Skip to main content
Log in

An elastic rotative nonlinear vibration absorber (ERNVA) as a passive suppressor for vortex-induced vibrations

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Vortex-induced vibration (VIV) is a self-excited and self-limited flow-induced vibration phenomenon of importance for both the academic and the technological communities. Particularly for the offshore engineering scenario, VIV plays an important role in the structural fatigue analysis. Hence, VIV suppression is a relevant topic. Among different solutions for VIV mitigation, this paper focuses on the numerical analysis of an elastic rotative nonlinear vibration absorber (ERNVA) as a device for passive suppression. The ERNVA consists of a mass placed at the tip of an axially elastic beam hinged to the cylinder by means of a linear dashpot. In this paper, the hydrodynamic loads are calculated using a wake-oscillator model, allowing comprehensive parametric studies for assessing the influence of the ERNVA parameters on its efficiency for the whole range of reduced velocities associated with the lock-in. Among other novel results, it is found that ERNVA can lead to a \(25\%\) decrease in the maximum oscillation amplitude, being significantly more efficient than its counterpart characterized by a rigid rotating arm. Passive suppression is obtained not only for the peak, but within a certain range of reduced velocities. Curves showing the influence of the ERNVA parameters on the force coefficients for different values of reduced velocity are also innovative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\({\hat{A}}_y\) :

Dimensionless characteristic oscillation amplitude

\(A_y,\epsilon _y\) :

Parameters of the wake-oscillator model

\(C_a^{pot}\) :

Potential added mass coefficient

\(C_D\) :

Mean drag coefficient observed for a fixed cylinder

\({\hat{C}}_L\) :

Amplitude of the lift coefficient observed for a fixed cylinder

\(C_x,C_y\) :

In-line and cross-wise force coefficient, respectively

\(c_r,c_\theta , k_r\) :

Radial and angular damping constants and radial stiffness of the ERNVA, respectively

\(c_y,k_y\) :

Damping constant and stiffness of the cylinder support, respectively

DML :

Diameter, mass and length of the cylinder, respectively

ERNVA:

Elastic rotative nonlinear vibration absorber

RNVA:

Rotative nonlinear vibration absorber

\(f_f\) :

Vortex-shedding frequency

\(f_{n,y}\) :

Natural frequency, considering the cylinder immersed in a still fluid

\({\hat{f}}=f/f_{n,y}\) :

Dimensionless frequency

\(m_N\) :

Mass of the ERNVA

\(m^*\) :

Mass ratio parameter

\({\hat{m}}=m_N/(M+m)\) :

Dimensionless mass of the ERNVA

\(q_y\) :

Wake variable

\({\hat{q}}_y\) :

Steady-state response amplitude of the unforced van der Pol equation

\(r,\eta =r/D\) :

Dimensional and dimensionless radial stretch of the ERNVA, respectively

\(r_0\) :

Unstretched length of the ERNVA

St :

Strouhal number

\(U_\infty ,U_r=U_\infty /f_{n,y}D\) :

Dimensional free-stream velocity and reduced velocity, respectively

\(t,\tau =t\omega _{n,y}\) :

Dimensional and dimensionless time, respectively

\(Y,y=Y/D\) :

Dimensional and dimensionless cylinder displacement, respectively

\(\mathcal {T,U}\) :

Kinetic and potential energies, respectively

\(\theta \) :

Angular position of the ERNVA

\(\omega _f=2\pi f_f\) :

Vortex-shedding angular frequency

\(\omega _{n,y}=2\pi f_{n,y}\), \(\omega _r\) :

Dimensional reference frequencies

\({\hat{\omega }}=\omega _r/\omega _{n,y}\) :

Frequency ratio

\(\zeta _y\) :

Structural damping ratio

\(\zeta _\theta ,\zeta _r\) :

