102 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, W., Hethcote, H.W., Levin, S.A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25(4), 359–380 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. Gilchrist, M.A., Coombs, D.: Evolution of virulence: interdependence, constraints, and selection using nested models. Theor. Popul. Biol. 69(2), 145–153 (2006)

    Article  MATH  Google Scholar 

  41. Mordecai, E.A., Cohen, J.M., Evans, M.V., et al.: Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11(4), e0005568 (2017)

    Article  Google Scholar 

  42. Yang, H.M., Macoris, M.L.G., Galvani, K.C., et al.: Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol. Infect. 137(8), 1188–1202 (2009)

    Article  Google Scholar 

  43. Andraud, M., Hens, N., Marais, C., et al.: Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PloS One 7(11), e49085 (2012)

    Article  Google Scholar 

  44. Lambrechts, L., Paaijmans, K.P., Fansiri, T., et al.: Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl. Acad. Sci. 108, 7460–7465 (2011)

    Article  Google Scholar 

  45. Froeschl, G., et al.: Long-term kinetics of Zika virus RNA and antibodies in body fluids of a vasectomized traveller returning from Martinique: a case report. BMC Infect. Dis. 17(1), 55 (2017)

    Article  Google Scholar 

  46. Brazil \(\cdot \) Population. Life expectancy at birth (2020). http://population.city/brazil/#cities

  47. Scott, T.W., Amerasinghe, P.H., Morrison, A.C., et al.: Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J. Med. Entomol. 37(1), 89–101 (2000)

    Article  Google Scholar 

  48. Althouse, B.M., Hanley, K.A., Diallo, M., et al.: Impact of climate and mosquito vector abundance on sylvatic arbovirus circulation dynamics in Senegal. Am. J. Trop. Med. Hyg. 92(1), 88–97 (2015)

    Article  Google Scholar 

  49. Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability Analysis of Nonlinear Systems. Dekker, New York (1989)

    MATH  Google Scholar 

  50. Zhao, X.Q.: Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications. Can. Q. Appl. Math. 3(4), 473–495 (1995)

    MathSciNet  MATH  Google Scholar 

  51. Hale, J.K., Waltman, P.: Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20(2), 388–395 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to anonymous referees and editor for careful reading and helpful suggestions which led to an improvement of our original manuscript. The work is supported by the National Natural Science Foundation of China (Nos. 11971013, 11571170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: A Proof of Lemma 1

Proof

Denote \(\varphi (t)=(S_a(t), I_a(t), S_{m}(t), I_{m}(t), S_{h}(t), I_{h}(t), Z(t))\), and \(\varphi (t)\) satisfies system (2). It follows from system (2) and \(\varphi (0)\ge 0\) that

$$\begin{aligned} \begin{aligned} S_{a}(t)=&S_a(0)\exp \\&\left( - \frac{\rho }{K}\int ^{t}_{0}(S_{m}(s)+I_{m}(s))\mathrm{d}s- \int ^{t}_{0}g(Z(s))\mathrm{d}s-(\omega +\mu _{a})t \right) \\&+\rho \int ^{t}_{0}(S_{m}(s)+I_{m}(s)) \left( 1-\frac{I_{a}(s)}{K}\right) \exp \\&\bigg (- \frac{\rho }{K}\int ^{t}_{s}(S_{m}(\xi )+I_{m}(\xi ))d\xi \\&- \int ^{t}_{s}g(Z(\xi ))d\xi -(\omega +\mu _{a})(t-s) \bigg )\mathrm{d}s\ge 0,\\ S_{m}(t)=&S_m(0)\exp \left( -\frac{b\beta _{1}}{N_{h}}\int ^{t}_{0}I_{h}(s)\mathrm{d}s-\mu _m t\right) \\&+\omega \int ^{t}_{0} S_{a}(s)\exp \left( -\frac{b\beta _{1}}{N_{h}}\int ^{t}_{s}I_{h}(\xi )d\xi -\mu _m (t-s)\right) \mathrm{d}s \ge 0,\\ S_{h}(t)=&S_h(0)\exp \left( -\frac{b\beta _{2}}{N_{h}}\int ^{t}_{0}I_{m}(s)\mathrm{d}s-\mu _h t\right) +\varLambda \int ^{t}_{0} \exp \\&\left( -\frac{b\beta _{2}}{N_{h}}\int ^{t}_{s}I_{m}(\xi )d\xi -\mu _h (t-s)\right) \mathrm{d}s \ge 0,\\ I_{a}(t)=&I_{a}(0)e^{-(\omega +\mu _{a})t} +\int ^{t}_{0}g(Z(s))S_{a}(s)e^{-(\omega +\mu _{a})(t-s)}\mathrm{d}s \ge 0,\\ I_{m}(t)=&I_{m}(0)e^{- \mu _{m}t} +\int ^{t}_{0}\\&\left( \omega I_{a}(s)+\frac{b\beta _{1}}{N_{h}}I_{h}(s)S_{m}(s)\right) e^{-\mu _{m}(t-s)}\mathrm{d}s \ge 0,\\ I_{h}(t)=&I_{h}(0)e^{- (\mu _{h}+r)t} + \frac{b\beta _{2}}{N_{h}}\int ^{t}_{0}I_{m}(s)S_{h}(s)e^{-(\mu _{h}+r)(t-s)}\mathrm{d}s \ge 0,\\ Z(t)=&Z(0)e^{- ct} + \sigma \int ^{t}_{0}I_{h}(s) e^{-c(t-s)}\mathrm{d}s \ge 0. \end{aligned} \end{aligned}$$

