Skip to main content
Log in

Eigenvalue analysis for predicting the onset of multiple subcritical limit cycles of an airfoil with a control surface

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aeroelastic system of an airfoil with a control surface usually encounters non-smooth nonlinearities such as freeplay. Freeplay can have a significant influence on aeroelastic behavior, such as reducing the flow velocity at which a limit cycle (LC) could abruptly arise. This means that a subcritical LC might occur much below the linear flutter velocity. It has been a difficult task for years to predict the lowest velocity for the onset of LC. Here, a simple yet efficient approach to this problem is proposed. This approach is based on eigenvalue analysis of a generalized Jacobian matrix (GJM), which is deduced according to the Filippov convex theory. With this method, the lowest velocity for the GJM having positive real parts can be calculated easily. More importantly, this method can be used to determine the lowest velocity above which a subcritical LC can occur, and it also appears that it can detect multiple subcritical LCs. In addition, the distribution of the positive real parts provides us with a convenient way to judge whether the arising LCs will be subcritical or supercritical. The point transform method and the Floquet theory are employed to validate the presented approach numerically, showing that good precision can be achieved for the estimated lowest velocity and the frequency of the arising LC. It leaves an open question for this method, as at the present stage a complete and rigorous proof is urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dowell, E.H., Tang, D.: Nonlinear aeroelasticity and unsteady aerodynamics. AIAA J. 40, 1697–1707 (2002)

    Article  Google Scholar 

  2. Liu, L., Dowell, E.H.: The secondary bifurcation of an aeroelastic airfoil motion: effect of high harmonics. Nonlinear Dyn. 37, 31–49 (2004)

    Article  MathSciNet  Google Scholar 

  3. Beran, P.S., Lucia, D.J.: A reduced order cyclic method for computation of limit cycles. Nonlinear Dyn. 39, 143–158 (2005)

    Article  Google Scholar 

  4. Chen, Y.M., Liu, J.K.: Homotopy analysis method for limit cycle flutter of airfoils. Appl. Math. Comput. 203, 854–863 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Fazelzadeh, S.A., Mazidi, A.: Nonlinear aeroelastic analysis of bending-torsion wings subjected to a transverse follower force. J. Comput. Nonlinear Dyn. 6, 031016 (2011)

    Article  Google Scholar 

  6. Dai, H.H., Yue, X.K., Yuan, J.P., Xie, D.: A fast harmonic balance technique for periodic oscillations of an aeroelastic airfoil. J. Fluid Struct. 50, 231–252 (2014)

    Article  Google Scholar 

  7. Wang, C.C., Chen, C.L., Yau, H.T.: Bifurcation and chaotic analysis of aeroelastic systems. J. Comput. Nonlinear Dyn. 9, 021004 (2014)

    Article  Google Scholar 

  8. Padmanabhan, M.A., Dowell, E.H.: Calculation of aeroelastic limit cycles due to localized nonlinearity and static preload. AIAA J. 55, 2762–2772 (2017)

    Article  Google Scholar 

  9. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos: Geometrical Methods for Engineers and Scientists (Chapter 7), pp. 116–117. Wiley, Hoboken (1986)

    Google Scholar 

  10. Ding, Q., Wang, D.L.: The flutter of an airfoil with cubic structural and aerodynamic non-linearities. Aerosp. Sci. Technol. 10, 427–434 (2006)

    Article  Google Scholar 

  11. Price, S.J., Lee, B.H.K., Alighanbari, H.: Postinstability behavior of a two-dimensional airfoil with a structural nonlinearity. J. Aircr. 31, 1395–1401 (1994)

    Article  Google Scholar 

  12. Conner, M.D., Tang, D.M., Dowell, E.H., Virgin, L.N.: Nonlinear behavior of a typical airfoil section with control surface freeplay: a numerical and experimental study. J. Fluid Struct. 11, 89–109 (1997)

    Article  Google Scholar 

  13. Vasconcellos, R., Abdelkefi, A., Marques, F.D., Hajj, M.R.: Representation and analysis of control surface freeplay nonlinearity. J. Fluid Struct. 31, 79–91 (2012)

    Article  Google Scholar 

  14. Park, Y.K., Yoo, J.H., Lee, I.: Nonlinear aeroelastic analysis of control with freeplay in transonic region. AIAA J. 45, 1142–1145 (2007)

