Skip to main content
Log in

Pervasive nonlinear vibrations due to rod-obstacle contact

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Simple mechanical contact between a deformable body and a rigid obstacle can lead to rich nonlinear behavior even when the equations governing the body’s motion are otherwise linear. We study the nonlinear dynamics of contact both numerically and analytically in a model problem of an Euler–Bernoulli beam and a flat substrate. This problem is relevant to microelectromechanical systems (MEMS) and marine structures. We show the nonlinearity to be dominantly quadratic, thereby giving rise to superharmonic and combination resonances of order two. We then demonstrate that similar nonlinear dynamics can in fact arise in far more general circumstances with nonlinear rods in contact with curved surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Inherent in using an Euler–Bernoulli beam model of contact is the appearance of a concentrated force exerted by the obstacle on the beam. Some may regard such a force as being unphysical, but such a conundrum can be avoided by using more sophisticated theories of beams [17] or by allowing the obstacle itself to deform [14].

  2. Such an exclusion is not warranted in the case of one-dimensional continua that have no bending energy. For the simplest such object, the inextensible string, a kink can in fact occur at \(\xi =\gamma (t)\) if the material speed of the discontinuity \(|{\dot{\gamma }}(t)|\) exceeds the speed of propagation of transverse waves [3, 23].

  3. Recall that the continuity of \({\mathbf {T}}(\cdot )\) and \({\mathbf {N}}(\cdot )\) was assumed from the outset.

  4. For examples of the analysis of rods in dry (or JKR-type) adhesion to surfaces, see [15, 19] and references therein.

References

  1. Armanini, C., Corso, F.D., Misseroni, D., Bigoni, D.: Configurational forces and nonlinear structural dynamics. J. Mech. Phys. Solids 130, 82–100 (2019)

    Article  MathSciNet  Google Scholar 

  2. Audoly, B., Callan-Jones, A., Brun, P.T.: Dynamic curling of an elastica: a nonlinear problem in elastodynamics solved by matched asymptotic expansions. In: Bigoni, D. (ed.) Extremely Deformable Structures, CISM International Centre for Mechanical Sciences, pp. 137–155. Springer, Vienna (2015)

    Chapter  Google Scholar 

  3. Burridge, R., Kappraff, J., Morshedi, C.: The sitar string, a vibrating string with a one-sided inelastic constraint. SIAM J. Appl. Math. 42(6), 1231–1251 (1982)

    Article  MathSciNet  Google Scholar 

  4. Chatjigeorgiou, I.K.: Second-order nonlinear dynamics of catenary pipelines: a frequency domain approach. Comput. Struct. 123, 1–14 (2013)

    Article  Google Scholar 

  5. Demeio, L., Lancioni, G., Lenci, S.: Nonlinear resonances in infinitely long 1D continua on a tensionless substrate. Nonlinear Dyn. 66(3), 271–284 (2011). https://doi.org/10.1007/s11071-011-0016-4

    Article  MathSciNet  MATH  Google Scholar 

  6. Demeio, L., Lenci, S.: Forced nonlinear oscillations of semi-infinite cables and beams resting on a unilateral elastic substrate. Nonlinear Dyn. 49(1–2), 203–215 (2007)

    Article  MathSciNet  Google Scholar 

  7. Demeio, L., Lenci, S.: Second-order solutions for the dynamics of a semi-infinite cable on a unilateral substrate. J. Sound Vib. 315(3), 414–432 (2008)

    Article  Google Scholar 

  8. Fang, W., Mok, J., Kesari, H.: Effects of geometric nonlinearity in an adhered microbeam for measuring the work of adhesion. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2211), 20170594 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno. Accademia nazionale dei Lincei (1964)

  10. Goldberg, N.N., O’Reilly, O.M.: On contact point motion in the vibration analysis of elastic rods. J. Sound Vib. 487, 115579 (2020)

    Article  Google Scholar 

  11. Holmes, P.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vib. 84(2), 173–189 (1982)

    Article  MathSciNet  Google Scholar 

  12. Humer, A.: Dynamic modeling of beams with non-material, deformation-dependent boundary conditions. J. Sound Vib. 332(3), 622–641 (2013)

    Article  Google Scholar 

  13. Humer, A., Steinbrecher, I., Vu-Quoc, L.: General sliding-beam formulation: a non-material description for analysis of sliding structures and axially moving beams. J. Sound Vib. 480, 115341 (2020)

    Article  Google Scholar 

  14. Lenci, S., Callegari, M.: Simple analytical models for the J-lay problem. Acta Mech. 178(1), 23–39 (2005). https://doi.org/10.1007/s00707-005-0239-x

    Article  MATH  Google Scholar 

  15. Majidi, C., O’Reilly, O.M., Williams, J.A.: On the stability of a rod adhering to a rigid surface: Shear-induced stable adhesion and the instability of peeling. J. Mech. Phys. Solids 60(5), 827–843 (2012)