If \(S_{a}(0)>0,\) \(I_{a}(0)>0,\) \(S_{m}(0)>0,\) \(I_{m}(0)>0,\) \(S_{h}(0)>0,\) \(I_{h}(0)>0\) and \(Z(0)>0,\) then \(S_{a}(t)>0,\) \(I_{a}(t)>0,\) \(S_{m}(t)>0,\) \(I_{m}(t)>0,\) \(S_{h}(t)>0,\) \(I_{h}(t)>0\) and \(Z(t)>0,\) \(\forall ~t>0.\)

From system (2), we can obtain

$$\begin{aligned} \begin{aligned} \frac{\mathrm{d}(S_{m}+I_{m})}{\mathrm{d}t}&= \omega (S_a+I_a)- \mu _{m} (S_{m}+I_{m}), \\ \frac{\mathrm{d}(S_{h}+I_{h})}{\mathrm{d}t}&= \varLambda -r I_{h}-\mu _{h} (S_{h}+I_{h}).\\ \end{aligned} \end{aligned}$$

Since \( S_a+I_a\le K,\) we have

$$\begin{aligned} \begin{aligned} \frac{\mathrm{d}(S_{m}+I_{m})}{\mathrm{d}t}&\le \omega K -\mu _{m} (S_{m}+I_{m}), \\ \frac{\mathrm{d}(S_{h}+I_{h})}{\mathrm{d}t}&\le \varLambda -\mu _{h} (S_{h}+I_{h}).\\ \end{aligned} \end{aligned}$$

According to the standard comparison theorem (see [49]), we can obtain

$$\begin{aligned} \begin{aligned} S_{m}(t)+I_{m}(t)&\le (S_{m}(0)+I_{m}(0))e^{-\mu _{m} t}+ \frac{ \omega K}{\mu _{m} }(1-e^{-\mu _{m} t}), \\ S_{h}(t)+I_{h}(t)&\le (S_{h}(0)+I_{h}(0))e^{-\mu _{h}t}+\frac{\varLambda }{\mu _{h}}(1-e^{-\mu _{h}t}).\\ \end{aligned} \end{aligned}$$

If \( S_{m}(0)+I_{m}(0)\le \frac{ \omega K}{\mu _{m}},~ S_{h}(0)+I_{h}(0)\le \frac{\varLambda }{\mu _{h}}\), then \( S_{m}(t)+I_{m}(t)\le \frac{ \omega K}{\mu _{m}},~ S_{h}(t)+I_{h}(t)\le \frac{\varLambda }{\mu _{h}},\) for \(\forall ~t\ge 0.\)

It follows from the seventh equation of system (2) that

$$\begin{aligned} \frac{\mathrm{d}Z}{\mathrm{d}t}\le \sigma \frac{\varLambda }{\mu _{h}} -c Z. \end{aligned}$$

Similarly, we have \(Z\le \frac{\sigma \varLambda }{c\mu _{h}}.\) Therefore, \(\varGamma \) is positively invariant of system (2). This completes the proof. \(\square \)

B The simulation and biological explanation of the next-generation matrix \(FV^{-1}\)

Based on the idea of P. van den Driessche and James Watmough in [30], the next-generation matrix \(FV^{-1}\) is explained below.

