Skip to main content
Log in

Multiple rogue wave, breather wave and interaction solutions of a generalized (3 + 1)-dimensional variable-coefficient nonlinear wave equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on a direct variable transformation, we obtain multiple rogue wave solutions of a generalized (3 + 1)-dimensional variable-coefficient nonlinear wave equation, including first-order, two-order and three-order rogue wave solutions. Their dynamic behaviors are shown by some 3D plots. Compared with Zha’s symbolic computation approach, we do not need to resort to Hirota bilinear form, and it can be used to deal with variable-coefficient integrable equations. Interaction solution between rogue wave and periodic wave is obtained by using the Hirota bilinear form. Abundant breather wave solutions are presented by a direct test function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lan, Z.Z., Su, J.J.: Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 96, 2535–2546 (2019)

    Article  Google Scholar 

  2. He, J.S., Charalampidis, E.G., Kevrekidis, P.G., Frantzeskakis, D.J.: Rogue waves in nonlinear Schrödinger models with variable coefficients: application to Bose–Einstein condensates. Phys. Lett. A 378(5–6), 577–583 (2014)

    Article  Google Scholar 

  3. Liu, J.G., Zhu, W.H.: Multiple rogue wave solutions for (2+1)-dimensional Boussinesq equation. Chin. J. Phys. 67, 492–500 (2020)

    Article  MathSciNet  Google Scholar 

  4. Wu, X.Y., Tian, B., Qu, Q.X., Yuan, Y.Q., Du, X.X.: Rogue waves for a(2+1)-dimensional Gross-Pitaevskii equation with time-varying trapping potential in the Bose–Einstein condensate. Comput. Math. Appl. 79, 1023–1030 (2020)

    Article  MathSciNet  Google Scholar 

  5. Su, J.J., Gao, Y.T., Ding, C.C.: Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows. Appl. Math. Lett. 88, 201–208 (2019)

    Article  MathSciNet  Google Scholar 

  6. Draper, L.: Freak wave. Mar. Obs. 35, 193–195 (1965)

    Google Scholar 

  7. Jiang, X.J., Guan, C.L., Wang, D.L.: Rogue waves during Typhoon Trami in the East China Sea. J. Oceanol. Limnol. 37(6), 1817–1836 (2019)

    Article  Google Scholar 

  8. Ankiewicz, A., Bokaeeyan, M., Akhmediev, N.: Shallow-water rogue waves: an approach based on complex solutions of the Korteweg–de Vries equation. Phys. Rev. E 99, 050201 (2019)

    Article  Google Scholar 

  9. Li, B.Q., Ma, Y.L.: Characteristics of rogue waves for a (2 +1)-dimensional Heisenberg ferromagnetic spin chain system. J. Magn. Magn. Mater. 474, 537–543 (2019)

    Article  Google Scholar 

  10. Wang, Y.F., Guo, B.L., Liu, N.: Optical rogue waves for the coherently coupled nonlinear Schrödinger equation with alternate signs of nonlinearities. Appl. Math. Lett. 82, 38–42 (2018)

    Article  MathSciNet  Google Scholar 

  11. Raza, N., Afzal, U., Butt, A.R., Rezazadeh, H.: Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities. Opt. Quant. Electron. 51(4), 107 (2019)

    Article  Google Scholar 

  12. Ghanbari, B., Ali, A.: Abundant new analytical and approximate solutions to the generalized Schamel equation. Phys. Scr. 95(7), 075201 (2020)

    Article  Google Scholar 

  13. Lü, X., Ma, W.X., Chen, S.T., Chaudry, M.K.: A note on rational solutions to a Hirota-Satsuma-like equation. Appl. Math. Lett. 58, 13–18 (2016)

    Article  MathSciNet  Google Scholar 

  14. Wazwaz, A.M.: New (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equations with constant and time-dependent coefficients: Painlevé integrability. Phys. Lett. A 384(32), 126787 (2020)

    Article  MathSciNet  Google Scholar 

  15. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97(1), 83–94 (2019)

    Article  Google Scholar 

  16. Lan, Z.Z.: Rogue wave solutions for a higher-order nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 107, 106382 (2020)

