Skip to main content
Log in

Adaptive control designs for control-based continuation of periodic orbits in a class of uncertain linear systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes two novel adaptive control designs for the feedback signals used in the control-based continuation paradigm to track families of periodic orbits of periodically excited dynamical systems, including black box simulation models and physical experiments. The proposed control designs rely on modifications to the classical model reference adaptive control framework and the more recent \({\mathscr {L}}_1\) adaptive control architecture, in which an additional low-pass filter is used to ensure guaranteed transient performance and robustness to time delays in the control input even in the limit of arbitrarily large adaptive gains. In contrast to the proportional control formulations that have been used in the literature on control-based continuation, the proposed control designs achieve stable performance with a minimum of parameter tuning. In the context of a class of linear systems with matched uncertainties, the paper demonstrates the successful integration of adaptive control feedback in control-based continuation. Specifically, the control designs are shown to ensure that the control input stabilizes the sought periodic orbits of the uncontrolled system and vanishes along these orbits, provided that an a priori unknown reference input is chosen appropriately. Numerical results obtained using the coco software package demonstrate how the combination of a nonlinear solver (Newton’s method) with the pseudo-arclength parameter continuation scheme can be used to trace the correct choice for the reference input under variations in an excitation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Åström, K.J., Wittenmark, B.: Adaptive Control. Courier Corporation, North Chelmsford (2013)

    MATH  Google Scholar 

  2. Barton, D.A.W.: Control-based continuation of a hybrid numerical/physical substructured system. In: Kerschen. G. (ed.) Nonlinear Dynamics, vol. 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-15221-9_19

  3. Barton, D.A.: Control-based continuation: bifurcation and stability analysis for physical experiments. Mech. Syst. Signal Process. 84, 54–64 (2017)

    Article  Google Scholar 

  4. Barton, D.A., Mann, B.P., Burrow, S.G.: Control-based continuation for investigating nonlinear experiments. J. Vib. Control 18(4), 509–520 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bureau, E., Santos, I., Thomsen, J.J., Starke, J.: Experimental Bifurcation Analysis Using Control-Based Continuation. DTU Mechanical Engineering, New Delhi (2014)

    Google Scholar 

  6. Bureau, E., Santos, I.F., Thomsen, J.J., Schilder, F., Starke, J.: Experimental bifurcation analysis by control-based continuation: determining stability. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 999–1006. American Society of Mechanical Engineers (2012)

  7. Bureau, E., Schilder, F., Santos, I.F., Thomsen, J.J., Starke, J.: Experimental bifurcation analysis of an impact oscillator-tuning a non-invasive control scheme. J. Sound Vib. 332(22), 5883–5897 (2013)

    Article  Google Scholar 

  8. Dankowicz, H., Schilder, F.: Recipes for Continuation, vol. 11. SIAM, Philadelphia (2013)

    Book  Google Scholar 

  9. Desoer, C.: Slowly varying system \(\dot{x}=a(t)x\). IEEE Trans. Autom. Control 14(6), 780–781 (1969)

    Article  MathSciNet  Google Scholar 

  10. Dorobantu, A., Seiler, P., Balas, G.J.: Time-delay margin analysis for an adaptive controller. J. Guid. Control Dyn. 35(5), 1418–1425 (2012)

    Article  Google Scholar 

  11. Gregory, I., Cao, C., Xargay, E., Hovakimyan, N., Zou, X.: L\(_1\) adaptive control design for nasa airstar flight test vehicle. In: AIAA guidance, Navigation, and Control Conference, p. 5738 (2009)

  12. Hatwal, H., Mallik, A., Ghosh, A.: Forced nonlinear oscillations of an autoparametric system-part 1: periodic responses. J. Appl. Mech. 50(3), 657–662 (1983)

    Article  Google Scholar 

  13. Hovakimyan, N., Cao, C.: \(\cal{L}_1\) Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  14. Ikeno, E., Ushida, A.: The arc-length method for the computation of characteristic curves. IEEE Trans. Circuits Syst. 23(3), 181–183 (1976)

    Article  Google Scholar 

  15. Kharisov, E., Gregory, I., Cao, C., Hovakimyan, N.: \(\cal L\it _1\) adaptive control for flexible space launch vehicle and proposed plan for flight validation. In: AIAA Guidance, Navigation and Control Conference and Exhibit, p. 7128 (2008)