Let \(x=(x_1,x_2,x_3,x_4,x_5,x_6,x_7)^T,\) where \(x_1=I_a,x_2=I_m,x_3=I_h,x_4=Z,x_5=S_a,x_6=S_m,x_7=S_h.\) Let

$$\begin{aligned} \begin{array}{lll} &{}&{}{\mathcal {F}} (x) = \left( \begin{array}{c} g(Z)S_{a} \\ b\beta _{1}\frac{I_{h}S_{m}}{N_{h}} \\ b\beta _{2}\frac{I_{m}S_{h}}{N_{h}}\\ 0\\ 0\\ 0\\ 0\\ \end{array} \right) ,~~~~\\ &{}&{}{\mathcal {V}}^{+}(x)= \left( \begin{array}{c} 0\\ \omega I_{a}\\ 0\\ \sigma I_{h}\\ \rho (S_{m}+I_{m})\left( 1-\frac{S_{a}+I_{a}}{K}\right) \\ \omega S_{a}\\ \varLambda \\ \end{array} \right) , \end{array}\\ \begin{array}{lll} &{}&{}{\mathcal {V}}^{-}(x)= \left( \begin{array}{c} (\omega +\mu _{a})I_{a}\\ \mu _{m}I_{m}\\ (\mu _{h}+r)I_{h}\\ cZ\\ g(Z)S_{a}+(\omega +\mu _{a})S_{a}\\ b\beta _{1}\frac{I_{h}S_{m}}{N_{h}}+\mu _{m}S_{m}\\ b\beta _{2}\frac{I_{m}S_{h}}{N_{h}}+\mu _{h}S_{h}\\ \end{array} \right) . \end{array} \end{aligned}$$

\({\mathcal {F}}_i(x)\) represents the input rate of newly infected individuals in the ith compartment, \({\mathcal {V}}_i^{+}(x)\) represents rate of transfer of individuals into the ith compartment by all other means. \({\mathcal {V}}_i^{-}(x)\) represents the rate of transfer of individuals out of the ith compartment. So, the Zika transmission model (1) can be represented as follows

$$\begin{aligned} \frac{\mathrm{d}x_i}{\mathrm{d}t}={\mathcal {F}}_i(x)-{\mathcal {V}}_i(x),i=1,2,...,7, \end{aligned}$$

where \({\mathcal {V}}_i(x)={\mathcal {V}}_i^{-}(x)-{\mathcal {V}}_i^{+}(x).\) Let \(F =\left( \frac{\partial {\mathcal {F}}_i}{\partial x_j}(x_0) \right) \) and \(V =\left( \frac{\partial {\mathcal {V}}_i}{\partial x_j}(x_0) \right) \) with \(x_0=(0,0,0,0,A_0,M_0,S_h^0)\), \(1\le i,j\le 4.\) By simple calculation, we can get

$$\begin{aligned} \begin{aligned}&F = \left( \begin{array}{cccc} 0 &{} 0 &{} 0 &{} g'(0)A_0\\ 0 &{} 0 &{} \frac{b\beta _1 M_0}{ N_h} &{}0\\ 0 &{} b\beta _2 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0\\ \end{array} \right) ,~\\&V= \left( \begin{array}{cccc} \omega +\mu _a &{} 0 &{} 0 &{} 0\\ -\omega &{} \mu _m &{} 0 &{} 0\\ 0 &{} 0 &{} \mu _{h}+r &{} 0\\ 0 &{} 0 &{} -\sigma &{} c\\ \end{array} \right) . \end{aligned} \end{aligned}$$

Then, we can obtain

$$\begin{aligned} \begin{aligned} V^-= \left( \begin{array}{cccc} \frac{1}{\omega +\mu _a}&{} 0 &{} 0 &{} 0\\ \frac{\omega }{(\omega +\mu _a) \mu _m }&{} \frac{1}{\mu _m} &{} 0 &{} 0\\ 0 &{} 0 &{} \frac{1}{\mu _{h}+r} &{} 0\\ 0 &{} 0 &{} \frac{\sigma }{(\mu _{h}+r)c} &{} \frac{1}{c}\\ \end{array} \right) . \end{aligned} \end{aligned}$$