    Article  MathSciNet  Google Scholar 

  17. Gao, L.N., Zhao, X.Y., Zi, Y.Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 72, 1225–1229 (2016)

    Article  MathSciNet  Google Scholar 

  18. Xu, G.Q., Wazwaz, A.M.: Bidirectional solitons and interaction solutions for a new integrable fifth-order nonlinear equation with temporal and spatial dispersion. Nonlinear Dyn. 101(1), 581–595 (2020)

    Article  Google Scholar 

  19. Su, J.J., Gao, Y.T., Deng, G.F., Jia, T.T.: Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow. Phys. Rev. E 100, 042210 (2019)

    Article  MathSciNet  Google Scholar 

  20. Lan, Z.Z., Guo, B.L.: Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger–Boussinesq system in a homogeneous magnetized plasma. Nonlinear Dyn. 100(4), 3771–3784 (2020)

    Article  Google Scholar 

  21. Osman, M.S., Wazwaz, A.M.: An efficient algorithm to construct multi-soliton rational solutions of the (2+1)-dimensional KdV equation with variable coefficients. Appl. Math. Comput. 321, 282–289 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Su, J.J., Zhang, S.: Nth-order rogue waves for the AB system via the determinants. Appl. Math. Lett. 112, 06714 (2021)

    Google Scholar 

  23. Wazwaz, A.M., Xu, G.Q.: Kadomtsev-Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100(4), 3711–3716 (2020)

    Article  Google Scholar 

  24. Wazwaz, A.M.: Painlevé analysis for three integrable shallow water waves equations with time-dependent coefficients. Int. J. Numer. Method Heat Fluid Flow 30(2), 996–1008 (2020)

    Article  Google Scholar 

  25. Yin, Y.H., Ma, W.X., Liu, J.G., Lü, X.: Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. 76, 1275–1283 (2018)

    Article  MathSciNet  Google Scholar 

  26. Su, J.J., Deng, G.F.: Quasi-periodic waves and irregular solitary waves of the AB system. Waves in Random and Complex Media. 2020 (2020). https://doi.org/10.1080/17455030.2020.1804091

  27. Ma, W.X.: Lump and interaction solutions to linear PDEs in 2+1 dimensions via symbolic computation. Mod. Phys. Lett. B 33, 1950457 (2019)

    Article  MathSciNet  Google Scholar 

  28. Wazwaz, A.M.: The integrable time-dependent sine-Gordon equation with multiple optical kink solutions. Optik 182, 605–610 (2019)

    Article  Google Scholar 

  29. Wazwaz, A.M.: Two new Painlevé-integrable (2+1) and (3+1)-dimensional KdV equations with constant and time-dependent coefficients. Nucl. Phys. B 954, 115009 (2020)

    Article  Google Scholar 

  30. Ma, W.X., Mousa, M.M., Ali, M.R.: Application of a new hybrid method for solving singular fractional Lane-Emden-type equations in astrophysics. Mod. Phys. Lett. B 34(3), 2050049 (2020)

    Article  MathSciNet  Google Scholar 

  31. Luo, X.: Solitons, breathers and rogue waves for the three-component Gross-Pitaevskii equations in the spinor Bose–Einstein condensates. Chaos Soliton. Fract. 131, 109479 (2020)

    Article  MathSciNet  Google Scholar 

  32. Wang, Q.Y., Li, X.H.: Collision properties of rogue waves in optical fiber. Opt. Commun. 435, 255–264 (2019)

    Article  Google Scholar 

  33. Almutalk, S.A., El-Tantawy, S.A., El-Awady, E.I., El-Labany, S.K.: On the numerical solution of nonplanar dust-acoustic super rogue waves in a strongly coupled dusty plasma. Phys. Lett. A 383(16), 1937–1941 (2019)

    Article  Google Scholar 

  34. Yang, B., Chen, Y.: Dynamics of rogue waves in the partially \(PT\)-symmetric nonlocal Davey–Stewartson systems. Commun. Nonlinear Sci. 69, 287–303 (2019)

    Article  MathSciNet  Google Scholar 

  35. Liu, J.G., You, M.X., Zhou, L., Ai, G.P.: The solitary wave, rogue wave and periodic solutions for the (3+1)-dimensional soliton equation. Z. Angew. Math. Phys. 70, 4 (2019)

    Article  MathSciNet  Google Scholar 

  36. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95(4), 3041–3048 (2019)