  16. Krauskopf, B., Osinga, H.M., Galán-Vioque, J.: Numerical Continuation Methods for Dynamical Systems. Springer, Berlin (2007)

    Book  Google Scholar 

  17. Lavretsky, E., Gibson, T.E.: Projection operator in adaptive systems (2011). arXiv preprint arXiv:1112.4232

  18. Lavretsky, E., Wise, K.A.: State feedback direct model reference adaptive control. In: Robust and Adaptive Control. Advanced Textbooks in Control and Signal Processing. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4396-3_9

  19. Li, Y.: Adaptive control for enhanced performance of devices and algorithms. Ph.D. thesis. University of Illinois at Urbana-Champaign, Urbana, IL, USA (2019)

  20. Li, Y., Dankowicz, H.: Adaptive control designs for control-based continuation in a class of uncertain discrete-time dynamical systems. J. Vib. Control 26(21–22), 2092–2109 (2020)

    Article  MathSciNet  Google Scholar 

  21. Lin, P., Wu, Y.: Identification of multi-input multi-output linear systems from frequency response data. J. Dyn. Syst. Meas. Control 104(1), 58–64 (1982)

    Article  Google Scholar 

  22. Misra, S., Dankowicz, H., Paul, M.R.: Event-driven feedback tracking and control of tapping-mode atomic force microscopy. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2096), 2113–2133 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Narendra, K.S., Annaswamy, A.M.: Persistent excitation in adaptive systems. Int. J. Control 45(1), 127–160 (1987)

    Article  MathSciNet  Google Scholar 

  24. Nguyen, K.D.: Stability and robustness of adaptive controllers for underactuated Lagrangian systems and robotic networks. Ph.D. thesis. University of Illinois at Urbana-Champaign (2015)

  25. Nguyen, K.D., Li, Y., Dankowicz, H.: Delay robustness of an \(\cal{L}_1 \) adaptive controller for a class of systems with unknown matched nonlinearities. IEEE Trans. Autom. Control 62(10), 5485–5491 (2017)

    Article  Google Scholar 

  26. Nguyen, N., Summers, E.: On time delay margin estimation for adaptive control and robust modification adaptive laws. In: AIAA Guidance, Navigation, and Control Conference, p. 6438 (2011)

  27. Nguyen, Q., Sreenath, K.: L\(_1\) adaptive control for bipedal robots with control Lyapunov function based quadratic programs. In: 2015 American Control Conference (ACC), pp. 862–867. IEEE (2015)

  28. Ogata, K.: Modern Control Engineering. Prentice Hall, Upper Saddle River (2009)

    MATH  Google Scholar 

  29. Osborne, M.R.: On shooting methods for boundary value problems. J. Math. Anal. Appl. 27(2), 417–433 (1969)

    Article  MathSciNet  Google Scholar 

  30. Renson, L., Shaw, A., Barton, D., Neild, S.: Application of control-based continuation to a nonlinear structure with harmonically coupled modes. Mech. Syst. Signal Process. 120, 449–464 (2019)

    Article  Google Scholar 

  31. Shinbrot, T., Grebogi, C., Yorke, J.A., Ott, E.: Using small perturbations to control chaos. Nature 363(6428), 411 (1993)

    Article  Google Scholar 

  32. Sieber, J., Gonzalez-Buelga, A., Neild, S., Wagg, D., Krauskopf, B.: Experimental continuation of periodic orbits through a fold. Phys. Rev. Lett. 100(24), 244101 (2008)

    Article  Google Scholar 

  33. Sieber, J., Krauskopf, B.: Control-based continuation of periodic orbits with a time-delayed difference scheme. Int. J. Bifurc. Chaos 17(08), 2579–2593 (2007)

    Article  MathSciNet  Google Scholar 

  34. Sieber, J., Krauskopf, B., Wagg, D., Neild, S., Gonzalez-Buelga, A.: Control-based continuation of unstable periodic orbits. J. Comput. Nonlinear Dyn. 6(1), 011005 (2011)

    Article  Google Scholar 

  35. Sun, J.: Model reference adaptive control. In: Baillieul, J., Samad, T. (eds.) Encyclopedia of Systems and Control. Springer, London (2015). https://doi.org/10.1007/978-1-4471-5058-9_116