\(FV^{-1}\) is given by

$$\begin{aligned} \begin{aligned} FV^{-1} = \left( \begin{array}{cccc} 0 &{} 0 &{} \frac{ \sigma A_0}{c( \mu _{h}+r)}g'(0) &{} \frac{A_0}{c }g'(0) \\ 0 &{} 0 &{} \frac{b\beta _1 M_0}{( \mu _{h}+r)N_h} &{} 0 \\ \frac{b\beta _2 \omega }{\mu _m( \omega +\mu _a)} &{} \frac{b\beta _2 }{\mu _m } &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 \\ \end{array} \right) ,\\ \end{aligned} \end{aligned}$$

To explain the meaning of each element of the matrix \(FV^{-1}\) and provide a meaningful definition of \(R_0\), consider the fate of an infected individual introduced into the kth compartment in a disease free population. The element (jk) of \(V^{-1}\) is the average time that this infected individual spends in the jth compartment during its lifetime, assuming that the population remains near the DFE \(x_0\) and barring reinfection. The element (ij) of F is the rate at which infected individuals in the jth compartment produce new infections in the ith compartment. Therefore, the element (ik) of the product \(FV^{-1}\) is the expected number of new infections in the ith compartment produced by the infected individual originally introduced into the kth compartment. So, following Diekmann et al. [28], P. van den Driessche and James Watmough in [30] call \(FV^{-1}\) the next-generation matrix for model (1) and set

$$\begin{aligned} R_{0} =\rho (FV^{-1}). \end{aligned}$$

C Proof of Theorem 2

Proof

Theorem 1 shows the local stability of \(E_{01}\). Now, we just prove the global attraction of \(E_{01}\).

Denote \(f^{ \infty }\doteq \limsup \limits _{t\rightarrow +\infty } f(t)\), \(f_{ \infty }\doteq \liminf \limits _{t\rightarrow +\infty }f(t)\), \(\varphi (t)=(S_a(t), I_a(t), S_{m}(t),\) \(I_{m}(t),\) \(S_{h}(t),\) \(I_{h}(t),\) Z(t)), \(\forall ~ t\ge 0\) and \(\varphi (t)\) satisfies system (2). From Lemma 1, we know that \(\varphi (t)\) with initial value \(\varphi (0)\ge 0\) satisfies \(0\le \varphi _{ \infty }\le \varphi ^{ \infty }<+\infty \). From the fluctuation lemma [31], there exists a sequence \(\{t_n\}\) such that \(t_n\rightarrow +\infty ,~\varphi (t_n)\rightarrow \varphi ^{\infty }\) and \(\frac{\mathrm{d}\varphi (t_n)}{\mathrm{d}t}\rightarrow 0\) as \(n\rightarrow +\infty \). Substituting \(t_n\) into system (2), letting \(n\rightarrow +\infty \), and combining \(g(Z)\le g'(0)Z\), we can obtain

$$\begin{aligned} \left\{ \begin{aligned}&(\omega +\mu _{a})S_{a}^{\infty }\le \frac{\rho }{K}(S_{a}^{\infty }+I_{a}^{\infty })(S_{m}^{\infty }+I_{m}^{\infty }) \\&\quad +g'(0)Z^{\infty }S_{a}^{\infty }+(\omega +\mu _{a})S_{a}^{\infty }\le \rho (S_{m}^{\infty }+I_{m}^{\infty }),&(12a)\\&(\omega +\mu _{a})I_{a}^{\infty }\le g'(0)Z^{\infty }S_{a}^{\infty },&(12b)\\&\mu _{m}S_{m}^{\infty } \le \mu _{m}S_{m}^{\infty } +\frac{b\beta _{1}}{N_{h}}I_{h}^{\infty }S_{m}^{\infty }\le \omega S_{a}^{\infty },&(12c)\\&\mu _{m}I_{m}^{\infty }\le \omega I_{a}^{\infty }+\frac{b\beta _{1}}{N_{h}}S_{m}^{\infty }I_{h}^{\infty },&(12d)\\&\mu _{h}S_{h}^{\infty }\le \mu _{h}S_{h}^{\infty }+\frac{b\beta _{2}}{N_{h}}I_{m}^{\infty }S_{h}^{\infty } \le \varLambda ,&(12e)\\&(\mu _{h}+r)I_{h}^{\infty }\le \frac{b\beta _{2}}{N_{h}}S_{h}^{\infty }I_{m}^{\infty },&(12f)\\&c Z^{\infty }\le \sigma I_{h}^{\infty }.&(12g)\\ \end{aligned} \right. \nonumber \\ \end{aligned}$$
(12)