Damping ratios of the ERNVA

References

  1. Aranha, J.A.P.: Weak three dimensionality of a flow around a slender cylinder: The Ginzburg-Landau equation. J. Braz. Soc. Mech. Sci. Eng. 26(4), 355–367 (2004). https://doi.org/10.1590/S1678-58782004000400002

    Article  Google Scholar 

  2. Assi, G., Bearman, P., Kitney, N.: Low drag solutions for suppressing vortex-induced vibration of circular cylinders. J. Fluids Struct. 25, 666–675 (2009)

    Article  Google Scholar 

  3. Bearman, P.: Vortex shedding from oscillating bluff bodies. J. Fluid Mech. 16, 195–222 (1984). https://doi.org/10.1017/S0022112074000644

    Article  MATH  Google Scholar 

  4. Bearman, P.: Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27(5–6), 648–658 (2011). https://doi.org/10.1016/j.jfluidstructs.2011.03.021

    Article  Google Scholar 

  5. Blanchard, A., Bergman, L.A., Vakakis, A.: Vortex-induced vibration of a linearly sprung cylinder with an internal rotational nonlinear energy sink in turbulent flow. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-04775-3

    Article  MATH  Google Scholar 

  6. Blanchard, A., Bergman, L.A., Vakakis, A.F.: Passive suppression mechanisms in laminar vortex-induced vibration of a sprung cylinder with a strongly nonlinear dissipative oscillator. J. Appl. Mech. Trans. ASME (2017). https://doi.org/10.1115/1.4036942

    Article  Google Scholar 

  7. Blanchard, A.B., Gendelman, O.V., Bergman, L.A., Vakakis, A.F.: Capture into a slow-invariant-manifold in the fluid-structure dynamics of a sprung cylinder with a nonlinear rotator. J. Fluids Struct. 63, 155–173 (2016). https://doi.org/10.1016/j.jfluidstructs.2016.03.009

    Article  Google Scholar 

  8. Blanchard, A.B., Pearlstein, A.J.: On-off switching of vortex shedding and vortex-induced vibration in crossflow past a circular cylinder by locking or releasing a rotational nonlinear energy sink. Phys. Rev. Fluids 5(2), 1–12 (2020). https://doi.org/10.1103/PhysRevFluids.5.023902

    Article  Google Scholar 

  9. Blevins, R.D.: Flow-induced vibration, 2nd edn. Krieger Publishing Company, Florida (2001)

    MATH  Google Scholar 

  10. Cicolin, M.M., Assi, G.R.: Laboratory-scale investigation of the ventilated-trousers device acting as a suppressor of vortex-induced vibrations. Ocean Eng. 142(July), 411–418 (2017). https://doi.org/10.1016/j.oceaneng.2017.07.024

    Article  Google Scholar 

  11. Dai, H.L., Abdelkefi, A., Wang, L.: Usefulness of passive non-linear energy sinks in controlling galloping vibrations. Int. J. Non-Linear Mech. 81, 83–94 (2016). https://doi.org/10.1016/j.ijnonlinmec.2016.01.007

    Article  Google Scholar 

  12. Dai, H.L., Abdelkefi, A., Wang, L.: Vortex-induced vibrations mitigation through a nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul. 42, 22–36 (2017). https://doi.org/10.1016/j.cnsns.2016.05.014

    Article  MATH  Google Scholar 

  13. Ding, H., Chen, L.Q.: Designs analysis and applications of nonlinear energy sinks. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05724-1

    Article  Google Scholar 

  14. Dongyang, C., Abbas, L.K., Guoping, W., Xiaoting, R., Marzocca, P.: Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs). Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4402-z

    Article  Google Scholar 

  15. Facchinetti, M.L., de Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19, 123–140 (2004). https://doi.org/10.1016/j.jfluidstructs.2003.12.004

    Article  Google Scholar 

  16. Franzini, G.R., Bunzel, L.O.: A numerical investigation on piezoelectric energy harvesting from Vortex-Induced Vibrations with one and two degrees of freedom. J. Fluids Struct. 77, 196–212 (2018). https://doi.org/10.1016/j.jfluidstructs.2017.12.007