  36. Swevers, J., Ganseman, C., Tukel, D.B., De Schutter, J., Van Brussel, H.: Optimal robot excitation and identification. IEEE Trans. Robot. Autom. 13(5), 730–740 (1997)

    Article  Google Scholar 

  37. Vakakis, A., Nayfeh, T., King, M.: A multiple-scales analysis of nonlinear, localized modes in a cyclic periodic system. J. Appl. Mech. 60(2), 388–397 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by Agriculture and Food Research Initiative Competitive Grant no. 2014-67021-22109 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Bounded inputs

Recall the model reference adaptive control design from Sect. 2.2. As shown there, \(e=x-x_m\) and \({\tilde{\theta }}={\hat{\theta }}-\theta \) are bounded signals. Since this holds also for r and g, it follows from Eq. (11) and the fact that A is Hurwitz that \(x_m\) is bounded, and consequently, that x is bounded. Equation (9) then implies that u is bounded.

For the \({\mathscr {L}}_1\) adaptive control design in Sect. 2.3, the boundedness of x, \({\hat{x}}\), and u follows under an additional condition on the bandwidth k. Here, \({\hat{\eta }}(t)\triangleq {\hat{\theta }}^\top (t) x(t)\) and \({\hat{\theta }}\in {\mathscr {B}}\) imply that

$$\begin{aligned} \left\| {\hat{\eta }}_\tau \right\| _{{\mathscr {L}}_\infty }\le L\left\| x_\tau \right\| _{{\mathscr {L}}_\infty } \end{aligned}$$
(56)

for any \(\tau <\infty \) and some \(L>0\). It follows from (30) that

$$\begin{aligned} \left\| {\hat{\eta }}_\tau \right\| _{{\mathscr {L}}_\infty }\le L\left( \left\| {\hat{x}}_\tau \right\| _{{\mathscr {L}}_\infty }+\frac{2R}{\sqrt{\lambda _\mathrm {min}(P)\varGamma }}\right) . \end{aligned}$$
(57)

Next, let \(\zeta (t)\triangleq {\tilde{\theta }}^\top (t)r(t)\) and denote the Laplace transform of g(t) by g(s). It follows from Eq. (24) that

$$\begin{aligned} \Vert {\hat{x}}_\tau \Vert _{{\mathscr {L}}_{\infty }}&\le \Vert G(s)\Vert _{{\mathscr {L}}_1}\Vert {\hat{\eta }}_\tau \Vert _{{\mathscr {L}}_{\infty }}+\Vert H(s)\Vert _{{\mathscr {L}}_1}\big \Vert \zeta _\tau \big \Vert _{{\mathscr {L}}_{\infty }}\nonumber \\&\quad +\Vert (s{\mathbb {I}}-A)^{-1}\left( g(s)+x(0)\right) \Vert _{{\mathscr {L}}_{\infty }}, \end{aligned}$$
(58)

where \(G(s)\triangleq H(s)(1-C(s))\), \(H(s)\triangleq (s{\mathbb {I}}-A)^{-1}b\), and \(C(s)=k/(s+k)\). Substitution of (57) in (58) and reorganization yields

$$\begin{aligned}&\left( 1-\Vert G(s)\Vert _{{\mathscr {L}}_1}L\right) \Vert {\hat{x}}_{\tau }\Vert _{{\mathscr {L}}_{\infty }}\le \Vert G(s)\Vert _{{\mathscr {L}}_1} \frac{2RL}{\sqrt{\lambda _{\text {min}}(P)\varGamma }}\nonumber \\&\quad +\Vert H(s)\Vert _{{\mathscr {L}}_1}\big \Vert \zeta _\tau \big \Vert _{{\mathscr {L}}_{\infty }}\nonumber \\&\quad +\Vert (s{\mathbb {I}}-A)^{-1}\left( g(s)+x(0)\right) \Vert _{{\mathscr {L}}_{\infty }} \end{aligned}$$
(59)

and the boundedness of \({\hat{x}}\) follows provided that k satisfies the stability condition

$$\begin{aligned} \Vert G(s)\Vert _{{\mathscr {L}}_1}L<1. \end{aligned}$$
(60)

It is straightforward to show that this holds provided that k exceeds some threshold. In this case, the bound on \({\tilde{x}}\) implies the boundedness of x. Since \({\hat{\theta }}\) is bounded by construction, it follows that u is bounded.