Let \(A^{\infty }=S_{a}^{\infty }+I_{a}^{\infty },\) \(M^{\infty }=S_{m}^{\infty }+I_{m}^{\infty }.\) From (12a) and (12b), we have

$$\begin{aligned} \frac{\rho }{K}M^{\infty }A^{\infty }+ (\omega +\mu _{a})A^{\infty }\le \rho M^{\infty }. \end{aligned}$$
(13)

From (12c) and (12d), we have

$$\begin{aligned} A^{\infty }\ge \frac{\mu _m}{\omega } M^{\infty }. \end{aligned}$$
(14)

Substituting (14) into (13), one has

$$\begin{aligned} M^{\infty }\le \frac{ \omega K}{\mu _{m}}\left( 1-\frac{\mu _{m} (\omega +\mu _{a})}{\rho \omega } \right) =M_0. \end{aligned}$$
(15)

So,

$$\begin{aligned} A^{\infty }\le A_0. \end{aligned}$$
(16)

From (12e), we have

$$\begin{aligned} S_{h}^{\infty }\le \frac{\varLambda }{\mu _h}. \end{aligned}$$
(17)

Substituting (12b), (12f) and (12g) into (12d), we get

$$\begin{aligned} I_{m}^{\infty }\le \frac{b^2 \beta _1\beta _2}{\mu _m (\mu _{h}+r)}\frac{S_{m}^{\infty }}{N_h}I_{m}^{\infty }+ \frac{b \beta _2 \omega \sigma g'(0)}{c \mu _{m}(\omega +\mu _{a}) (\mu _{h}+r)} S_{a}^{\infty }I_{m}^{\infty }.\nonumber \\ \end{aligned}$$
(18)

If \(I_{m}^{\infty }>0\), then, from inequality (18) and (12c), we have

$$\begin{aligned} 1\le \frac{b^2 \beta _1\beta _2}{\mu _m (\mu _{h}+r)N_h}\frac{\omega }{\mu _m}S_{a}^{\infty }+ \frac{b \beta _2 \omega \sigma g'(0)}{c \mu _{m}(\omega +\mu _{a}) (\mu _{h}+r)} S_{a}^{\infty }. \end{aligned}$$

Since \(R_0<1\), we have \( A_{0} < S_{a}^{\infty },\) which is a contradiction since \(S_{a}^{\infty }\le A_{0}.\) Thus, \(I_{m}^{\infty }=0\). From (12f), (12g) and (12b), we have \(I_{h}^{\infty }=0\), \(Z^{\infty }=0\) and \(I_a^{\infty }=0\). So,

$$\begin{aligned} \lim \limits _{t\rightarrow +\infty }I_a(t)=\lim \limits _{t\rightarrow +\infty }I_m(t) =\lim \limits _{t\rightarrow +\infty }I_h(t)=\lim \limits _{t\rightarrow +\infty }Z(t)=0. \end{aligned}$$

Using the fluctuation lemma again, one can obtain

$$\begin{aligned} S_{a\infty }= A_0,~ S_{m\infty }= M_0,~ S_{h\infty }=\frac{\varLambda }{\mu _h}. \end{aligned}$$

Combining with (15), (16) and (17), we have

$$\begin{aligned}&\lim \limits _{t\rightarrow +\infty }S_a(t)= A_0,~\lim \limits _{t\rightarrow +\infty }S_m(t) =M_0,\\&\lim \limits _{t\rightarrow +\infty }S_h(t)=\frac{\varLambda }{\mu _h}. \end{aligned}$$

This completes the proof. \(\square \)

D Proof of Theorem 4

Proof

Define

$$\begin{aligned} \begin{aligned} X_{0}&=\{(S_a, I_a, S_{m}, I_{m}, S_{h}, I_{h}, Z )\in \varGamma ~|~I_{a}> 0,\\&\quad I_{m}> 0, I_{h}> 0, Z>0 \},\\ \partial X_{0}&=\varGamma \backslash X_{0}. \end{aligned} \end{aligned}$$

