Skip to main content

Advertisement

Log in

Performance investigations of nonlinear piezoelectric energy harvesters with a resonant circuit under white Gaussian noises

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Vibration-based piezoelectric energy harvesting for powering low-energy consuming electronic equipment has received a great deal of attention in the last decade. Most researches applying deterministic approaches or theory of random vibrations have been concentrated on examining the performance of the piezoelectric energy harvesters with a purely resistive circuit under harmonic or random excitations. Here, the ambient excitations are assumed to be white Gaussian noises, we investigate a nonlinear piezoelectric energy harvester which utilizes a harvesting circuit with both a resistive load and an inductor, based on the fact that previous research has demonstrated that the intentional introduction of an inductor substantially improves the performance of energy harvesting device. Two scenarios, namely the purely inductive circuit and the resistive–inductive circuit, are examined. Exact stationary solution of the output voltage and closed-form expression of the mean square voltage are acquired for the purely inductive circuit. By combining the equivalent linearization method and the moment method of random process theory, analytical solutions of mean square voltage and averaged power output involving dimensionless parameters of the electromechanical system are derived for the resistive–inductive circuit. The energy conversion efficiency is analyzed by means of energy balance equation. Monte Carlo numerical simulations are implemented to validate the theoretical predictions. Results reveal unique characteristics of the nonlinear vibration systems with a resonant circuit, showing its superiority over the energy harvesters with a purely resistive circuit. The present study provides a paradigm in a simple but effective way to resolve strong electromechanical coupling systems under random excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baerta, K., Gyselinckxa, B., Torfsa, T., Leonova, V., Yazicioglua, F., Brebelsa, S., Donnaya, S., Vanfleterena, J., Beyna, E., Van Hoof, C.: Technologies for highly miniaturized autonomous sensor networks. Microelectron. J. 37, 1563–1568 (2006)

    Article  Google Scholar 

  2. Bracke, W., Merken, P., Puers, R., Van Hoof, C.: Generic architechtures and design methods for autonomous sensors. Sens. Actuators, A 135, 881–888 (2007)

    Article  Google Scholar 

  3. Khadem, S.E., Shahgholi, M., Hosseini, S.A.A.: Two-mode combination resonances of an in-extensional rotating shaft with large amplitude. Nonlinear Dyn. 65, 217–233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yabuno, H., Kashimura, T., Inoue, T., Ishida, Y.: Nonlinear normal modes and primary resonance of horizontally supported Jeffcott rotor. Nonlinear Dyn. 66, 377–387 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chávez, J.P., Wiercigroch, M.: Bifurcation analysis of periodic orbits of a non-smooth Jeffcott rotor model. Commun. Nonlinear Sci. Numer. Simul. 18, 2571–2580 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ghayesh, M.H., Farokhi, H., Alici, G.: Size-dependent performance of microgyroscopes. Int. J. Eng. Sci. 100, 99–111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yu, T.J., Zhou, S., Yang, X.D., Zhang, W.: Multi-pulse chaotic dynamics of an unbalanced Jeffcott rotor with gravity effect. Nonlinear Dyn. 87, 647–664 (2017)

    Article  MATH  Google Scholar 

  8. Païdoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow. Academic Press, San Diego (1998)

    Google Scholar 

  9. Panda, L.N., Kar, R.C.: Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances. Nonlinear Dyn. 49, 9–30 (2007)

    Article  MATH  Google Scholar 

  10. Ghayesh, M.H., Païdoussis, M.P., Amabili, M.: Nonlinear dynamics of cantilevered extensible pipes conveying fluid. J. Sound Vib. 332, 6405–6418 (2013)

    Article  Google Scholar 

  11. Chen, L.Q., Zhang, Y.L., Zhang, G.C., Ding, H.: Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed. Int. J. Non-Linear Mech. 58, 11–21 (2014)

    Article  Google Scholar 

  12. Mao, X.Y., Ding, H., Chen, L.Q.: Steady-state response of a fluid-conveying pipe with 3:1 internal resonance in supercritical regime. Nonlinear Dyn. 86, 795–809 (2016)

