Skip to main content
Log in

An instantaneous-baseline multi-indicial nonlinear ultrasonic resonance spectral correlation technique for fatigue crack detection and quantification

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article presents an instantaneous-baseline multi-indicial nonlinear ultrasonic resonance spectral correlation technique for fatigue crack detection and quantification. A reduced-order nonlinear oscillator model is tailored to illuminate the contact acoustic nonlinearity (CAN) and the nonlinear resonance phenomena. The analytical formulation considers the rough surface condition of the fatigue cracks, with a crack open–close transitional range for the effective modeling of the variable-stiffness nonlinear mechanism. Multiple damage indices (DIs) associated with the degree of nonlinearity of the interrogated structures are then proposed by correlating the ultrasonic resonance spectra. Three perspectives of the nonlinear resonance phenomena are investigated to detect and monitor the fatigue crack growth: (1) time-history dependence, which evolves different resonance states depending on the loading history; (2) amplitude dependence, which renders significantly different nonlinear responses under various levels of excitation amplitudes; (3) breakage of superposition, which effectively distinguishes nonlinear resonant responses from the linear counterparts. These DIs are established using instantaneous baselines, facilitating the fatigue damage monitoring without the prior knowledge of a pristine structure. Fatigue tests on a thin aluminum plate with a rivet hole are conducted to induce fatigue cracks in the specimen. The experimental results demonstrate that the proposed technique shows remarkable sensitivity to the nucleation and growth of the fatigue cracks. This paper differs from the existing literature on nonlinear resonance-based techniques in that it focuses on the resonance phenomenon aroused by the contact acoustic nonlinearity from localized fatigue cracks, rather than the diffused material nonlinearity. The novelty of the paper resides in the establishment of an instantaneous baseline technique utilizing the nonlinear resonance features without the need of referring to a pristine baseline situation. The paper finishes with discussion, concluding remarks, and suggestions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Croxford, A.J., Wilcox, P.D., Drinkwater, B.W., Nagy, P.B.: The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am. 126(5), 117–122 (2009). https://doi.org/10.1121/1.3231451

    Article  Google Scholar 

  2. Su, Z., Zhou, C., Hong, M., Cheng, L., Wang, Q., Qing, X.: Acousto-ultrasonics-based fatigue damage characterization: linear versus nonlinear signal features. Mech. Syst. Signal Process. 45(1), 225–239 (2014). https://doi.org/10.1016/j.ymssp.2013.10.017

    Article  Google Scholar 

  3. Zhang, M., Shen, Y., Xiao, L., Qu, W.: Application of subharmonic resonance for the detection of bolted joint looseness. Nonlinear Dyn. 88(3), 1643–1653 (2017). https://doi.org/10.1007/s11071-017-3336-1

    Article  Google Scholar 

  4. Zhou, C., Hong, M., Su, Z., Wang, Q., Cheng, L.: Evaluation of fatigue cracks using nonlinearities of acousto-ultrasonic waves acquired by an active sensor network. Smart Mater. Struct. 22(1), 015018 (2013). https://doi.org/10.1088/0964-1726/22/1/015018

    Article  Google Scholar 

  5. Yang, Y., Ng, C.-T., Kotousov, A., Sohn, H., Lim, H.J.: Second harmonic generation at fatigue cracks by low-frequency Lamb waves: experimental and numerical studies. Mech. Syst. Signal Process. 99, 760–773 (2018). https://doi.org/10.1016/j.ymssp.2017.07.011

    Article  Google Scholar 

  6. Ohara, Y., Mihara, T., Yamanaka, K.: Effect of adhesion force between crack planes on subharmonic and DC responses in nonlinear ultrasound. Ultrasonics 44(2), 194–199 (2006). https://doi.org/10.1016/j.ultras.2005.10.006

    Article  Google Scholar 

  7. Lim, H.J., Sohn, H., DeSimio, M.P., Brown, K.: Reference-free fatigue crack detection using nonlinear ultrasonic modulation under various temperature and loading conditions. Mech. Syst. Signal Process. 45(2), 468–478 (2014). https://doi.org/10.1016/j.ymssp.2013.12.001

    Article  Google Scholar 

  8. Sohn, H., Lim, H.J., DeSimio, M.P., Brown, K., Derriso, M.: Nonlinear ultrasonic wave modulation for online fatigue crack detection. J. Sound Vib. 333(5), 1473–1484 (2014). https://doi.org/10.1016/j.jsv.2013.10.032

    Article  Google Scholar 

  9. Hogg, S.M., Anderson, B.E., Le Bas, P.-Y., Remillieux, M.C.: Nonlinear resonant ultrasound spectroscopy of stress corrosion cracking in stainless steel rods. NDT E Int. 102, 194–198 (2019). https://doi.org/10.1016/j.ndteint.2018.12.007

    Article  Google Scholar 

  10. Meo, M., Polimeno, U., Zumpano, G.: Detecting damage in composite material using nonlinear elastic wave spectroscopy methods. Appl. Compos. Mater. 15(3), 115–126 (2008). https://doi.org/10.1007/s10443-008-9061-7

    Article  Google Scholar 

  11. Klepka, A., Staszewski, W.J., Jenal, R.B., Szwedo, M., Iwaniec, J., Uhl, T.: Nonlinear acoustics for fatigue crack detection—experimental investigations of vibro-acoustic wave modulations. Struct. Health Monit. Int. J. 11(2), 197–211 (2011). https://doi.org/10.1177/1475921711414236