First, it is easy to show that \(X_{0}\) is a positively invariant set for system (2), and \(\partial X_{0}\) is closed in \(\varGamma \). Furthermore, it follows from Lemma 1 that system (2) is point dissipative. Denote \(\varphi (0)=(S_a(0), I_a(0), S_{m}(0), I_{m}(0), S_{h}(0), I_{h}(0), Z(0))\). Let \( \varphi (t)=(S_a(t), I_a(t), S_{m}(t),I_{m}(t), S_{h}(t), I_{h}(t), Z(t))\) be a solution of system (2) with \(\varphi (0)\). Set

$$\begin{aligned} \begin{aligned} G_{\partial }=\{&\varphi (0)~|~\varphi (t)~ \text {satisfies system}~(2) ~\text {and} ~ \varphi (t)\in \partial X_{0}, \forall ~t\ge 0 \}, \\ {\tilde{G}}_{\partial }=\{&(S_a , 0, S_{m}, 0, S_{h}, 0, 0)\in \varGamma ~|~ S_a\ge 0, S_m\ge 0, S_h>0\}. \end{aligned} \end{aligned}$$

Next, we will show that \(G_{\partial }={\tilde{G}}_{\partial }.\) It is obvious that \({\tilde{G}} _{\partial } \subseteq G_{\partial },\) then we only need to prove \(G_{\partial } \subseteq {\tilde{G}} _{\partial }.\) Assume \(\varphi (0)\in G_{\partial }\). Then, \(\varphi (t)\in \partial X_{0}, \forall ~t\ge 0\). We will prove that \(I_{a}(t)=I_{m}(t)=I_{h}(t)=Z(t)=0, \forall ~t\ge 0.\) Suppose not. Then, there exists \(t_0\ge 0\) such that at least one of \(I_a(t_0)\), \(I_m(t_0)\), \(I_h(t_0)\) and \(Z(t_0)\) is not zero. Without loss of generality, assume that \(I_{a}(t_{0})>0\), \(I_{m}(t_{0})=I_{h}(t_{0})=Z(t_{0})=0\). Then, from system (2), we have, for \(\forall ~t>t_{0}\),

$$\begin{aligned} \begin{aligned}&I_{a}(t)=I_{a}(t_{0})e^{-(\omega +\mu _{a})(t-t_{0})}\\&\quad +\int ^{t}_{t_{0}}g(Z(s))S_{a}(s)e^{-(\omega +\mu _{a})(t-s)}\mathrm{d}s> 0,\\&\quad I_{m}(t)=I_{m}(t_{0})e^{- \mu _{m}(t-t_{0})}\\&\quad +\int ^{t}_{t_{0}}\left( \omega I_{a}(s)+\frac{b\beta _{1}}{N_{h}}I_{h}(s)S_{m}(s)\right) e^{-\mu _{m}(t-s)}\mathrm{d}s> 0,\\&\quad I_{h}(t)=I_{h}(t_{0})e^{- (\mu _{h}+r)(t-t_{0})}\\&\quad + \frac{b\beta _{2}}{N_{h}}\int ^{t}_{t_{0}}I_{m}(s)S_{h}(s)e^{-(\mu _{h}+r)(t-s)}\mathrm{d}s> 0,\\&Z(t)=Z(t_{0})e^{- c(t-t_{0})}\\&\quad + \sigma \int ^{t}_{t_{0}}I_{h}(s) e^{-c(t-s)}\mathrm{d}s> 0. \end{aligned} \end{aligned}$$

This implies that \(\varphi (t)=(S_a(t), I_a(t), S_{m}(t), I_{m}(t), S_{h}(t), I_{h}(t), Z(t))\notin \partial X_{0}\) for \(t>t_{0}\). which contradicts \(\varphi (t)\in \partial X_{0}, \forall ~t\ge 0\). So, one can obtain \(G_{\partial } \subseteq {\tilde{G}}_{\partial }.\) So \(G_{\partial }={\tilde{G}}_{\partial }.\) Therefore, it is clear that there are two equilibria \(E_{00}\) and \(E_{01}\) in \(G_{\partial }\).