    Article  Google Scholar 

  17. Franzini, G.R., Campedelli, G.R., Mazzilli, C.E.N.: A numerical investigation on passive suppression of the parametric instability phenomenon using a rotative non-linear vibration absorber. Int. J. Non-Linear Mech. 105(May), 249–260 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.05.014

    Article  Google Scholar 

  18. Franzini, G.R., Gonçalves, R.T., Meneghini, J.R., Fujarra, A.L.C.: Comparison between force measurements of one and two degrees-of-freedom VIV on cylinder with small and large mass. In: 10th International Conference on Flow-Induced Vibration and Flow-Induced Noise, FIV 2012 (2012)

  19. Gabbai, R.D., Benaroya, H.: An overview of modeling and experiments of vortex-induced vibration of circular cylinders. J. Sound Vib. 282(3–5), 575–616 (2005). https://doi.org/10.1016/j.jsv.2004.04.017

    Article  Google Scholar 

  20. Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., Closkey, R.: Energy pumping in nonlinear mechanical oscillators: Part I - dynamics of the underlying hamiltonian systems. J. Appl. Mech. 68, 34–41 (2001). https://doi.org/10.1115/1.1345524

    Article  MathSciNet  MATH  Google Scholar 

  21. Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M., Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric rotational nonlinear energy sink. J. Appl. Mech. 79, 110121–110129 (2012). https://doi.org/10.1115/1.4005402

    Article  Google Scholar 

  22. Iwan, W.D., Blevins, R.D.: A model for vortex induced oscillation of structures. J. Appl. Mech. 41(3), 581–586 (1974)

    Article  Google Scholar 

  23. Korkischko, I., Meneghini, J.: Volumetric reconstruction of the mean flow around circular cylinders fitted with strakes. Exp. Fluids 51, 1109–1121 (2011)

    Article  Google Scholar 

  24. Kremer, D., Liu, K.: A nonlinear energy sink with an energy harvester: Transient responses. J. Sound Vib. 333, 4859–4880 (2014). https://doi.org/10.1016/j.jsv.2014.05.010

    Article  Google Scholar 

  25. Kurushina, V., Pavlovskaia, E., Postnikov, A., Wiercigroch, M.: Calibration and comparison of VIV wake oscillator models for low mass ratio structures. Int. J. Mech. Sci. (2018). https://doi.org/10.1016/j.ijmecsci.2018.04.027

    Article  Google Scholar 

  26. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G., Nucera, F., Tsakirtzis, S., Panagopoulos, P.N.: Passive non-linear targeted energy transfer and its applications to vibration absorption: a review. J. Multi-body Dyn. 222, 77–134 (2008). https://doi.org/10.1243/14644193JMBD118

    Article  Google Scholar 

  27. Luongo, A., Zulli, D.: Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method. J. Vib. Control 20(13), 1985–1998 (2014). https://doi.org/10.1177/1077546313480542

    Article  MATH  Google Scholar 

  28. Mehmood, A., Nayfeh, A.H., Hajj, A.A.: Effects of a non-linear energy sink (NES) on vortex-induced vibrations of a circular cylinder. Nonlinear Dyn. 77, 667–680 (2014). https://doi.org/10.1007/s11071-014-1329-x

    Article  Google Scholar 

  29. Motato, E., Harls, A., Theodossiades, S., Mohammadpour, M., Rahnejat, H., Kelly, P., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Targeted energy transfer and modal energy redistribution in automotive drivetrains. Nonlinear Dyn. 87, 169–190 (2017). https://doi.org/10.1007/s11071-016-3034-4

    Article  Google Scholar 

  30. Nucera, F., Iacono, F.L., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Experimental results. J. Sound Vib. 313, 57–76 (2008). https://doi.org/10.1016/j.jsv.2007.11.018