    Article  Google Scholar 

  37. Deng, G.F., Gao, Y.T.: Integrability, solitons, periodic and travelling waves of a generalized (3+1)-dimensional variable-coefficient nonlinear-wave equation in liquid with gas bubbles. Eur. Phys. J. Plus. 132(6), 255–271 (2017)

    Article  Google Scholar 

  38. Liu, J.G., Zhu, W.H., He, Y., Wu, Y.K.: Interaction phenomena between lump and solitary wave of a generalized (3 + 1)-dimensional variable-coefficient nonlinear-wave equation in liquid with gas bubbles. Commun. Theor. Phys. 72(8), 085002 (2020)

  39. Zha, Q.L.: A symbolic computation approach to constructing rogue waves with a controllable center in the nonlinear systems. Comput. Math. Appl. 75(9), 3331–3342 (2018)

    Article  MathSciNet  Google Scholar 

  40. Tu, J.M., Tian, S.F., Xu, M.J., Song, X.Q., Zhang, T.T.: Bäcklund transformation, infinite conservation laws and periodic wave solutions of a generalized (3+1)-dimensional nonlinear wave in liquid with gas bubbles. Nonlinear Dyn. 83, 1199–1215 (2016)

    Article  Google Scholar 

  41. Ma, W.X., Xia, T.C.: Pfaffianized systems for a generalized Kadomtsev–Petviashvili equation. Phys. Scr. 87, 055003 (2013)

    Article  Google Scholar 

  42. Kudryashov, N.A., Sinelshchikov, D.I.: Equation for the three-dimensional nonlinear waves in liquid with gas bubbles. Phys. Scr. 85, 025402 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Liu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical standard