Next, we will show that \(E_{00}\) and \(E_{01}\) are isolated invariant sets in \(\varGamma \). We need show that \(W^{s}(E_{00})\cap X_{0}=\emptyset \) and \(W^{s}(E_{01})\cap X_{0}=\emptyset \), where \(W^{s}(E_{00})\) and \(W^{s}(E_{01})\) are stable manifolds of \(E_{00}\) and \(E_{01}\), respectively, that is, there exist positive constants \(\delta \) and \({\bar{\delta }}\) such that for any solution \(\varPhi _{t}(\varphi (0))\) of system (2) with the initial value \(\varphi (0)\in X_{0}\), we have

$$\begin{aligned}&\limsup \limits _{t\rightarrow +\infty }d(\varPhi _{t}(\varphi (0)),E_{01})\ge \delta ,\\&\limsup \limits _{t\rightarrow +\infty }d(\varPhi _{t}(\varphi (0)),E_{00})\ge {\bar{\delta }}, \end{aligned}$$

where d is a distant function in \(X_{0}\). Here, we only show \(\limsup \limits _{t\rightarrow +\infty }d(\varPhi _{t}(\varphi (0)),E_{01})\) \(\ge \delta \). If not, then \(\limsup \limits _{t\rightarrow +\infty }d(\varPhi _{t}(\varphi (0)),\) \(E_{01})< \delta \), that is, there exists \(t_1>0\), such that \(A_{0}-\delta< S_{a}< A_{0}+\delta \), \(M_{0}-\delta< S_{m}< M_{0}+\delta \), \(S_h^0-\delta< S_{h}< S_h^0+\delta \), \(0< I_{a}<\delta \), \(0< I_{m}<\delta \), \(0< I_{h}<\delta \) and \(0< Z<\delta \) for \(\forall ~t>t_1\). Next, we just prove the incidence function \(g(Z)=\beta _{3}\frac{Z}{k+Z}.\) For \(g(Z)=\beta _3 Z\), its proof is similar. For the incidence function \(g(Z)=\beta _{3}\frac{Z}{k+Z},\) one can get, for \(\forall \) \(t>t_1\),

$$\begin{aligned} \left\{ \begin{aligned}&\frac{\mathrm{d}I_{a}}{\mathrm{d}t}\ge \frac{\beta _{3}(A_{0}-\delta )}{k+\delta }Z-(\omega +\mu _{a})I_{a},\\&\frac{\mathrm{d}I_{m}}{\mathrm{d}t}\ge \omega I_{a}+b\beta _{1}\frac{M_{0}-\delta }{N_{h}}I_{h}-\mu _{m}I_{m},\\&\frac{\mathrm{d}I_{h}}{\mathrm{d}t}\ge b\beta _{2}\frac{S_h^0-\delta }{N_{h}}I_{m}-(\mu _{h}+r)I_{h},\\&\frac{\mathrm{d}Z}{\mathrm{d}t}\ge \sigma I_{h} -c Z.\\ \end{aligned} \right. \end{aligned}$$

Consider an auxiliary system as follows

$$\begin{aligned} \begin{array}{lll} \frac{\mathrm{d}U}{\mathrm{d}t}= B (\delta )U, \end{array} \end{aligned}$$
(19)

where \(U=(U_{1},U_{2},U_{3},U_{4})^{T}\) and

$$\begin{aligned} \begin{array}{lll} B(\delta ) = \left( \begin{array}{cccc} -(\omega +\mu _{a}) &{} 0 &{} 0 &{} \frac{\beta _{3}(A_{0}-\delta )}{k+\delta }\\ \omega &{} -\mu _{m} &{} b\beta _{1}\frac{M_{0}-\delta }{N_{h}} &{} 0\\ 0 &{} b\beta _{2}\frac{S_h^0-\delta }{N_{h}} &{} -(\mu _{h}+r) &{}0\\ 0 &{}0&{} \sigma &{} -c\\ \end{array} \right) . \end{array} \end{aligned}$$