    Article  Google Scholar 

  31. Nucera, F., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Computational results. J. Sound Vib. 329(15), 2973–2994 (2010). https://doi.org/10.1016/j.jsv.2010.01.020

    Article  Google Scholar 

  32. Ogink, R.H.M., Metrikine, A.V.: A wake oscillator with frequency dependent coupling for the modeling of vortex-induced vibration. J. Sound Vib. 329, 5452–5473 (2010). https://doi.org/10.1016/j.jsv.2010.07.008

    Article  Google Scholar 

  33. Paidoussis, M.P., Price, S.J., de Langre, E.: Fluid-structure interactions: cross-flow-induced instabilities. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  34. Pennisi, G., Mann, B.P., Naclerio, N., Stephan, C., Michon, G.: Design and experimental study of a Nonlinear Energy Sink coupled to an electromagnetic energy harvester. J. Sound Vib. 437, 340–357 (2018). https://doi.org/10.1016/j.jsv.2018.08.026

    Article  Google Scholar 

  35. Postnikov, A., Pavlovskaia, E., Wiercigroch, M.: 2DOF CFD calibrated wake oscillator model to investigate vortex-induced vibrations. Int. J. Mech. Sci. 127, 176–190 (2017). https://doi.org/10.1016/j.ijmecsci.2016.05.019

    Article  Google Scholar 

  36. Qu, Y., Metrikine, A.V.: A single van der pol wake oscillator model for coupled cross-flow and in-line vortex-induced vibrations. Ocean Eng. 196, 106732 (2020). https://doi.org/10.1016/j.oceaneng.2019.106732

    Article  Google Scholar 

  37. Qu, Y., Metrikine, A.V.: A Wake oscillator model with nonlinear coupling for the VIV of rigid cylinder constrained to vibrate in the cross-flow direction. J. Sound Vib. 469, 115161 (2020). https://doi.org/10.1016/j.jsv.2019.115161

  38. Saeed, A.S., Al-Shudeifat, M.A., Vakakis, A.F.: Rotary-oscillatory nonlinear energy sink of robust performance. Int. J. Non-Linear Mech. 117(July), 103249 (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.103249

    Article  Google Scholar 

  39. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19, 389–447 (2004). https://doi.org/10.1016/j.jfluidstructs.2004.02.005

    Article  Google Scholar 

  40. Shiroky, I.B., Gendelman, O.V.: Essentially nonlinear vibration absorber in a parametrically excited system. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik 88(7), 573–596 (2008). https://doi.org/10.1002/zamm.200800009

    Article  MathSciNet  MATH  Google Scholar 

  41. Srinil, N., Opinel, P.A., Tagliaferri, F.: Empirical sensitivity of two-dimensional nonlinear wake-cylinder oscillators in cross-flow/in-line vortex-induced vibrations. J. Fluids Struct. 83, 310–338 (2018). https://doi.org/10.1016/j.jfluidstructs.2018.08.002

    Article  Google Scholar 

  42. Tumkur, R.K.R., Domany, E., Gendelman, O.V., Masud, A., Bergman, L.A., Vakakis, A.F.: Reduced-order model for laminar vortex-induced vibration of a rigid circular cylinder with an internal nonlinear absorber. Commun. Nonlinear Sci. Numer. Simul. 18(7), 1916–1930 (2013). https://doi.org/10.1016/j.cnsns.2012.11.028

    Article  MathSciNet  MATH  Google Scholar 

  43. Tumkur, R.K.R., Pearlstein, A.J., Masud, A., Gendelman, O.V., Blanchard, A.B., Bergman, L.A., Vakakis, A.F.: Effect of an internal nonlinear rotational dissipative element on vortex shedding and vortex-induced vibration of a sprung circular cylinder. J. Fluid Mech. 828, 196–235 (2017). https://doi.org/10.1017/jfm.2017.504