    Article  Google Scholar 

  13. Zhang, L.W., Song, Z.G., Liew, K.M.: Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow. Comput. Method Appl. Mech. Eng. 300, 427–441 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu, T.J., Zhou, S., Yang, X.D., Zhang, W.: Homoclinic orbits and chaos of a supercritical composite panel with free-layer damping treatment in subsonic flow. Compos. Struct. 159, 288–298 (2017)

    Article  Google Scholar 

  15. Yu, T.J., Zhou, S., Yang, X.D., Zhang, W.: Global dynamics of composite panels with free-layer damping treatment in subsonic flow. Compos. Struct. 168, 247–258 (2017)

    Article  Google Scholar 

  16. Zhou, S.X., Wang, J.L.: Dual serial vortex-induced energy harvesting system for enhanced energy harvesting. AIP Adv. 8, 075221 (2018)

    Article  Google Scholar 

  17. Roccia, B.A., Verstraete, M.L., Ceballos, L.R., Balachandran, B., Preidikman, S.: Computational study of aerodynamically coupled piezoelectric harvesters. J. Intel. Mat. Syst. Str. 31, 1578–1593 (2020)

    Article  Google Scholar 

  18. Wang, J.L., Gu, S.H., Zhang, C.Y., Hu, G.B., Chen, G., Yang, K., Li, H., Lai, Y.Y., Litak, G., Yurchenko, D.: Hybrid wind energy scavenging by coupling vortex-induced vibrations and galloping. Energy Convers. Manag. 213, 112835 (2020)

    Article  Google Scholar 

  19. Yang, Z.J., Huang, R., Liu, H.J., Zhao, Y.H., Hu, H.Y.: An improved nonlinear reduced-order modeling for transonic aeroelastic systems. J. Fluid Struct. 94, 102926 (2020)

    Article  Google Scholar 

  20. Zurbuchen, A., Pfenniger, A., Stahel, A., Stoeck, C.T., Vandenberghe, S., Koch, V.M., Vogel, R.: Energy harvesting from the beating heart by a mass imbalance oscillation generator. Ann. Biomed. Eng. 41, 131–141 (2013)

    Article  Google Scholar 

  21. Pfenniger, A., Wichramarathna, L.N., Vogel, R., Koch, V.M.: Design and realization of an energy harvester using pulsating arterial pressure. Med. Eng. Phys. 35, 1256–1265 (2013)

    Article  Google Scholar 

  22. Yang, Z.B., Zhou, S.X., Zu, J., Inman, D.: High-performance piezoelectric energy harvesters and their applications. Joule 2, 624–697 (2018)

    Article  Google Scholar 

  23. Ali, F., Raza, W., Li, X.L., Gul, H., Kim, K.H.: Piezoelectric energy harvesters for biomedical applications. Nano Energy 57, 879–902 (2019)

    Article  Google Scholar 

  24. Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 040801 (2014)

    Article  Google Scholar 

  25. Tran, N., Ghayesh, M.H., Arjomandi, M.: Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, Y., Xue, H., Yang, J., Jiang, Q.: Nonlinear behavior of a piezoelectric power harvester near resonance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1387–1391 (2006)

    Article  Google Scholar 

  27. Beeby, S.P., Torah, R.N., Tudor, M.J., Glynne-Jones, P., O’Donnell, T., Saha, C.R., Roy, S.: A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17, 1257–1265 (2007)

    Article  Google Scholar 

  28. Mann, B.P., Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levitation. J. Sound Vib. 319, 515–530 (2008)

    Article  Google Scholar 

  29. Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59, 545–558 (2010)

    Article  MATH  Google Scholar 

  30. Hu, G.B., Tang, L.H., Das, R., Marzocca, P.: A two-degree-of-freedom piezoelectric energy harvester with stoppers for achieving enhanced performance. Int. J. Mech. Sci. 149, 500–507 (2018)

    Article  Google Scholar 

  31. Zhou, S.X., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lu, Z.Q., Chen, J., Ding, H., Chen, L.Q.: Two-span piezoelectric beam energy harvesting. Int. J. Mech. Sci. 175, 105532 (2020)

    Article  Google Scholar 

  33. Quinn, D.D., Triplett, A.L., Bergman, L.A., Vakakis, A.F.: Comparing linear and essentially nonlinear vibration-based energy harvesting. ASME J. Vib. Acoust. 133, 011001 (2011)