    Article  Google Scholar 

  15. Monfared, Z., Afsharnezhad, Z., Esfahani, J.A.: Flutter, limit cycle oscillation, bifurcation and stability regions of an airfoil with discontinuous freeplay nonlinearity. Nonlinear Dyn. 90, 1965–1986 (2017)

    Article  Google Scholar 

  16. Liu, L.P., Dowell, E.H.: Harmonic balance approach for an airfoil with a freeplay control surface. AIAA J. 43, 802–816 (2005)

    Article  Google Scholar 

  17. Li, D.C., Guo, S.J., Xiang, J.W.: Aeroelastic dynamic response and control of an airfoil section with control surface nonlinearities. J. Sound Vib. 329, 4756–4771 (2010)

    Article  Google Scholar 

  18. Shukla, H., Patil, M.J.: Nonlinear state feedback control design to eliminate subcritical limit cycle oscillations in aeroelastic systems. Nonlinear Dyn. 88, 1599–1614 (2017)

    Article  Google Scholar 

  19. Shukla, H., Patil, M.J.: Controlling limit cycle oscillation amplitudes in nonlinear aeroelastic systems. J. Aircr. 54, 1921–1932 (2017)

    Article  Google Scholar 

  20. Guo, H.L., Cao, S.Q., Yang, T.Z., Chen, Y.S.: Aeroelastic suppression of an airfoil with control surface. Nonlinear Dyn. 94, 857–872 (2018)

    Article  Google Scholar 

  21. Kholodar, D.B.: Nature of freeplay-induced aeroelastic oscillations. J. Aircr. 51, 571–583 (2014)

    Article  Google Scholar 

  22. Sazesh, S., Shams, S.: Nonlinear aeroelastic analysis of an airfoil with control surface free-play using stochastic approach. J. Fluid Struct. 72, 114–126 (2017)

    Article  Google Scholar 

  23. Padmanabhan, M.A., Dowell, E.H.: Gust response computations with control surface freeplay using random input describing functions. AIAA Journal 58(7), 2899–2908 (2020)

    Article  Google Scholar 

  24. Liu, L., Wong, Y.S., Lee, B.H.K.: Application of the centre manifold theory in non-linear aeroelasticity. J. Sound Vib. 234, 641–659 (2000)

    Article  MathSciNet  Google Scholar 

  25. Chen, Y.M., Liu, J.K.: Supercritical as well as subcritical Hopf bifurcation in nonlinear flutter systems. Appl. Math. Mech. 29, 199–206 (2008)

    Article  Google Scholar 

  26. Liu, L., Wong, Y.S., Lee, B.H.K.: Non-linear aeroelastic analysis using the point transformation method, part 1: freeplay model. J. Sound Vib. 253, 447–469 (2002)

    Article  Google Scholar 

  27. Chung, K.W., Chan, C.L., Lee, B.H.K.: Bifurcation analysis of a two-degree-of-freedom aeroelastic system with freeplay structural nonlinearity by a perturbation-incremental method. J. Sound Vib. 320, 163–183 (2007)

    Article  Google Scholar 

  28. Cui, C.C., Liu, J.K., Chen, Y.M.: Simulating nonlinear aeroelastic responses of an airfoil with freeplay based on precise integration method. Commun. Nonlinear Sci. Numer. Simul. 22, 933–942 (2015)

    Article  Google Scholar 

  29. Dai, H.H., Yue, X.K., Yuan, J.P., Xie, D., Atluri, S.N.: A comparison of classical Runge–Kutta and Henon’s methods for capturing chaos and chaotic transients in an aeroelastic system with freeplay nonlinearity. Nonlinear Dyn. 81, 169–188 (2015)

    Article  MathSciNet  Google Scholar 

  30. Angulo, F., Olivar, G., Osorio, G.A., et al.: Bifurcations of non-smooth systems. Commun. Nonlinear Sci. Numer. Simul. 17, 4683–4689 (2012)

    Article  MathSciNet  Google Scholar 

  31. Bernardo, M.D., Budd, C.J., Champneys, A.R., et al.: Bifurcations in nonsmooth dynamical systems. SIAM Rev. 50, 629–701 (2008)