    Article  MathSciNet  MATH  Google Scholar 

  44. Ueno, T., Franzini, G.R.: Numerical studies on passive suppression of one and two degrees-of-freedom vortex-induced vibrations using a rotative non-linear vibration absorber. Int. J. Non-Linear Mech. 116, 230–249 (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.07.001

    Article  Google Scholar 

  45. Ueno, T., Sato, B.S., Franzini, G.R.: A numerical study of VIV suppression using a rotative non-linear vibration absorber (NVA) and a wake-oscillator model. In: Proceedings of 9th International Symposium on Fluid-Structure Interactions, Flow-Sound Interactions, Flow-Induced Vibration and Noise (2018)

  46. Vakakis, A.F.: Passive nonlinear targeted energy transfer. Philos. Trans. R. Soc. A 376, 1–15 (2018). https://doi.org/10.1098/rsta.2017.0132

    Article  MathSciNet  MATH  Google Scholar 

  47. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: Part II - Resonance Capture. J. Appl. Mech. 68, 42–48 (2001). https://doi.org/10.1115/1.1345525

    Article  MathSciNet  MATH  Google Scholar 

  48. Williamson, C.H.K., Govardhan, R.N.: Vortex-Induced Vibrations. Annu. Rev. Fluid Mech. 36(1), 413–455 (2004). https://doi.org/10.1146/annurev.fluid.36.050802.122128

    Article  MathSciNet  MATH  Google Scholar 

  49. Zanganeh, H., Srinil, N.: Characterization of variable hydrodynamic coefficients and maximum responses in two-dimensional vortex-induced vibrations with dual resonances. J. Vib. Acoust. 136, 51014–51015 (2014). https://doi.org/10.1115/1.4027805

    Article  Google Scholar 

Download references

Acknowledgements

FAPESP (São Paulo Research Foundation) is acknowledged for sponsoring a research project focusing on passive suppression of flow-induced vibrations using nonlinear vibration absorbers (grant 19/27855-2). The author thanks MSc. Tatiana Ueno for providing the codes used in the RNVA simulations and MSc candidate Vitor Maciel for the support with the sketches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Rosa Franzini.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Derivation of the equations of motion

This Appendix details the derivation of the dimensional equations of motion. For this, consider the inertial reference frame O\({\mathbf {i}}{\mathbf {j}}\) illustrated in Fig. 1b. The position vectors of the center of the cylinder and of the NVA mass are, respectively, \({\mathbf {r}}_c=Y{\mathbf {j}}\) and \({\mathbf {r}}_m=(r_0+r)\sin \theta {\mathbf {i}}+(Y+(r_0+r)\cos \theta ){\mathbf {j}}\).

The kinetic and the potential energies (\({\mathcal {T}}\) and \({\mathcal {U}}\), respectively) are written as:

$$\begin{aligned} {\mathcal {T}}=&\frac{1}{2}M\dot{{\mathbf {r}}}_c.\dot{{\mathbf {r}}}_c +\frac{1}{2}m_N\dot{{\mathbf {r}}}_m.\dot{{\mathbf {r}}}_m=\frac{1}{2}(M+m_N) \left( \frac{dY}{dt}\right) ^2+\nonumber \\&+\frac{1}{2}m_N(r_0+r)^2\left( \frac{d\theta }{dt} \right) ^2+ \frac{1}{2}m_N\left( \frac{dr}{dt}\right) ^2+\nonumber \\&+m_N\cos \theta \frac{dr}{dt}\frac{dY}{dt}-m_N(r_0+r)\sin \theta \frac{d\theta }{dt}\frac{dY}{dt} \end{aligned}$$
(8)
$$\begin{aligned} {\mathcal {U}}=&\frac{1}{2}k_yY^2+\frac{1}{2}k_rr^2 \end{aligned}$$
(9)

The non-conservative forces include the hydrodynamic load on cylinder \(F_y\) and the dissipative ones on the cylinder and on the NVA. According to the adopted hypotheses, the virtual work of the non-conservative forces is given by Eq. 10.