In the case of the linear system given by (34), the \({\mathscr {L}}_1\)-norm of G(s) as a function of the filter bandwidth k is shown in Fig. 25. With \({\mathscr {B}}={\mathscr {B}}(0,2)\), it follows that \(L=2\sqrt{2}\) and, consequently, that \(\Vert G(s)\Vert _{{\mathscr {L}}_1}\) must be less than \(1/(2\sqrt{2})\) for the stability condition to hold. In the main text, we use \(k=10\) for which \(\Vert G(s)\Vert _{{\mathscr {L}}_1}\approx 0.23\).

For the linear system given by (44), and with \({\mathscr {B}}={\mathscr {B}}(0,2)\), the stability condition again holds as long as \(\Vert G(s)\Vert _{{\mathscr {L}}_1}<1/(2\sqrt{3})\). With \(k=20\), \(\Vert G(s)\Vert _{{\mathscr {L}}_1}\approx 0.26\).

Fig. 25
figure 25

\({\mathscr {L}}_1\)-norm of G(s) as a function of the filter bandwidth k for the system defined in Eq. (34)

Transient performance

Suppose that k is chosen so that the stability condition (60) holds. The ideal dynamics of the \({\mathscr {L}}_1\) adaptive control design is represented by the nonadaptive reference system

$$\begin{aligned} {\dot{x}}_\mathrm {ref}&=Ax_\mathrm {ref}+b\left( u_\mathrm {ref}+\theta ^\top x_\mathrm {ref}\right) +g,\, x_\mathrm {ref}(0)=x(0), \end{aligned}$$
(61)
$$\begin{aligned} {\dot{u}}_\mathrm {ref}&=-k\left( u_\mathrm {ref}+\theta ^\top x_\mathrm {ref}\right) ,\,u_\mathrm {ref}(0)=0. \end{aligned}$$
(62)

It follows from the analysis below that

$$\begin{aligned}&\Vert x_\mathrm {ref}-x\Vert _{{\mathscr {L}}_{\infty }}\le \frac{\gamma _1}{\sqrt{\varGamma }}+\gamma _2\Vert r\Vert _{{\mathscr {L}}_{\infty }},\nonumber \\&\Vert u_\mathrm {ref}-u\Vert _{{\mathscr {L}}_{\infty }}\le \frac{\gamma _3}{\sqrt{\varGamma }}+\gamma _4\Vert r\Vert _{{\mathscr {L}}_{\infty }}\nonumber \\ \end{aligned}$$
(63)

and

$$\begin{aligned} \lim _{t\rightarrow \infty }\Vert x_\mathrm {ref}(t)-x(t)\Vert =0, \, \lim _{t\rightarrow \infty }\Vert u_\mathrm {ref}(t)-u(t)\Vert =0, \end{aligned}$$
(64)

where

$$\begin{aligned} \gamma _1&\triangleq \frac{\Vert C(s)\Vert _{{\mathscr {L}}_1}}{1-\Vert G(s)\Vert _{{\mathscr {L}}_1}L}\frac{2R}{\sqrt{\lambda _{\text {min}}(P)}}, \end{aligned}$$
(65)
$$\begin{aligned} \gamma _2&\triangleq \frac{4\Vert C(s)\Vert _{{\mathscr {L}}_1}}{1-\Vert G(s)\Vert _{{\mathscr {L}}_1}L}R^2\Vert H(s)\Vert _{{\mathscr {L}}_1}, \end{aligned}$$
(66)
$$\begin{aligned} \gamma _3&\triangleq \Vert H_1(s)\Vert _{{\mathscr {L}}_1}\frac{2R}{\sqrt{\lambda _{\text {min}}(P)}}+\Vert C(s)\Vert _{{\mathscr {L}}_1}L\gamma _1, \end{aligned}$$
(67)
$$\begin{aligned} \gamma _4&\triangleq 4\Vert C(s)\Vert _{{\mathscr {L}}_1}R^2+\Vert C(s)\Vert _{{\mathscr {L}}_1}L\gamma _2, \end{aligned}$$
(68)

and \(H_1(s)\triangleq C(s)\frac{1}{{c}_0^\top H(s)}{c}_0^\top \) is a proper and BIBO stable transfer function for some \(c_0\) (whose existence follows from the controllability of the pair (Ab), cf. Lemma A.12.1 in [13]).