    Article  Google Scholar 

  34. Sebald, G., Kuwano, H., Guyomar, D., Ducharne, B.: Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20, 075022 (2011)

    Article  Google Scholar 

  35. Papoulis, A., Pillai, S.U.: Probability, Random Variables and Stochastic Processes, 4th edn. McGraw-Hill, Boston (2002)

    Google Scholar 

  36. Sun, J.Q.: Stochastic Dynamics and Control. Elsevier, Oxford (2006)

    Book  Google Scholar 

  37. Cai, G.Q., Zhu, W.Q.: Elements of Stochastic Dynamics. World Scientific Publishing, Singapore (2016)

    Book  Google Scholar 

  38. Daqaq, M.F.: Response of uni-modal duffing-type harvesters to random forced excitations. J. Sound Vib. 329, 3621–3631 (2010)

    Article  Google Scholar 

  39. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69, 1063–1079 (2012)

    Article  Google Scholar 

  40. Xu, M., Jin, X.L., Wang, Y., Huang, Z.L.: Stochastic averaging for nonlinear vibration energy harvesting system. Nonlinear Dyn. 78, 1451–1459 (2014)

    Article  MathSciNet  Google Scholar 

  41. Liu, D., Xu, Y., Li, J.L.: Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise. Chaos Soliton. Fract. 104, 806–812 (2017)

    Article  MATH  Google Scholar 

  42. Zhang, Y.X., Jin, Y.F., Xu, P.F.: Dynamics of a coupled nonlinear energy harvester under colored noise and periodic excitations. Int. J. Mech. Sci. 172, 105418 (2020)

    Article  Google Scholar 

  43. Gammaitoni, L., Neri, I., Vocca, H.: Nonlinear oscillators for vibration energy harvesting. Appl. Phys. Lett. 94, 164102 (2009)

    Article  Google Scholar 

  44. McInnes, C., Gorman, D., Cartmell, M.: Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J. Sound Vib. 318, 655–662 (2008)

    Article  Google Scholar 

  45. Masana, R., Daqaq, M.F.: Relative performance of a vibratory energy harvester in mono-and bi-stable potentials. J. Sound Vib. 330, 6036–6052 (2009)

    Article  Google Scholar 

  46. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)

    Article  Google Scholar 

  47. Yan, B., Zhou, S.X., Litak, G.: Nonlinear analysis of the tristable energy harvester with a resonant circuit for performance enhancement. Int. J. Bifurc. Chaos 28, 1850092 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Huang, D.M., Zhou, S.X., Litak, G.: Analytical analysis of the vibrational tristable energy harvester with a RL resonant circuit. Nonlinear Dyn. 97, 663–677 (2019)

    Article  MATH  Google Scholar 

  49. Zhou, S., Yu, T.J.: Performance comparisons of piezoelectric energy harvesters under different stochastic noises. AIP Adv. 10, 035033 (2020)

    Article  Google Scholar 

  50. Yang, Z.B., Erturk, A., Zu, J.: On the efficiency of piezoelectric energy harvesters. Extreme Mech. Lett. 15, 26–37 (2017)

    Article  Google Scholar 

  51. Adhikari, S., Friswell, M.I., Inman, D.J.: “Piezoelectric energy harvesting from broadband random vibrations. Smart Mater. Struct. 18, 115005 (2009)

    Article  Google Scholar 

  52. Atalik, T.S., Utku, S.: Stochastic linearization of multi-degree-of-freedom non-linear systems. Earthq. Eng. Struct. D 4, 411–420 (1976)

    Article  Google Scholar 

  53. Yu, T.J., Zhou, S.: Power generation mechanism and performance analysis of parametrically excited piezoelectric composite devices for vibratory energy harvesting. (2021)

Download references

Acknowledgements

The authors gratefully acknowledge that the financial support from the National Natural Science Foundation of China (11802266, 11802016, 11432012) and the China Postdoctoral Science Foundation (2018M631349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sha Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Zhou, S. Performance investigations of nonlinear piezoelectric energy harvesters with a resonant circuit under white Gaussian noises. Nonlinear Dyn 103, 183–196 (2021). https://doi.org/10.1007/s11071-020-06170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06170-9

Keywords

Navigation