$$\begin{aligned} \delta W_{nc}=\left( F_y-c_y\frac{dY}{dt}\right) \delta Y-c_\theta \frac{d\theta }{dt}\delta \theta -c_r\frac{dr}{dt}\delta r \nonumber \\ \end{aligned}$$
(10)

Now, the main aspects of the wake-oscillator model proposed in [32] are presented, provided the present contribution does not intend to further discuss the hypothesis and the empirical parameters of this model. According to [32], the force exerted by the fluid on cylinder \(F_y\) can be decomposed into a potential term proportional to the cylinder acceleration (term associated with the potential added mass) and another one associated with the vortex shedding. The latter term is related to wake-variable \(q_y\). For the problem of the flow around a fixed cylinder, \(q_y\) is the solution of the homogeneous van der Pol equation.

$$\begin{aligned} \frac{d^2q_y}{dt^2}+\epsilon _y\omega _f(q_y^2-1)\frac{dq_y}{dt}+\omega _f^2q_y=0 \end{aligned}$$
(11)

\(\epsilon _y\) being an empirically obtained constant. One can easily obtain that the solution of Eq. 11 oscillates with vortex-shedding frequency \(\omega _f\) and has amplitude \({\hat{q}}_y=2\). Hence, the time history of the lift coefficient in the flow around a fixed cylinder can be written in terms of \(q_y\) as \(C_L=q_y{\hat{C}}_L/{\hat{q}}_y\), where \({\hat{C}}_L\) is the amplitude of the lift coefficient for the considered case.

On the other hand, the van der Pol equation is forced by the cylinder motion when VIV is considered. Following [15, 32] includes the term \(\frac{A_y}{D}\frac{d^2Y}{dt^2}\) on the right-hand side of Eq. 11 for modeling the influence of the cylinder motion on the hydrodynamic force. Within this framework, the cross-wise force exerted by the fluid on the cylinder reads:

$$\begin{aligned} F_y=\frac{1}{2}\rho U_\infty ^2 LD C_y=-m_a^{pot}\frac{d^2Y}{dt^2}+\frac{1}{2}\rho U_\infty ^2 DL C_{y,v} \nonumber \\ \end{aligned}$$
(12)

In Eq. 12, the first term is associated with the potential added mass \(m_a^{pot}\) and the second one is associated with the viscous effects. According to [32], the cross-wise coefficient arisen from the viscous effects \(C_{y,v}\) results from the decomposition of the drag and the lift coefficients obtained from fixed cylinders (\(C_D\) and \(C_L\), respectively), both oriented with respect to the relative velocity between the fluid and the cylinder as follows:

$$\begin{aligned} C_{y,v}=&\left( C_L-C_D\frac{1}{U_\infty }\frac{dY}{dt} \right) \sqrt{1+\left( \frac{1}{U_\infty }\frac{dY}{dt} \right) ^2}\nonumber \\ =&\left( \frac{{\hat{C}}_L}{{\hat{q}}_y}q_y-C_D\frac{1}{U_\infty }\frac{dY}{dt} \right) \sqrt{1+\left( \frac{1}{U_\infty }\frac{dY}{dt} \right) ^2} \end{aligned}$$
(13)

The equations of motion are obtained by means of the joint use of the Euler–Lagrange equations and the wake-oscillator model. For this, one needs to develop some intermediate steps. In these steps, partial derivatives of both kinetic and potential energy are computed, as listed below.