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned} \vartheta _{32}= & {} \frac{11 \vartheta _{26}^5 \vartheta _{59}}{5832},\quad \vartheta _{31}=\frac{19 \vartheta _{26}^7 \vartheta _{59}^2}{3149280},\nonumber \\ \vartheta _{37}= & {} \frac{73 \vartheta _{26}^6 \vartheta _{59}}{244944},\quad \vartheta _{36}=\frac{107 \vartheta _{26}^8 \vartheta _{59}^2}{52907904},\nonumber \\ \vartheta _{55}= & {} -\frac{180}{\vartheta _{26}^2},\quad \vartheta _{38}=\frac{5 \vartheta _{26}^4}{432},\nonumber \\ \vartheta _{35}= & {} \frac{\vartheta _{26}^{10} \vartheta _{59}^3}{317447424}, \quad \vartheta _{43}=\frac{19 \vartheta _{26}^7 \vartheta _{59}}{979776}, \vartheta _{29}=\frac{5 \vartheta _{26}^2}{12}, \nonumber \\ \vartheta _{42}= & {} \frac{253 \vartheta _{26}^9 \vartheta _{59}^2}{793618560},\quad \vartheta _{41}=-\frac{\vartheta _{26}^{11} \vartheta _{59}^3}{28570268160},\nonumber \\ \vartheta _{52}= & {} \frac{11 \vartheta _{26}^6 \vartheta _{59}^3}{94478400}, \quad \vartheta _{33}=\frac{5 \vartheta _{26}^3}{54},\nonumber \\ \vartheta _{48}= & {} \frac{289 \vartheta _{26}^{10} \vartheta _{59}^2}{44442639360},\quad \vartheta _{40}=\frac{11 \vartheta _{26}^{13} \vartheta _{59}^4}{30855889612800},\nonumber \\ \vartheta _{61}= & {} \frac{7 \vartheta _{26}^9 \vartheta _{59}^3}{20407334400}, \quad \vartheta _{50}=\frac{\vartheta _{26}^6}{46656},\nonumber \\ \vartheta _{54}= & {} -\frac{19}{63} \vartheta _{26} \vartheta _{59},\quad \vartheta _{57}=-\frac{54}{\vartheta _{26}}, \nonumber \\ \vartheta _{49}= & {} \frac{29 \vartheta _{26}^8 \vartheta _{59}}{88179840},\quad \vartheta _{63}=\frac{\vartheta _{26}^5 \vartheta _{59}}{18144},\nonumber \\ \vartheta _{64}= & {} \frac{5 \vartheta _{26}^3}{216},\quad \vartheta _{47}=\frac{5707 \vartheta _{26}^{12} \vartheta _{59}^3}{53997806822400},\nonumber \\ \vartheta _{27}= & {} \frac{\vartheta _{26}^6 \vartheta _{59}^2}{699840},\quad \vartheta _{66}=-\frac{23 \vartheta _{26}^4 \vartheta _{59}}{13608},\nonumber \\ \vartheta _{25}= & {} \frac{7 \vartheta _{26}^3 \vartheta _{59}}{1620},\quad \vartheta _{56}=-\frac{1}{540} \vartheta _{26}^2 \vartheta _{59},\nonumber \\ \vartheta _{46}= & {} \frac{13381 \vartheta _{26}^{14} \vartheta _{59}^4}{23327052547276800}, \quad \vartheta _{67}=-\frac{5 \vartheta _{26}^2}{36},\nonumber \\ \vartheta _{53}= & {} -\frac{\vartheta _{26}^4 \vartheta _{59}^2}{58320},\quad \vartheta _{60}=\frac{1080}{\vartheta _{26}^3},\nonumber \\ \vartheta _{69}= & {} -\frac{3 \vartheta _{26}}{2},\quad \vartheta _{65}=-\frac{\vartheta _{26}^6 \vartheta _{59}^2}{2099520}, \nonumber \\ \vartheta _{28}= & {} \frac{23 \vartheta _{26}^4 \vartheta _{59}}{4536},\quad \vartheta _{30}=\frac{11 \vartheta _{26}^9 \vartheta _{59}^3}{5101833600},\nonumber \\ \vartheta _{39}= & {} -\nu ^2+\frac{279936 \nu ^2}{\vartheta _{26}^7}\quad +\,\frac{1331 \vartheta _{59}^5 \vartheta _{26}^{15}}{149959623518208000}, \nonumber \\ \vartheta _{34}= & {} -\frac{121 \vartheta _{26}^{12} \vartheta _{59}^4}{18513533767680},\quad \vartheta _{68}=\frac{13 \vartheta _{26}^3 \vartheta _{59}}{22680},\nonumber \\ \vartheta _{58}= & {} -\frac{19 \vartheta _{26}^3 \vartheta _{59}^2}{68040},\quad \vartheta _{44}=\frac{\vartheta _{26}^5}{1296},\nonumber \\ \vartheta _{45}= & {} \vartheta _1 \left( -\mu ^2-\nu ^2\right) \quad +\,\frac{\mu ^2 \vartheta _{26}}{6}+\frac{46656 \nu ^2}{\vartheta _{26}^6}\nonumber \\&+\,\frac{3509 \vartheta _{59}^5 \vartheta _{26}^{16}}{1259660837552947200}, \nonumber \\ \vartheta _{62}= & {} \frac{107 \vartheta _{26}^7 \vartheta _{59}^2}{617258880},\quad \vartheta _{51}=\vartheta _0 \left( -\mu ^2-\nu ^2\right) \nonumber \\&+\,\frac{\vartheta _{59} \left( 279936 \nu ^2+\mu ^2 \vartheta _{26}^7\right) }{7560 \vartheta _{26}^4}\nonumber \\&+\,\frac{14641 \vartheta _{59}^6 \vartheta _{26}^{18}}{20406505568357744640000},\nonumber \\ \varrho (t)= & {} -\frac{136080 \beta (t)}{\vartheta _{26}^4 \vartheta _{59}}. \end{aligned}$$
(28)