    Article  MathSciNet  Google Scholar 

  16. Minorsky, N.: Nonlinear Oscillations. R. E. Krieger, Malabar (1987)

    MATH  Google Scholar 

  17. Naghdi, P., Rubin, M.: On the significance of normal cross-sectional extension in beam theory with application to contact problems. Int. J. Solids Struct. 25(3), 249–265 (1989). https://doi.org/10.1016/0020-7683(89)90047-4

    Article  Google Scholar 

  18. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  Google Scholar 

  19. O’Reilly, O.M.: Modeling Nonlinear Problems in the Mechanics of Strings and Rods: The Role of the Balance Laws. Interaction of Mechanics and Mathematics. Springer, Berlin (2017)

    Book  Google Scholar 

  20. Plaut, R.H., Virgin, L.N.: Deformation and vibration of upright loops on a foundation and of hanging loops. Int. J. Solids Struct. 51(18), 3067–3075 (2014)

    Article  Google Scholar 

  21. Rao, S.S.: Vibration of Continuous Systems. Wiley, Hoboken (2007)

    Google Scholar 

  22. Roy, A., Chatterjee, A.: Vibrations of a beam in variable contact with a flat surface. J. Vib. Acoust. 131(4), 041010 (2009)

    Article  Google Scholar 

  23. Singh, H., Hanna, J.A.: Pick-up and impact of flexible bodies. J. Mech. Phys. Solids 106, 46–59 (2017)

    Article  MathSciNet  Google Scholar 

  24. Taylor, R.L., Papadopoulos, P.: On a finite element method for dynamic contact/impact problems. Int. J. Numer. Methods Eng. 36(12), 2123–2140 (1993)

    Article  Google Scholar 

  25. Thompson, J.M.T., Ghaffari, R.: Chaotic dynamics of an impact oscillator. Phys. Rev. A 27(3), 1741–1743 (1983)

    Article  MathSciNet  Google Scholar 

  26. Triantafyllou, M.S., Bliek, A., Shin, H.: Dynamic analysis as a tool for open-sea mooring system design. Trans. Soc. Naval Arch. Mar. Eng. 93, 303–324 (1985)

    Google Scholar 

  27. Turnbull, P., Perkins, N., Schultz, W.: Contact-induced nonlinearity in oscillating belts and webs. J. Vib. Control 1(4), 459–479 (1995)

    Article  Google Scholar 

  28. Vetyukov, Y., Oborin, E., Scheidl, J., Krommer, M., Schmidrathner, C.: Flexible belt hanging on two pulleys: contact problem at non-material kinematic description. Int. J. Solids Struct. 168, 183–193 (2019)

    Article  Google Scholar 

  29. Vu-Quoc, L., Li, S.: Dynamics of sliding geometrically-exact beams: large angle maneuver and parametric resonance. Comput. Methods Appl. Mech. Eng. 120(1–2), 65–118 (1995)

    Article  MathSciNet  Google Scholar 

  30. Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Berlin (2006)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the United States Department of Defense through the National Defense Science and Engineering Graduate Fellowship awarded to N. N. Goldberg. We thank Prof. P. Papadopoulos and M. Zoller of the University of California, Berkeley, for their invaluable input on the finite element method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver M. O’Reilly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 5989 KB)

A Appendix: finite element method

A Appendix: finite element method

Here, we describe the numerical method used in Sect. 2 to solve Eqs. (2.1) to (2.5). A similar approach for a more general class of problems has been developed by Humer et al. [12, 13], motivated by the earlier method of Vu-Quoc and Li [29]. The first step is to introduce the stretching transformation \(z=\xi /\gamma (t)\), which maps the variable spatial domain \([0,\gamma (t)]\) to the fixed one [0, 1]. By writing \(y=y(\xi ,t)={\tilde{y}}(\gamma (t)\xi ,t)\) and then applying the chain rule, Eq. (2.1) becomes

$$\begin{aligned} \begin{aligned}&\rho _0 \bigg [\frac{\partial ^{2}{\tilde{y}}}{{\partial }t^{2}} +\left( \frac{2\dot{\gamma }^2}{\gamma }-\ddot{\gamma }\right) \frac{z}{\gamma } \frac{\partial \tilde{y}}{{\partial }z}-\frac{2\dot{\gamma }z}{\gamma } \frac{\partial ^{2}{\tilde{y}}}{{\partial }t{\partial }z}\\&\quad +\left( \frac{\dot{\gamma }z}{\gamma }\right) ^2 \frac{\partial ^{2}{\tilde{y}}}{{\partial }z^{2}}\bigg ] +\frac{1}{\gamma ^4} \frac{\partial ^{2}}{{\partial }z^{2}} \left( EI\frac{\partial ^{2}{\tilde{y}}}{{\partial }z^{2}}\right) =-\rho _0g. \end{aligned} \end{aligned}$$
(A.1)