  • Intermediate steps for the equation in Y:

    $$\begin{aligned}&\frac{\partial {\mathcal {T}}}{\partial \left( \frac{dY}{dt} \right) }=(M+m_N)\frac{dY}{dt}\nonumber \\&\quad +m_N\frac{dr}{dt}\cos \theta -m_N(r_0+r) \sin \theta \frac{d\theta }{dt}\nonumber \\&\frac{d}{dt}\left( \frac{\partial {\mathcal {T}}}{\partial \left( \frac{dY}{dt} \right) } \right) =(M+m_N)\frac{d^2Y}{dt^2}\nonumber \\&\quad +m_N\frac{d^2r}{dt^2}\cos \theta -2m_N\sin \theta \frac{dr}{dt}\frac{d\theta }{dt}-\nonumber \\&-m_N(r_0+r)\frac{d}{dt}\left( \sin \theta \frac{d\theta }{dt}\right) \nonumber \\&\frac{\partial \mathcal {{\mathcal {T}}}}{\partial Y}=0\nonumber \\&\frac{\partial {\mathcal {U}}}{\partial Y}=k_yY \end{aligned}$$
    (14)
  • Intermediate steps for the equation in \(\theta \):

    $$\begin{aligned}&\frac{\partial {\mathcal {T}}}{\partial \left( \frac{d\theta }{dt} \right) } =m_N(r_0+r)^2\frac{d\theta }{dt}\nonumber \\&\quad -m_N(r_0+r)\sin \theta \frac{dY}{dt}\nonumber \\&\frac{d}{dt}\left( \frac{\partial {\mathcal {T}}}{\partial \left( \frac{d\theta }{dt} \right) } \right) =m_N(r_0+r)^2\frac{d^2 \theta }{dt^2}\nonumber \\&\quad +2m_N(r_0+r)\frac{dr}{dt} \frac{d\theta }{dt}-\nonumber \\&\quad -m_N(r_0+r)\frac{d^2 Y}{dt^2}\sin \theta -m_N(r_0+r)\frac{dY}{dt}\nonumber \\&\quad \frac{d\theta }{dt}\cos \theta \nonumber \\&\quad -m_N\frac{dr}{dt}\frac{dY}{dt}\sin \theta \nonumber \\&\quad \frac{\partial \mathcal {{\mathcal {T}}}}{\partial \theta }=-m_N\sin \theta \frac{dY}{dt}\frac{dr}{dt}-m_N(r_0+r)\nonumber \\&\quad \frac{d\theta }{dt}\frac{dY}{dt}\cos \theta \nonumber \\&\frac{\partial {\mathcal {U}}}{\partial \theta }=0 \end{aligned}$$
    (15)
  • Intermediate steps for the equation in r:

    $$\begin{aligned}&\frac{\partial {\mathcal {T}}}{\partial \left( \frac{dr}{dt} \right) } =m_N\frac{dr}{dt}+m_N\cos \theta \frac{dY}{dt}\nonumber \\&\quad \frac{d}{dt}\left( \frac{\partial {\mathcal {T}}}{\partial \left( \frac{dr}{dt} \right) } \right) =m_N\frac{d^2r}{dt^2}-m_N\sin \theta \frac{d\theta }{dt}\frac{dY}{dt}\nonumber \\&\quad +m_N\cos \theta \frac{d^2Y}{dt^2}\nonumber \\&\quad \frac{\partial \mathcal {{\mathcal {T}}}}{\partial r}=m_N(r_0+r) \left( \frac{d\theta }{dt}\right) ^2-m_N\frac{dY}{dt}\frac{d\theta }{dt}\sin \theta \nonumber \\&\quad \frac{\partial {\mathcal {U}}}{\partial r}=k_rr \end{aligned}$$
    (16)

The joint use of the Euler–Lagrange equations and the wake-oscillator model leads to the dimensional mathematical model given by Eqs. 1720.