Appendix B

  1. (I)
    $$\begin{aligned} \theta _1= & {} 0,\varphi _8(t){=}[-\varphi _5 \left( 4 \varphi _9^3 \beta (t){+}2 \varphi _9 \gamma (t){+}\varphi _{12}(t)\right) +\,4 \varphi _9 \varphi _5^3 \beta (t)\nonumber \\&-\,2 \left( \varphi _6 \varphi _{10} \delta (t)+\varphi _7 \varphi _{11} \varrho (t)\right) ]/\varphi _9,\nonumber \\ \varphi _{12}(t)= & {} [-\varphi _9 \left[ \varphi _9^4 \beta (t){+}\varphi _9^2 \gamma (t){+}\left( \varphi _{10}^2{-}\varphi _6^2\right) \delta (t) {+}\left( \varphi _{11}^2{-}\varphi _7^2\right) \varrho (t)\right] \nonumber \\&+\,\varphi _5^2 \left( 2 \varphi _9^3 \beta (t)-\varphi _9 \gamma (t)\right) \nonumber \\&+\,3 \varphi _9 \varphi _5^4 \beta (t)-2 \varphi _5 [\varphi _6 \varphi _{10} \delta (t)\nonumber \\&+\varphi _7 \varphi _{11} \varrho (t)]]/(\varphi _5^2+\varphi _9^2),\nonumber \\ \beta (t)= & {} \frac{\left( \theta _2^2-\theta _3^2\right) \left[ \left( \varphi _6 \varphi _9-\varphi _5 \varphi _{10}\right) {}^2 \delta (t)+\left( \varphi _7 \varphi _9-\varphi _5 \varphi _{11}\right) {}^2 \varrho (t)\right] }{3 \left( \varphi _5^2+\varphi _9^2\right) {}^2 \left( \theta _2^2 \varphi _5^2+\theta _3^2 \varphi _9^2\right) }.\nonumber \\ \end{aligned}$$
    (29)
  2. (II)
    $$\begin{aligned} \theta _2= & {} 0, \varphi _4(t)=-[\varphi _1 \left[ 2 \varphi _9 \left[ 2 \left( \varphi _1^2+\varphi _9^2\right) \beta (t) +\gamma (t)\right] +\varphi _{12}(t)\right] \nonumber \\&\quad +2 \left( \varphi _2 \varphi _{10} \delta (t)+\varphi _3 \varphi _{11} \varrho (t)\right) ]/\varphi _9, \nonumber \\ \varphi _{12}(t)= & {} [\varphi _9 \left[ \varphi _9^4 \beta (t)+\varphi _9^2 \gamma (t)+\left( \varphi _2^2+\varphi _{10}^2\right) \delta (t)+\left( \varphi _3^2+\varphi _{11}^2\right) \varrho (t)\right] \nonumber \\&\quad +\varphi _1^2 \left( 2 \varphi _9^3 \beta (t)-\varphi _9 \gamma (t)\right) -3 \varphi _9 \varphi _1^4 \beta (t)\nonumber \\&\quad -2 \varphi _1 \left( \varphi _2 \varphi _{10} \delta (t)+\varphi _3 \varphi _{11} \varrho (t)\right) ] /(\varphi _1^2-\varphi _9^2),\nonumber \\ \beta (t)= & {} \frac{\left( \theta _1^2-\theta _3^2\right) \left[ \left( \varphi _2 \varphi _9-\varphi _1 \varphi _{10}\right) {}^2 \delta (t)+\left( \varphi _3 \varphi _9-\varphi _1 \varphi _{11}\right) {}^2 \varrho (t)\right] }{3 \left( \varphi _1^2-\varphi _9^2\right) {}^2 \left( \theta _1^2 \varphi _1^2-\theta _3^2 \varphi _9^2\right) }.\nonumber \\ \end{aligned}$$
    (30)
  3. (III)
    $$\begin{aligned} \varphi _1= & {} 0,\varphi _{11}=\frac{\varphi _7 \varphi _9}{\varphi _5}, \nonumber \\ \varphi _{10}= & {} \frac{\varphi _6 \varphi _9}{\varphi _5}, \varphi _4(t)=-\frac{2 \left[ \varphi _2 \varphi _6 \delta (t)+\varphi _3 \varphi _7 \varrho (t)\right] }{\varphi _5},\nonumber \\ \varphi _8(t)= & {} \frac{-\varphi _5 \left( 4 \varphi _9^3 \beta +2 \varphi _9 \gamma +\varphi _{12}\right) +4 \varphi _9 \varphi _5^3 \beta -2 \left( \varphi _6 \varphi _{10} \delta +\varphi _7 \varphi _{11} \varrho \right) }{\varphi _9},\nonumber \\ \varphi _{12}(t)= & {} \frac{\varphi _9^2 \left[ \left( \varphi _2^2-3 \varphi _6^2\right) \delta +\left( \varphi _3^2-3 \varphi _7^2\right) \varrho \right] -3 \varphi _5^2 \left( \varphi _9^2 \gamma +\varphi _2^2 \delta +\varphi _3^2 \varrho \right) }{3 \varphi _5^2 \varphi _9},\nonumber \\ \beta (t)= & {} -\frac{\varphi _2^2 \delta (t)+\varphi _3^2 \varrho (t)}{3 \varphi _5^2 \varphi _9^2}, \theta _1 = \epsilon \frac{\sqrt{\varphi _5^2+\varphi _9^2} \sqrt{\theta _2^2 \varphi _5^2+\theta _3^2 \varphi _9^2}}{\varphi _5 \varphi _9}, \end{aligned}$$
    (31)

    where \(\epsilon =\pm 1\).