    Article  MathSciNet  Google Scholar 

  32. Leine, R.I., Nijmeijer, H.: Bifurcations of equilibria in non-smooth continuous systems. Phys. D Nonlinear Phenom. 223, 121–137 (2004)

    Article  MathSciNet  Google Scholar 

  33. Zou, Y., Kupper, T., Beyn, W.J.: Generalized Hopf bifurcation for planar Filippov systems continuous at the origin. J. Nonlinear Sci. 16, 159–177 (2006)

    Article  MathSciNet  Google Scholar 

  34. Chen, Y.M., Chen, D.H., Liu, J.K.: Subcritical limit cycle in aeroelastic system of an airfoil withfreeplay: prediction and mechanism analysis. AIAA J. 57, 4482–4489 (2019)

    Article  Google Scholar 

  35. Lopes, L.D.W., Bueno, D.D., Dowell, E.H.: Influence of friction and asymmetric freeplay on the limit cycle oscillation in aeroelastic system an extended Hénon technique to temporal integration. J. Fluid Struct. 96, 103054 (2020)

    Article  Google Scholar 

  36. Lee, B.H.K., Gong, L., Wong, Y.S.: Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity. J. Fluid Struct. 11, 225–246 (1997)

    Article  Google Scholar 

  37. Leine, R.I., Campen, D.H.V.: Bifurcation phenomena in non-smooth dynamical systems. Eur. J. Mech. 25, 595–616 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (11672337), and Natural Science Foundation of Guangdong Province (2018B030311001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

See Table 1.

Appendix B

Theodorsen constants

$$ T_{1} = - \frac{1}{3}\sqrt {1 - c^{2} } \left( {2 + c^{2} } \right) + c\arccos c $$
$$ T_{2} = T_{6} = c\left( {1 - c^{2} } \right) - \sqrt {1 - c^{2} } \left( {1 + c^{2} } \right)\arccos c + c(\arccos c)^{2} $$
$$ T_{3} = \frac{1}{4}c\sqrt {1 - c^{2} } \arccos c\left( {7 + 2c^{2} } \right) - \left( {\frac{1}{8} + c^{2} } \right)(\arccos c)^{2} - \frac{1}{8}\left( {1 - c^{2} } \right)\left( {5c^{2} + 4} \right) $$
$$ T_{4} = c\sqrt {1 - c^{2} } - \arccos c $$
$$ T_{5} = - \left( {1 - c^{2} } \right) + 2c\sqrt {1 - c^{2} } \arccos c - \left( {\arccos c} \right)^{2} $$
$$ T_{7} = \frac{1}{8}c\sqrt {1 - c^{2} } \left( {7 + 2c^{2} } \right) - \left( {\frac{1}{8} + c^{2} } \right)\arccos c $$
$$ T_{8} = - \frac{1}{3}\left( {1 + 2c^{2} } \right)\sqrt {1 - c^{2} } + c\arccos c $$
$$ T_{9} = \frac{1}{2}\left[ {\frac{1}{3}\left( {\sqrt {1 - c^{2} } } \right)^{3} + aT_{4} } \right] $$
$$ T_{10} = \sqrt {1 - c^{2} } + \arccos c $$
$$ T_{11} = \left( {1 - 2c} \right)\arccos c + \sqrt {1 - c^{2} } \left( {2 - c} \right) $$
$$ T_{12} = \sqrt {1 - c^{2} } \left( {2 + c} \right) - \left( {2c + 1} \right)\arccos c $$
$$ T_{13} = \frac{1}{2}\left[ { - T_{7} - \left( {c - a} \right)T_{1} } \right] $$
$$ T_{14} = \frac{1}{16} + \frac{1}{2}ac $$

Appendix C

Some parameters used in the computation of the coefficient matrixes in Eq. (1)

$$ \begin{aligned} \kappa & = \rho \pi b^{2} /m,\,r_{\alpha } = \sqrt {I_{\alpha } /mb^{2} } ,\,r_{\beta } = \sqrt {I_{\beta } /mb^{2} } ,\,x_{\alpha } = S_{\alpha } /mb,\,x_{\beta } = S_{\beta } /mb, \\ \omega_{\alpha } & = \sqrt {C_{\alpha } /I_{\alpha } } ,\,\omega_{\beta } = \sqrt {C_{\beta } /I_{\beta } } ,\,\omega_{h} = \sqrt {C_{h} /m} . \\ \end{aligned} $$