$$\begin{aligned}&(M+m_N+m_a^{pot})\frac{d^2Y}{dt^2}+c_y\frac{dY}{dt}+k_yY\nonumber \\&\quad =\frac{1}{2}\rho U_\infty ^2DLC_{y,v}+\nonumber \\&\quad +m_N\left( -\frac{d^2r}{dt^2}\cos \theta + 2\sin \theta \frac{dr}{dt}\frac{d\theta }{dt}+(r_0+r) \nonumber \right. \\&\left. \quad \left( \cos \theta \left( \frac{d\theta }{dt} \right) ^2+\sin \theta \frac{d\theta ^2}{dt^2} \right) \right) \end{aligned}$$
(17)
$$\begin{aligned}&m_N(r_0+r)^2\frac{d^2\theta }{dt^2}+\left( c_\theta +2m_N(r_0+r)\frac{dr}{dt} \right) \nonumber \\&\quad \frac{d\theta }{dt}-m_N(r_0+r)\frac{d^2Y}{dt^2}\sin \theta =0 \end{aligned}$$
(18)
$$\begin{aligned}&m_N\frac{d^2r}{dt^2}+c_r\frac{dr}{dt}+\left( k_r-m_N\left( \frac{d\theta }{dt} \right) ^2\right) r\nonumber \\&\quad +m_N\left( \frac{d^2Y}{dt^2} \cos \theta - r_0\left( \frac{d\theta }{dt}\right) ^2\right) =0 \end{aligned}$$
(19)
$$\begin{aligned}&\frac{d^2q_y}{dt^2}+\epsilon _y\omega _f(q_y^2-1)\frac{dq_y}{dt}\nonumber \\&\quad +\omega _f^2q_y=\frac{A_y}{D}\frac{d^2Y}{dt^2} \end{aligned}$$
(20)

“Pure VIV” results

This Appendix brings the numerical-experimental correlation for the “Pure VIV” condition. Even though this comparison has already been discussed in [44], it is herein readdressed for the sake of completeness of the present paper.

Figure 14 brings the numerical-experimental correlation, showing characteristic oscillation amplitude \({\hat{A}}_y\), mean in-line force coefficient \({\bar{C}}_x\) and r.m.s cross-wise force coefficient \(C_y^\prime \) plotted as functions of reduced velocity. The numerical results are obtained with the wake-oscillator model proposed in [32], and the experimental data are those presented in [18].

Fig. 14
figure 14

Numerical-experimental correlation

As clearly shown in Fig. 14, the results numerically obtained very well agree with the experimental ones. The characteristic oscillation amplitude plot (Fig. 14a) indicates that the maximum amplitude is \({\hat{A}}_y=0.94\) for both the numerical simulation and the experiments. The amplitude of the lower branch is also close to \({\hat{A}}_y=0.60\) in both approaches. Still considering Fig. 14a, notice that the transitions from the upper branch to the lower branch and from the lower branch to the desynchronization are slightly anticipated in the numerical results.

Figure 14b shows that curve \(C_y^\prime (U_r)\) numerically obtained practically matches the experimental one. Finally, Fig. 14c reveals that the \({\bar{C}}_x(U_r)\) plot numerically obtained follows the experimental results, despite a decrease in the maximum value of \({\bar{C}}_x\). As expected, the mean in-line force coefficient \({\bar{C}}_x\) is close to 1.2 if the oscillation amplitudes are small.

Aiming at illustrating the cylinder response due to VIV, Fig. 15 presents the displacement time history and the corresponding amplitude spectrum obtained for \(U_r=5.5\). Notice that \(y(\tau )\) is characterized by a narrow-banded amplitude spectrum centered at \({\hat{f}}=f/f_{n,y}=1\) and has no amplitude modulation.

Fig. 15
figure 15

Displacement time history \(y(\tau )\) and corresponding amplitude spectrum. Only the interval \(1500 \le \tau \le 2000\) is shown. “Pure VIV” case

Despite being a reduced-order model for evaluating the hydrodynamic loads due to VIV, the wake-oscillator model is able to reproduce not only the \({\hat{A}}_y(U_r)\) curve but also capture intrinsic aspects of the phenomenon, such as the amplification of the force coefficients within the lock-in range of reduced velocities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franzini, G.R. An elastic rotative nonlinear vibration absorber (ERNVA) as a passive suppressor for vortex-induced vibrations. Nonlinear Dyn 103, 255–277 (2021). https://doi.org/10.1007/s11071-020-06149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06149-6

Keywords

Navigation