  4. (IV)
    $$\begin{aligned} \varphi _5= & {} 0,\varphi _{11}=\frac{\varphi _3 \varphi _9}{\varphi _1},\nonumber \\ \varphi _{10}= & {} \frac{\varphi _2 \varphi _9}{\varphi _1}, \varphi _8(t)=-\frac{2 \left[ \varphi _2 \varphi _6 \delta (t)+\varphi _3 \varphi _7 \varrho (t)\right] }{\varphi _1},\nonumber \\ \varphi _4(t)= & {} \frac{\varphi _1^2 \left( -3 \varphi _9^2 \gamma +\varphi _6^2 \delta +\varphi _7^2 \varrho \right) +3 \varphi _9^2 \left[ \left( \varphi _6^2-\varphi _2^2\right) \delta +\left( \varphi _7^2-\varphi _3^2\right) \varrho \right] }{3 \varphi _1 \varphi _9^2},\nonumber \\ \varphi _{12}(t)= & {} \frac{3 \varphi _1^2 \left( -\varphi _9^2 \gamma +\varphi _6^2 \delta +\varphi _7^2 \varrho \right) +\varphi _9^2 \left[ \left( \varphi _6^2-3 \varphi _2^2\right) \delta +\left( \varphi _7^2-3 \varphi _3^2\right) \varrho \right] }{3 \varphi _1^2 \varphi _9},\nonumber \\ \beta (t)= & {} -\frac{\varphi _6^2 \delta (t)+\varphi _7^2 \varrho (t)}{3 \varphi _1^2 \varphi _9^2}, \theta _2 = \epsilon \frac{\sqrt{\left( \varphi _9^2-\varphi _1^2\right) \left( \theta _1^2 \varphi _1^2-\theta _3^2 \varphi _9^2\right) }}{\varphi _1 \varphi _9}.\nonumber \\ \end{aligned}$$
    (32)
  5. (V)
    $$\begin{aligned} \varphi _7= & {} \frac{\varphi _3 \varphi _5}{\varphi _1},\nonumber \\ \varphi _{11}= & {} \frac{\varphi _3 \varphi _9}{\varphi _1}, \nonumber \\ \beta (t)= & {} -\frac{\left( \varphi _2 \varphi _5-\varphi _1 \varphi _6\right) {}^2 \delta (t)}{3 \left( \varphi _1^2+\varphi _5^2\right) {}^2 \varphi _9^2},\nonumber \\ \varphi _{10}= & {} \frac{-\varphi _5 \varphi _6 \varphi _1^2+\varphi _2 \left( \varphi _5^2+\varphi _9^2\right) \varphi _1+\varphi _5 \varphi _6 \varphi _9^2}{\left( \varphi _1^2+\varphi _5^2\right) \varphi _9},\nonumber \\ \varphi _4(t)= & {} -\frac{\varphi _1 \left[ 2 \varphi _9 \left[ 2 \left( \varphi _1^2+\varphi _9^2\right) \beta +\gamma \right] +\varphi _{12}\right] +2 \left( \varphi _2 \varphi _{10} \delta +\varphi _3 \varphi _{11} \varrho \right) }{\varphi _9},\nonumber \\ \varphi _8(t)= & {} \frac{-\varphi _5 \left( 4 \varphi _9^3 \beta +2 \varphi _9 \gamma +\varphi _{12}\right) +4 \varphi _9 \varphi _5^3 \beta -2 \left( \varphi _6 \varphi _{10} \delta +\varphi _7 \varphi _{11} \varrho \right) }{\varphi _9},\nonumber \\ \varphi _{12}= & {} [-\varphi _9 \left[ \varphi _9^4 \beta +\varphi _9^2 \gamma +\left( \varphi _{10}^2-\varphi _6^2\right) \delta +\left( \varphi _{11}^2-\varphi _7^2\right) \varrho \right] +3 \varphi _9 \varphi _5^4 \beta \nonumber \\&+ \varphi _5^2 \left( 2 \varphi _9^3 \beta -\varphi _9 \gamma \right) -2 \varphi _5 \left( \varphi _6 \varphi _{10} \delta +\varphi _7 \varphi _{11} \varrho \right) ]/(\varphi _5^2+\varphi _9^2),\nonumber \\ \theta _1= & {} \epsilon \sqrt{\varphi _5^2+\varphi _9^2} \sqrt{\frac{\theta _3^2 \left( \varphi _1^2-\varphi _9^2\right) -\theta _2^2 \left( \varphi _1^2+\varphi _5^2\right) }{\left( \varphi _1^2+\varphi _5^2\right) \left( \varphi _1^2-\varphi _9^2\right) }}. \end{aligned}$$