Appendix D

Modal parameters used in the computation of the coefficient matrixes in Eq. (1)

$$ M_{s} = \left[ {\begin{array}{*{20}c} {r_{\alpha }^{2} } & {r_{\beta }^{2} + \left( {c - a} \right)x_{\beta } } & {x_{\alpha } } \\ {r_{\beta }^{2} + \left( {c - a} \right)x_{\beta } } & {r_{\beta }^{2} } & {x_{\beta } } \\ {x_{\alpha } } & {x_{\beta } } & {M_{total} /m} \\ \end{array} } \right],\,K_{s} = \left[ {\begin{array}{*{20}c} {r_{\alpha }^{2} \omega_{\alpha }^{2} } & 0 & 0 \\ 0 & {r_{\beta }^{2} \omega_{\beta }^{2} } & 0 \\ 0 & 0 & {\omega_{h}^{2} } \\ \end{array} } \right]. $$

The model mass \( m_{i} \) and the coupled natural frequency \( \omega_{i} \) are computed according to \( M_{s} \) and \( K_{s} \) by the following procedures [12]

  1. (1)

    Calculate eigenvalues \( \lambda_{i} \) and eigenvectors \( \Lambda \) from free vibration system \( M_{s} q^{\prime\prime} + K_{s} q = 0 \)

  2. (2)

    Let \( \omega_{i} = \sqrt {\lambda_{i} } \)

  3. (3)

    Define \( M_{mod} =\Lambda ^{\text{T}} M_{s}\Lambda \), and \( m_{i} \) is extracted from the diagonal entries of \( M_{mod} \).

In addition, the model damping matrix is defined as

$$ B_{mod} = \left[ {\begin{array}{*{20}c} {2m_{1} \omega_{1} \varsigma_{1} } & 0 & 0 \\ 0 & {2m_{2} \omega_{2} \varsigma_{2} } & 0 \\ 0 & 0 & {2m_{3} \omega_{3} \varsigma_{3} } \\ \end{array} } \right] $$

and the structural damping matrix is given by \( B_{s} = (\Lambda ^{\text{T}} )^{ - 1} B_{mod}\Lambda ^{ - 1} \), which presents some parameters that will be used to get the coefficients matrixes in Eq. (1), such as

$$ B_{s} = (s_{ij} )_{1 \le i,j \le 3} . $$

The modal damping coefficients, \( \varsigma_{1} \), \( \varsigma_{2} \) and \( \varsigma_{3} \), are adopted according to the experimental test of an airfoil-aileron structure made by Corner et al. [12]. Note that in the equations of motions, i.e., Equation (1), the damping matrix is not only dependent on the entries of \( B_{mod} \) but also on the aerodynamics modeled by the Theodorsen theory. More details can be referred to “Appendix E.”

Appendix E

The entries of the coefficient matrixes in Eq. (1)