We know \(B(0)=F-V\). Note that \(B(\delta )\) is irreducible and has nonnegative off-diagonal elements. Then, \(s(B(\delta ))\) is a simple eigenvalue of \(B(\delta )\) with a positive eigenvector (see Theorem A.5 in [50]). Based on Theorem 2 in [30], we have \(s(B(0))>0\) when \(R_{0}>1.\) We know that \(B(\delta )\) is a continuous for small \(\delta \). Thus, there exists \(\delta \) small enough, such that \(s(B(\delta ))>0\). So, there exists a positive eigenvalue of \(B(\delta )\) corresponding to a positive eigenvector. Let \(U(t)=(U_{1}(t),U_{2}(t),U_{3}(t),U_{4}(t))^{T}\) be positive solution of auxiliary system (19). Then, \(U_i(t)\) is strictly increasing with \(U_i(t)\rightarrow +\infty \) as \(t\rightarrow +\infty \), \(i=1,\ldots ,4\). We know that system (19) is quasi-monotonic. Using the comparison principle, we have

$$\begin{aligned}&\lim \limits _{t \rightarrow +\infty }I_{a}(t)=+\infty ,\lim \limits _{t \rightarrow +\infty }I_{m}(t)=+\infty ,\\&\lim \limits _{t \rightarrow +\infty }I_{h}(t)=+\infty ,\lim \limits _{t \rightarrow +\infty }Z(t)=+\infty . \end{aligned}$$

This contradicts with our assumption. Then, \(E_{01}\) is an isolated invariant set in \(\varGamma \) and \(W^{s}(E_{01})\cap X_{0}=\emptyset \). Similarly, we can get that \(E_{00}\) is an isolated invariant set in \(\varGamma \) and \(W^{s}(E_{00})\cap X_{0}=\emptyset .\) Clearly, every orbit in \(G_{\partial }\) converges to either \(E_{00}\) or \(E_{01}\), and \(\{E_{00}\}\cup \{E_{01}\}\) is an acyclic covering of \(G_{\partial }\). From Theorem 4.1 in [51], system with incidence function \(g(Z)=\beta _3\frac{Z}{k+Z}\) or \(\beta _3 Z\) is uniformly persistent if \(R_{0}>1\). This completes the proof. \(\square \)

E The expressions of \(a_{i}\), \(b_{i}\) and \(c_{i}\), \(i=1, 2, 3\)

$$\begin{aligned} \begin{aligned}&a_1=d_1^2-3e_1s_1,~a_2=2d_1 d_2-3(e_1 s_2+e_2 s_1),~a_3=d_2^2-3e_2s_2,~\\&b_1=d_1s_1,~b_2=d_1s_2+d_2s_1-9e_1D_3,~b_3=d_2s_2-9e_2D_3,\\&c_1=s_1^2,~c_2=2s_1s_2-3d_1D_3,~c_3=S_2^2-3d_2 D_3, \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} e_1=\,&\mu _m b^3 \beta _2^3\sigma ^2 \varLambda ^2(b\beta _1\mu _h +\mu _m(\mu _h+r)),\\ e_2=\,&\mu _m b^3 \beta _2^3 c^2(\omega +\mu _a)(\mu _{h}+r)^2(b\beta _1\mu _h +\mu _m(\mu _h+r)),\\ d_1=\,&b^2 \beta _2^2\sigma ^2 \varLambda ^2(\mu _m^{2} \varLambda (\mu _{h}+r) -\omega b \beta _2A_0(b\beta _1\mu _h +\mu _m(\mu _h+r))),\\ d_2=\,&2\mu _m \varLambda b^2 \beta _2^2 c^2(\omega +\mu _a)(\mu _{h}+r)^2(b\beta _1\mu _h +\mu _m(\mu _h+r)) \\&+\mu _m^2 \varLambda b^2 \beta _2^2 c^2(\omega +\mu _a)(\mu _{h}+r)^3(1-R_0^2),\\ s_1=\,&-\omega \sigma ^2 \varLambda ^3 b^2 \beta _2^2\mu _m (\mu _{h}+r)A_0,\\ s_2=\,&\mu _m b \beta _2 c^2 \varLambda ^2(\omega +\mu _a)(\mu _{h}+r)^2 (b\beta _1\mu _h +\mu _m(\mu _h+r)) \\&+ 2 \mu _m^2 \varLambda ^2 b \beta _2 c^2(\omega +\mu _a)(\mu _{h}+r)^3(1-R_0^2). \\ \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhao, H. Modeling and dynamics analysis of Zika transmission with contaminated aquatic environments. Nonlinear Dyn 104, 845–862 (2021). https://doi.org/10.1007/s11071-021-06289-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06289-3

Keywords

Mathematics Subject Classification

Navigation