    (33)
  6. (VI)
    $$\begin{aligned} \varphi _6= & {} \frac{\varphi _2 \varphi _5}{\varphi _1}, \varphi _{10}=\frac{\varphi _2 \varphi _9}{\varphi _1}, \beta (t)=-\frac{\left( \varphi _3 \varphi _5-\varphi _1 \varphi _7\right) {}^2 \varrho (t)}{3 \left( \varphi _1^2+\varphi _5^2\right) {}^2 \varphi _9^2},\nonumber \\ \varphi _{11}= & {} \frac{-\varphi _5 \varphi _7 \varphi _1^2+\varphi _3 \left( \varphi _5^2+\varphi _9^2\right) \varphi _1+\varphi _5 \varphi _7 \varphi _9^2}{\left( \varphi _1^2+\varphi _5^2\right) \varphi _9},\nonumber \\ \varphi _4(t)= & {} -\frac{\varphi _1 \left[ 2 \varphi _9 \left[ 2 \left( \varphi _1^2+\varphi _9^2\right) \beta +\gamma \right] +\varphi _{12}\right] +2 \left( \varphi _2 \varphi _{10} \delta +\varphi _3 \varphi _{11} \varrho \right) }{\varphi _9},\nonumber \\ \varphi _8(t)= & {} \frac{-\varphi _5 \left( 4 \varphi _9^3 \beta +2 \varphi _9 \gamma +\varphi _{12}\right) +4 \varphi _9 \varphi _5^3 \beta -2 \left( \varphi _6 \varphi _{10} \delta +\varphi _7 \varphi _{11} \varrho \right) }{\varphi _9},\nonumber \\ \varphi _{12}= & {} [-\varphi _9 \left[ \varphi _9^4 \beta +\varphi _9^2 \gamma +\left( \varphi _{10}^2-\varphi _6^2\right) \delta +\left( \varphi _{11}^2-\varphi _7^2\right) \varrho \right] \nonumber \\&+3 \varphi _9 \varphi _5^4 \beta \nonumber \\&+ \varphi _5^2 \left( 2 \varphi _9^3 \beta -\varphi _9 \gamma \right) -2 \varphi _5 \left( \varphi _6 \varphi _{10} \delta +\varphi _7 \varphi _{11} \varrho \right) ]/(\varphi _5^2+\varphi _9^2),\nonumber \\ \theta _1= & {} \epsilon \sqrt{\varphi _5^2+\varphi _9^2} \sqrt{\frac{\theta _3^2 \left( \varphi _1^2-\varphi _9^2\right) -\theta _2^2 \left( \varphi _1^2+\varphi _5^2\right) }{\left( \varphi _1^2+\varphi _5^2\right) \left( \varphi _1^2-\varphi _9^2\right) }}. \end{aligned}$$
    (34)

Substituting Eqs. (29)–(34) into Eq. (19), respectively, we can obtain six different sets of breather wave solutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JG., Zhu, WH. Multiple rogue wave, breather wave and interaction solutions of a generalized (3 + 1)-dimensional variable-coefficient nonlinear wave equation. Nonlinear Dyn 103, 1841–1850 (2021). https://doi.org/10.1007/s11071-020-06186-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06186-1

Keywords

Mathematics Subject Classification

Navigation