$$ A_{1} = r_{\alpha }^{2} + \kappa \left( {\frac{1}{8} + a^{2} } \right),\,A_{2} = r_{\beta }^{2} + \left( {c - a} \right)x_{\beta } - \frac{{\kappa \left( {c - a} \right)T_{1} }}{\pi } - \frac{{\kappa T_{7} }}{\pi },\,A_{3} = x_{\alpha } - a\kappa , $$
$$ A_{4} = \kappa \left( {\frac{1}{2} - a} \right) - 2\kappa \left( {\frac{1}{2} - a} \right)\left( {\frac{1}{2} + a} \right)\left( {1 - \psi_{1} - \psi_{2} } \right) + \frac{{s_{11} b}}{V}, $$
$$ A_{5} = \frac{\kappa }{\pi }[\frac{2}{3}\left( {1 - c^{2} )^{{\frac{3}{2}}} - \left( {0.5 - a} \right)T_{4} - \left( {\frac{1}{2} + a} \right)\left( {1 - \psi_{1} - \psi_{2} } \right)} \right] + \frac{{s_{12} b}}{V}, $$
$$ A_{6} = - 2\kappa \left( {\frac{1}{2} + a} \right)\left( {1 - \psi_{1} - \psi_{2} } \right) + \frac{{s_{13} b}}{V}, $$
$$ A_{7} = \frac{{r_{\alpha }^{2} \omega_{\alpha }^{2} }}{{V^{2} }} - 2\kappa \left( {\frac{1}{2} + a} \right)\left[ {1 - \psi_{1} - \psi_{2} + \left( {\frac{1}{2} - a} \right)\left( {\psi_{1} \varepsilon_{1} + \psi_{2} \varepsilon_{2} } \right)} \right], $$
$$ A_{8} = \frac{\kappa }{{\pi (T_{4} + T_{10} )}} - \frac{2\kappa }{\pi }\left( {\frac{1}{2} + a} \right)\left[ {T_{10} \left( {1 - \psi_{1} - \psi_{2} } \right) + \frac{{T_{11} }}{2}\left( {\psi_{1} \varepsilon_{1} + \psi_{2} \varepsilon_{2} } \right)} \right], $$
$$ A_{9} = - 2\kappa \left( {\frac{1}{2} + a} \right)\left( {\psi_{1} \varepsilon_{1} + \psi_{2} \varepsilon_{2} } \right),\,A_{10} = r_{\alpha }^{2} \omega_{\alpha }^{2} \frac{{b^{2} }}{{V^{2} }}, $$
$$ A_{11} = - 2\kappa \left( {\frac{1}{2} + a} \right)\left[ {\psi_{1} \varepsilon_{1} - \left( {\frac{1}{2} - a} \right)\psi_{1} \varepsilon_{1}^{2} } \right], $$
$$ A_{12} = - 2\kappa \left( {\frac{1}{2} + a} \right)\left[ {\psi_{2} \varepsilon_{2} - \left( {\frac{1}{2} - a} \right)\psi_{2} \varepsilon_{2}^{2} } \right], $$
$$ A_{13} = - \frac{2\kappa }{\pi }\left( {\frac{1}{2} + a} \right)\left[ {T_{10} \psi_{1} \varepsilon_{1} - \frac{1}{2}T_{11} \psi_{1} \varepsilon_{1}^{2} } \right], $$
$$ A_{14} = - \frac{2\kappa }{\pi }\left( {\frac{1}{2} + a} \right)\left[ {T_{10} \psi_{2} \varepsilon_{2} - \frac{1}{2}T_{11} \psi_{2} \varepsilon_{2}^{2} } \right], $$
$$ A_{15} = 2\kappa \left( {\frac{1}{2} + a} \right)\psi_{1} \varepsilon_{1}^{2} ,A_{16} = 2\kappa \left( {\frac{1}{2} + a} \right)\psi_{2} \varepsilon_{2}^{2} , $$
$$ B_{1} = r_{\beta }^{2} + \left( {c - a} \right)x_{\beta } + \frac{2\kappa }{\pi }T_{13} ,\,B_{2} = r_{\beta }^{2} - \frac{\kappa }{{\pi^{2} }}T_{3} ,\,B_{3} = x_{\beta } - \frac{\kappa }{\pi }T_{1} , $$
$$ B_{4} = \frac{\kappa }{\pi }[ - \frac{1}{3}\left( {1 - c^{2} )^{{\frac{3}{2}}} - T_{1} - \frac{1}{2}T_{4} + T_{11} \left( {\frac{1}{2} - a} \right)\left( {1 - \psi_{1} - \psi_{2} } \right) + \frac{{s_{21} b}}{V}} \right], $$
$$ B_{5} = \frac{\kappa }{{2\pi^{2} }}\left[ { - T_{4} T_{11} + T_{12} T_{11} \left( {1 - \psi_{1} - \psi_{2} } \right)} \right] + \frac{{s_{22} b}}{V}, $$