The appropriate boundary conditions are \({\tilde{y}}=a\) and \(\partial {\tilde{y}}/\partial z =0\) at \(z=0\), and \({\tilde{y}}=\partial {\tilde{y}}/\partial z=\partial ^2{\tilde{y}}/\partial z^2=0\) at \(z=1\). We have now transformed the free-boundary-value problem to one on a fixed domain, a simplification that comes at the cost of a substantially more complicated differential equation, Eq. (A.1), that contains an advective term as well as \(\gamma \), \({\dot{\gamma }}\), and \(\ddot{\gamma }\). Our method is quasi-Eulerian in the sense that fixed values of the coordinate z correspond neither to fixed material points nor to fixed locations in space.

In order to obtain the weak form for a typical interior element \(\varOmega ^e=(z_1^e,z_2^e)\subset (0,1)\), we multiply Eq. (A.1) by the test function \(w=w(z,t)\) and integrate the result over \(\varOmega ^e\). After applying integration by parts twice to the bending stiffness term, we obtain the following:

$$\begin{aligned} \begin{aligned}&\int _{\varOmega ^e}w\rho _0 \frac{\partial ^{2}{\tilde{y}}}{{\partial }t^{2}}\,\mathrm {d}z+\left[ 2\left( \frac{\dot{\gamma }}{\gamma }\right) ^2 -\ddot{\gamma }\right] \int _{\varOmega ^e}w\rho _0z \frac{{\partial }\tilde{y}}{{\partial }z}\,\mathrm {d}z\\&\quad -\frac{2\dot{\gamma }}{\gamma }\int _{\varOmega ^e}w\rho _0z \frac{\partial ^{2}{\tilde{y}}}{{\partial }z{\partial }t}\,\mathrm {d}z +\left( \frac{\dot{\gamma }}{\gamma }\right) ^2\int _{\varOmega ^e}w\rho _0z \frac{\partial ^{2}{\tilde{y}}}{{\partial }z^{2}}\,\mathrm {d}z\\&\quad +\frac{1}{\gamma ^4}\int _{\varOmega ^e} \frac{\partial ^{2}w}{{\partial }z^{2}}EI \frac{\partial ^{2}{\tilde{y}}}{{\partial }z^{2}}\,\mathrm {d}z +\int _{\varOmega ^e}w\rho _0g\,\mathrm {d}z\\&\quad +\left[ w\frac{\partial }{{\partial }z} \left( EI\frac{\partial ^{2}{\tilde{y}}}{{\partial }z^{2}}\right) - \frac{{\partial }w}{{\partial }z}EI \frac{{\partial }^{2}\tilde{y}}{{\partial }z^{2}}\right] _{z_1^e}^{z_2^e}=0, \end{aligned} \end{aligned}$$
(A.2)

which can be readily discretized in the spatial dimension. We define the vector of element-wise generalized displacements to be

$$\begin{aligned}&[\mathbf {q}^e(t)]=\left[ \tilde{y}(z_1^e,t),\, \frac{{\partial }\tilde{y}}{{\partial }z}(z_1^e,t),\, \tilde{y}(z_2^e,t),\,\right. \nonumber \\&\quad \left. \frac{{\partial }\tilde{y}}{{\partial }z}(z_2^e,t)\right] ^T, \end{aligned}$$
(A.3)

and the element test function vector \([{\mathbf {w}}^e(t)]\) analogously. Introducing the normalized coordinate \(s=(z-z_1^e)/h^e\), we use the following shape functions to interpolate \({\tilde{y}}\) and w:

$$\begin{aligned} N_1^e(s)&= 1-3s^2+2s^3, \end{aligned}$$
(A.4a)
$$\begin{aligned} N_2^e(s)&= h^es(1-s)^2, \end{aligned}$$
(A.4b)
$$\begin{aligned} N_3^e(s)&= s^2(3-2s), \end{aligned}$$
(A.4c)
$$\begin{aligned} N_4^e(s)&= h^es^2(s-1). \end{aligned}$$
(A.4d)

Writing the shape functions as the row vector \([{\mathbf {N}}^e(s)]=[N_1^e(s)\,\,N_2^e(s)\,\,N_3^e(s)\,\,N_4^e(s)]\), the interpolations are \({\tilde{y}}=[{\mathbf {N}}^e][{\mathbf {q}}^e]\) and \(w=[{\mathbf {N}}^e][{\mathbf {w}}^e]\).