Indeed, in the frequency domain

$$\begin{aligned} x_\mathrm {ref}(s)-x(s)&=H(s)C(s){\tilde{\eta }}(s)+G(s)\theta ^\top \nonumber \\&\quad \big (x_\mathrm {ref}(s)-x(s)\big ), \end{aligned}$$
(69)

where \({\tilde{\eta }}(s)\) is the Laplace transform of \({\tilde{\eta }}(t)\triangleq {\tilde{\theta }}(t)x(t)\). It follows that

$$\begin{aligned} \Vert (x_\mathrm {ref}-x)_{\tau }\Vert _{{\mathscr {L}}_{\infty }}\le \frac{\Vert C(s)\Vert _{{\mathscr {L}}_1}}{1-\Vert G(s)\Vert _{{\mathscr {L}}_1}L}\Vert H(s){\tilde{\eta }}(s)\Vert _{{\mathscr {L}}_{\infty }}. \end{aligned}$$
(70)

The error dynamics in (26) now imply that

$$\begin{aligned} H(s){\tilde{\eta }}(s)={\tilde{x}}(s)-H(s){\tilde{\xi }}(s), \end{aligned}$$
(71)

where \({\tilde{\zeta }}(s)\) is the Laplace transform of \({\tilde{\zeta }}(t)\triangleq {\tilde{\theta }}(t)r(t)\). By the triangle inequality,

$$\begin{aligned} \Vert H(s){\tilde{\eta }}(s)\Vert _{{\mathscr {L}}_{\infty }}&\le \frac{2R}{\sqrt{\lambda _{\text {min}}(P)\varGamma }}+4R^2\Vert H(s)\Vert _{{\mathscr {L}}_1}\Vert r_{\tau }\Vert _{{\mathscr {L}}_{\infty }} \end{aligned}$$
(72)

and the first part of (63) follows since the upper bounds are independent of \(\tau \).

Similarly,

$$\begin{aligned} u_\mathrm {ref}(s)-u(s)=C(s){\tilde{\eta }}(s)-C(s)\theta ^\top \big (x_\mathrm {ref}(s)-x(s)\big ), \end{aligned}$$
(73)

where

$$\begin{aligned} C(s){\tilde{\eta }}(s)=H_1(s){\tilde{x}}(s)-C(s){\tilde{\zeta }}(s) \end{aligned}$$
(74)

and the second part of (63) again follows since the upper bounds are independent of \(\tau \).

Finally, from (69), we obtain

$$\begin{aligned} x_\mathrm {ref}(s)-x(s)=({\mathbb {I}}-G(s)\theta ^\top )^{-1}{H(s)C(s){\tilde{\eta }}(s)}, \end{aligned}$$
(75)

where \(({\mathbb {I}}-G(s){\theta }^\top )^{-1}\) is stable. Since \(\lim _{s\rightarrow 0}s{\tilde{\eta }}(s)=\lim _{t\rightarrow \infty }{\tilde{\eta }}(t)=0\), the claims of asymptotic convergence in (64) follow from the final-value theorem.

The tightness of the bounds in (63) depends on the values of \(\varGamma \) and the radius R. As suggested in the main text, the \({\mathscr {L}}_1\) framework remains robust to time delays with arbitrarily large values of the adaptive gain \(\varGamma \), limited only by the available hardware. Similarly, an initially conservative estimate of R may be significantly reduced during control-based continuation, provided that \({\hat{\theta }}(t)\rightarrow \theta \) during the initial set of iterations of the Newton solver. Since \(x(t)\rightarrow 0\), it follows that \(x_\mathrm {ref}(0)\) is close to 0 in each subsequent iteration, ensuring that x(t) and u(t) remain close to 0 throughout the analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dankowicz, H. Adaptive control designs for control-based continuation of periodic orbits in a class of uncertain linear systems. Nonlinear Dyn 103, 2563–2579 (2021). https://doi.org/10.1007/s11071-021-06216-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06216-6

Keywords

Navigation