$$ B_{6} = \frac{\kappa }{\pi }T_{12} \left( {1 - \psi_{1} - \psi_{2} } \right) + \frac{{s_{23} b}}{V},\,B_{7} = \frac{\kappa }{\pi }T_{12} \left[ {\left( {1 - \psi_{1} - \psi_{2} } \right) + \left( {\frac{1}{2} - a} \right)\left( {\psi_{1} \varepsilon_{1} + \psi_{2} \varepsilon_{2} } \right)} \right], $$
$$ B_{8} = \frac{{r_{\beta }^{2} \omega_{\beta }^{2} }}{{V^{2} }} + \frac{\kappa }{{\pi^{2} }}\left( {T_{5} - T_{4} T_{10} } \right) + \frac{\kappa }{{\pi^{2} }}T_{12} \left[ {T_{10} \left( {1 - \psi_{1} - \psi_{2} } \right) + T_{11} \left( {\psi_{1} \varepsilon_{1} + \psi_{2} \varepsilon_{2} } \right)} \right], $$
$$ B_{9} = \frac{\kappa }{\pi }T_{12} \left( {\psi_{1} \varepsilon_{1} + \psi_{2} \varepsilon_{2} } \right),\,B_{11} = \frac{\kappa }{\pi }T_{12} \left( {\psi_{1} \varepsilon_{1} - \left( {\frac{1}{2} - a} \right)\psi_{1} \varepsilon_{1}^{2} } \right),\,B_{10} = \frac{{r_{\beta }^{2} \omega_{\beta }^{2} b^{2} }}{{V^{2} }}, $$
$$ B_{12} = \frac{\kappa }{\pi }T_{12} \left( {\psi_{2} \varepsilon_{2} - \left( {\frac{1}{2} - a} \right)\psi_{2} \varepsilon_{2}^{2} } \right),\,B_{13} = \frac{\kappa }{{\pi^{2} }}T_{12} \left( {T_{10} \psi_{1} \varepsilon_{1} - T_{11} \psi_{1} \varepsilon_{1}^{2} } \right), $$
$$ B_{14} = \frac{\kappa }{{\pi^{2} }}T_{12} \left( {T_{10} \psi_{2} \varepsilon_{2} - T_{11} \psi_{2} \varepsilon_{2}^{2} } \right),\,B_{15} = - \frac{\kappa }{\pi }T_{12} \psi_{1} \varepsilon_{1}^{2} ,\,B_{16} = - \frac{\kappa }{\pi }T_{12} \psi_{2} \varepsilon_{2}^{2} , $$
$$ C_{1} = x_{\alpha } - a\kappa ,\,C_{2} = x_{\beta } - \frac{\kappa }{\pi }T_{1} ,\,C_{2} = \frac{{m_{total} }}{m} + \kappa , $$
$$ C_{4} = \kappa \left[ {1 + 2\left( {\frac{1}{2} - a} \right)\left( {1 - \psi_{1} - \psi_{2} } \right)} \right] + \frac{{s_{31} b}}{V}, $$
$$ C_{5} = \frac{\kappa }{\pi }\left[ { - T_{4} + T_{11} \left( {1 - \psi_{1} - \psi_{2} } \right)} \right] + \frac{{s_{32} b}}{V},\,C_{6} = 2\kappa \left( {1 - \psi_{1} - \psi_{2} } \right) + \frac{{s_{33} b}}{V}, $$
$$ C_{7} = 2\kappa \left[ {1 - \psi_{1} - \psi_{2} + \left( {\frac{1}{2} - a} \right)\left( {\psi_{1} \varepsilon_{1} + \psi_{2} \varepsilon_{2} } \right)} \right], $$
$$ C_{8} = \frac{2\kappa }{\pi }\left[ {T_{10} \left( {1 - \psi_{1} - \psi_{2} } \right) + \frac{1}{2}T_{11} \left( {\psi_{1} \varepsilon_{1} + \psi_{2} \varepsilon_{2} } \right)} \right],C_{9} = \frac{{\omega_{\xi }^{2} }}{{V^{2} }} + 2\kappa \left( {\psi_{1} \varepsilon_{1} + \psi_{2} \varepsilon_{2} } \right), $$
$$ C_{10} = \omega_{h}^{2} \frac{{b^{2} }}{{V^{2} }},\,C_{11} = 2\kappa \left( {\psi_{1} \varepsilon_{1} - \left( {\frac{1}{2} - a} \right)\psi_{1} \varepsilon_{1}^{2} } \right),\,C_{12} = 2\kappa \left( {\psi_{2} \varepsilon_{2} - \left( {\frac{1}{2} - a} \right)\psi_{2} \varepsilon_{2}^{2} } \right), $$
$$ C_{13} = \frac{2\kappa }{\pi }\left( {T_{10} \psi_{1} \varepsilon_{1} - \frac{1}{2}T_{11} \psi_{1} \varepsilon_{1}^{2} } \right),\,C_{14} = \frac{2\kappa }{\pi }\left( {T_{10} \psi_{2} \varepsilon_{2} - \frac{1}{2}T_{11} \psi_{2} \varepsilon_{2}^{2} } \right), $$
$$ C_{15} = - 2\kappa \psi_{1} \varepsilon_{1}^{2} ,\,C_{16} = - 2\kappa \psi_{2} \varepsilon_{2}^{2} . $$