After assembly and imposition of the z-domain versions of the first four boundary conditions in Eq. (2.3), Eq. (A.2) gives rise to a global matrix problem of the form

$$\begin{aligned} \begin{aligned}&[{\mathbf {M}}][\ddot{{\mathbf {q}}}]-\frac{2{\dot{\gamma }}}{\gamma }[{\mathbf {D}}_1] [\dot{{\mathbf {q}}}]+\bigg \{\bigg (2\bigg (\frac{{\dot{\gamma }}}{\gamma }\bigg )^2-\frac{\ddot{\gamma }}{\gamma }\bigg )[{\mathbf {D}}_1]\\&\quad +\bigg (\frac{{\dot{\gamma }}}{\gamma }\bigg )^2[{\mathbf {D}}_2]+\frac{1}{\gamma ^4} [{\mathbf {D}}_3]\bigg \}[{\mathbf {q}}]=[{F(\gamma ,{\dot{\gamma }},\ddot{\gamma })}]. \end{aligned} \end{aligned}$$
(A.5)

The corresponding element matrices, which are apparent from Eq. (A.2), are

$$\begin{aligned} {[}\mathbf {M}^e]&=\int _{\varOmega ^e}[\mathbf {N}^e]^T\rho _0[\mathbf {N}^e]\,\mathrm {d}z, \end{aligned}$$
(A.6a)
$$\begin{aligned} {[}\mathbf {D}_1^e]&=\int _{\varOmega ^e}[\mathbf {N}^e]^T\rho _0z \left[ \frac{\hbox {d}\mathbf {N}^e}{\hbox {d}z}\right] \,\mathrm {d}z, \end{aligned}$$
(A.6b)
$$\begin{aligned} {[}\mathbf {D}_2^e]&=\int _{\varOmega ^e}[\mathbf {N}^e]^T\rho _0z \left[ \frac{\hbox {d}^{2}\mathbf {N}^e}{\hbox {d}z^{2}}\right] \,\mathrm {d}z, \end{aligned}$$
(A.6c)
$$\begin{aligned} {[}\mathbf {D}_3^e]&=\int _{\varOmega ^e}\left[ \frac{\hbox {d}^{2}\mathbf {N}^e}{\hbox {d}z^{2}}\right] ^T EI \left[ \frac{\hbox {d}^{2}\mathbf {N}^e}{\hbox {d}z^{2}}\right] \,\mathrm {d}z, \end{aligned}$$
(A.6d)
$$\begin{aligned} {[}\mathbf {F}^e]&=\int _{\varOmega ^e}-[\mathbf {N}^e]^T\rho _0g\,\mathrm {d}z. \end{aligned}$$
(A.6e)

We introduce the temporal discretization \(t=t_k\) for \(k=1,2,\ldots \) and define \(\varDelta t_n=t_{n+1}-t_n\). Given \([{\mathbf {q}}_n]\), \([\dot{{\mathbf {q}}}_n]\), \([\ddot{{\mathbf {q}}}_n]\), \(\gamma _n\), \({\dot{\gamma }}_n\), and \(\ddot{\gamma }_n\), we seek to use Eq. (A.5) to determine \([{\mathbf {q}}_{n+1}]\), \([\dot{{\mathbf {q}}}_{n+1}]\), \([\ddot{{\mathbf {q}}}_{n+1}]\), \(\gamma _{n+1}\), \({\dot{\gamma }}_{n+1}\), and \(\ddot{\gamma }_{n+1}\) by way of the Newmark method. Thus, we assume

$$\begin{aligned} {\mathbf {q}}_{n+1}&={\mathbf {q}}_n+\dot{{\mathbf {q}}}_n\varDelta t_n+\frac{\varDelta t_n^2}{2}[(1-2\beta )\ddot{{\mathbf {q}}}_n+2\beta \ddot{{\mathbf {q}}}_{n+1}], \end{aligned}$$
(A.7a)
$$\begin{aligned} \dot{{\mathbf {q}}}_{n+1}&=\dot{{\mathbf {q}}}_n+[(1-\gamma )\ddot{{\mathbf {q}}}_n+\gamma \ddot{{\mathbf {q}}}_{n+1}]\varDelta t_n, \end{aligned}$$
(A.7b)

and similarly for \(\gamma \). A nonlinear matrix problem for \([{\mathbf {q}}_{n+1}]\) and \(\gamma _{n+1}\) results upon inserting Eq. (A.7) into Eq. (A.5). To solve, we iterate \([{\mathbf {q}}_{n+1}]\) and \(\gamma _{n+1}\) until the z-domain counterpart of Eq. (2.3)\(_5\) is satisfied. Then, the velocities and accelerations at \(t=t_{n+1}\) can be computed from Eq. (A.7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldberg, N.N., O’Reilly, O.M. Pervasive nonlinear vibrations due to rod-obstacle contact. Nonlinear Dyn 103, 2169–2181 (2021). https://doi.org/10.1007/s11071-021-06245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06245-1

Keywords

Navigation