Herein \( \psi_{1} = 0.165, \psi_{2} = 0.335 \), and \( \varepsilon_{1} = 0.0455, \varepsilon_{2} = 0.3 \).

Appendix F

The construction of the coefficient matrices and vectors in Eqs. (1011)

First of all, both \( {\varvec{\Psi}}_{1} \) and \( {\varvec{\Psi}}_{2} \) are square matrix of dimension 12. The nonzero entries of \( {\varvec{\Psi}}_{1} \) are listed as follows: \( {\varvec{\Psi}}_{1} \left( {1,2} \right) = {\varvec{\Psi}}_{1} \left( {3,4} \right) = {\varvec{\Psi}}_{1} \left( {5,6} \right) = 1 \),

$$ {\varvec{\Psi}}_{1} \left( {7,1} \right) = {\varvec{\Psi}}_{1} \left( {8,1} \right) = {\varvec{\Psi}}_{1} \left( {9,3} \right) = {\varvec{\Psi}}_{1} \left( {10,3} \right) = {\varvec{\Psi}}_{1} \left( {11,5} \right) = {\varvec{\Psi}}_{1} \left( {12,5} \right) = 1, $$
$$ {\varvec{\Psi}}_{1} \left( {7,7} \right) = {\varvec{\Psi}}_{1} \left( {9,9} \right) = {\varvec{\Psi}}_{1} \left( {11,11} \right) = - \varepsilon_{1} ,{\varvec{\Psi}}_{1} \left( {8,8} \right) = {\varvec{\Psi}}_{1} \left( {10,10} \right) = {\varvec{\Psi}}_{1} \left( {12,12} \right) = - \varepsilon_{2} , $$
$$ {\mathbf{J}} = \left[ {\begin{array}{*{20}c} {A_{1} } & {A_{2} } & {A_{3} } \\ {B_{1} } & {B_{2} } & {B_{3} } \\ {C_{1} } & {C_{2} } & {C_{3} } \\ \end{array} } \right],{\varvec{\Psi}}_{{1,{\text{J}}1}} = \left[ {\begin{array}{*{20}c} {A_{7} + A_{10} } & {A_{4} } & {A_{8} } \\ {B_{7} } & {B_{4} } & {B_{8} + M_{f} B_{10} } \\ {C_{7} } & {C_{4} } & {C_{8} } \\ \end{array} } \right], $$
$$ {\varvec{\Psi}}_{{1,{\text{J}}2}} = \left[ {\begin{array}{*{20}c} {A_{5} } & {A_{9} } & {A_{6} } \\ {B_{5} } & {B_{9} } & {B_{6} } \\ {C_{5} } & {C_{6} + C_{10} } & {C_{86} } \\ \end{array} } \right],\,{\varvec{\Psi}}_{{1,{\text{J}}3}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {A_{11} } & {A_{12} } \\ \end{array} } & {\begin{array}{*{20}c} {A_{13} } & {A_{14} } \\ \end{array} } & {\begin{array}{*{20}c} {A_{15} } & {A_{16} } \\ \end{array} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {B_{11} } & {B_{12} } \\ \end{array} } & {\begin{array}{*{20}c} {B_{13} } & {B_{14} } \\ \end{array} } & {\begin{array}{*{20}c} {B_{15} } & {B_{16} } \\ \end{array} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {C_{11} } & {C_{12} } \\ \end{array} } & {\begin{array}{*{20}c} {C_{13} } & {C_{14} } \\ \end{array} } & {\begin{array}{*{20}c} {C_{15} } & {C_{16} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right], $$
$$ {\varvec{\Psi}}_{{1,{\text{J}}}} = - {\mathbf{J}}^{ - 1} \left[ {\begin{array}{*{20}c} {{\varvec{\Psi}}_{{1,{\text{J}}1}} } & {{\varvec{\Psi}}_{{1,{\text{J}}2}} } & {{\varvec{\Psi}}_{{1,{\text{J}}3}} } \\ \end{array} } \right], $$
$$ {\varvec{\Psi}}_{1} \left( {2, :} \right) = {\varvec{\Psi}}_{{1,{\text{J}}}} \left( {1, :} \right),{\varvec{\Psi}}_{1} \left( {4, :} \right) = {\varvec{\Psi}}_{{1,{\text{J}}}} \left( {2, :} \right),{\varvec{\Psi}}_{1} \left( {6, :} \right) = {\varvec{\Psi}}_{{1,{\text{J}}}} \left( {3, :} \right). $$

Importantly, \( {\varvec{\Psi}}_{2} \) is a special case of \( {\varvec{\Psi}}_{1} \) as \( M_{f} = 1 \). And both \( \varvec{\varphi }_{1} \) and \( \varvec{\varphi }_{2} \) are column vectors of dimension 12.

$$ \varvec{\varphi }_{1,J} = - {\mathbf{J}}^{ - 1} \left[ {\begin{array}{*{20}c} 0 \\ {(1 - M_{f} )\delta_{1} } \\ 0 \\ \end{array} } \right],\varvec{\varphi }_{2,J} = {\mathbf{J}}^{ - 1} \left[ {\begin{array}{*{20}c} 0 \\ {(1 - M_{f} )\delta_{2} } \\ 0 \\ \end{array} } \right], $$
$$ {\text{and}}\,\varvec{\varphi }_{1} \left( 2 \right) = \varvec{\varphi }_{{1,{\text{J}}}} \left( 1 \right),\,\varvec{\varphi }_{1} \left( 4 \right) = \varvec{\varphi }_{{1,{\text{J}}}} \left( 2 \right),\,\varvec{\varphi }_{1} \left( 6 \right) = \varvec{\varphi }_{{1,{\text{J}}}} \left( 3 \right); $$
$$ \varvec{\varphi }_{2} \left( 2 \right) = \varvec{\varphi }_{{2,{\text{J}}}} \left( 1 \right),\,\varvec{\varphi }_{2} \left( 4 \right) = \varvec{\varphi }_{{2,{\text{J}}}} \left( 2 \right),\,\varvec{\varphi }_{2} \left( 6 \right) = \varvec{\varphi }_{{2,{\text{J}}}} \left( 3 \right). $$

The matrices for \( {\mathbf{T}}_{1} \) and \( {\mathbf{T}}_{2} \) in Eq. (16).

First of all, \( {\mathbf{T}}_{1} \) and \( {\mathbf{T}}_{2} \) are square matrices of dimension 12. And, \( {\mathbf{T}}_{1} \) is a special case of \( {\varvec{\Psi}}_{1} \) when \( M_{f} = 0 \).

$$ {\varvec{\Psi}}_{{2,{\text{J}}1}} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & 0 & {B_{10} } \\ 0 & 0 & 0 \\ \end{array} } \right], $$
$$ {\varvec{\Psi}}_{{2,{\text{J}}}} = - {\mathbf{J}}^{ - 1} \left[ {\begin{array}{*{20}c} {{\varvec{\Psi}}_{{2,{\text{J}}1}} } & {0_{3 \times 9} } \\ \end{array} } \right],\,{\mathbf{T}}_{2} \left( {2, :} \right) = {\varvec{\Psi}}_{{2,{\text{J}}}} \left( {1, :} \right),\,{\mathbf{T}}_{2} \left( {4, :} \right) = {\varvec{\Psi}}_{{2,{\text{J}}}} \left( {2, :} \right),\,{\mathbf{T}}_{2} \left( {6, :} \right) = {\varvec{\Psi}}_{{2,{\text{J}}}} \left( {3, :} \right). $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.M., Li, W.L., Yan, B.F. et al. Eigenvalue analysis for predicting the onset of multiple subcritical limit cycles of an airfoil with a control surface. Nonlinear Dyn 103, 327–341 (2021). https://doi.org/10.1007/s11071-020-06172-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06172-7

Keywords

Navigation