    Article  Google Scholar 

  12. Iwaniec, J., Uhl, T., Staszewski, W.J., Klepka, A.: Detection of changes in cracked aluminium plate determinism by recurrence analysis. Nonlinear Dyn. 70(1), 125–140 (2012). https://doi.org/10.1007/s11071-012-0436-9

    Article  Google Scholar 

  13. Lim, H.J., Sohn, H.: Online fatigue crack prognosis using nonlinear ultrasonic modulation. Struct. Health Monit. 18(5–6), 1889–1902 (2019). https://doi.org/10.1177/1475921719828271

    Article  Google Scholar 

  14. Liu, P., Sohn, H.: Damage detection using sideband peak count in spectral correlation domain. J. Sound Vib. 411, 20–33 (2017). https://doi.org/10.1016/j.jsv.2017.08.049

    Article  Google Scholar 

  15. Amerini, F., Meo, M.: Structural health monitoring of bolted joints using linear and nonlinear acoustic/ultrasound methods. Struct. Health Monit. Int. J. 10(6), 659–672 (2011). https://doi.org/10.1177/1475921710395810

    Article  Google Scholar 

  16. Chrysochoidis, N.A., Barouni, A.K., Saravanos, D.A.: Delamination detection in composites using wave modulation spectroscopy with a novel active nonlinear acoustoultrasonic piezoelectric sensor. J. Intell. Mater. Syst. Struct. 22(18), 2193–2206 (2011). https://doi.org/10.1177/1045389X11428363

    Article  Google Scholar 

  17. Liu, B., Luo, Z., Gang, T.: Influence of low-frequency parameter changes on nonlinear vibro-acoustic wave modulations used for crack detection. Struct. Health Monit. 17(2), 218–226 (2017). https://doi.org/10.1177/1475921716689385

    Article  Google Scholar 

  18. Prawin, J., Lakshmi, K., Rao, A.R.M.: A novel singular spectrum analysis–based baseline-free approach for fatigue-breathing crack identification. J. Intell. Mater. Syst. Struct. 29(10), 2249–2266 (2018). https://doi.org/10.1177/1045389x18758206

    Article  Google Scholar 

  19. Prawin, J., Rama Mohan Rao, A.: Vibration-based breathing crack identification using non-linear intermodulation components under noisy environment. Struct. Health Monit. 19(1), 86–104 (2019). https://doi.org/10.1177/1475921719836953

    Article  Google Scholar 

  20. Wang, R., Wu, Q., Yu, F., Okabe, Y., Xiong, K.: Nonlinear ultrasonic detection for evaluating fatigue crack in metal plate. Struct. Health Monit. 18(3), 869–881 (2018). https://doi.org/10.1177/1475921718784451

    Article  Google Scholar 

  21. Masserey, B., Fromme, P.: Fatigue crack growth monitoring using high-frequency guided waves. Struct. Health Monit. Int. J. 12(5–6), 484–493 (2013). https://doi.org/10.1177/1475921713498532

    Article  Google Scholar 

  22. Liu, P., Sohn, H., Yang, S., Lim, H.J.: Baseline-free fatigue crack detection based on spectral correlation and nonlinear wave modulation. Smart Mater. Struct. 25(12), 125034 (2016). https://doi.org/10.1088/0964-1726/25/12/125034

    Article  Google Scholar 

  23. Klepka, A., Strączkiewicz, M., Pieczonka, L., Staszewski, W.J., Gelman, L., Aymerich, F., Uhl, T.: Triple correlation for detection of damage-related nonlinearities in composite structures. Nonlinear Dyn. 81(1–2), 453–468 (2015). https://doi.org/10.1007/s11071-015-2004-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, P., Jang, J., Yang, S., Sohn, H.: Fatigue crack detection using dual laser induced nonlinear ultrasonic modulation. Opt. Lasers Eng. 110, 420–430 (2018). https://doi.org/10.1016/j.optlaseng.2018.05.025

    Article  Google Scholar 

  25. Wu, W., Qu, W., Xiao, L., Inman, D.J.: Detection and localization of fatigue crack with nonlinear instantaneous baseline. J. Intell. Mater. Syst. Struct. 27(12), 1577–1583 (2015). https://doi.org/10.1177/1045389x15596851

    Article  Google Scholar 

  26. Boungou, D., Guillet, F., Badaoui, M.E., Lyonnet, P., Rosario, T.: Fatigue damage detection using cyclostationarity. Mech. Syst. Signal Process. 58–59, 128–142 (2015). https://doi.org/10.1016/j.ymssp.2014.11.010

    Article  Google Scholar 

  27. Liu, P., Sohn, H., Jeon, I.: Nonlinear spectral correlation for fatigue crack detection under noisy environments. J. Sound Vib. 400, 305–316 (2017). https://doi.org/10.1016/j.jsv.2017.04.021

    Article  Google Scholar 

  28. Muller, M., Sutin, A., Guyer, R., Talmant, M., Laugier, P., Johnson, P.A.: Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J. Acoust. Soc. Am. 118(6), 3946–3952 (2005). https://doi.org/10.1121/1.2126917$

    Article  Google Scholar 

  29. Broda, D., Staszewski, W.J., Martowicz, A., Uhl, T., Silberschmidt, V.V.: Modelling of nonlinear crack–wave interactions for damage detection based on ultrasound—a review. J. Sound Vib. 333(4), 1097–1118 (2014). https://doi.org/10.1016/j.jsv.2013.09.033

    Article  Google Scholar 

  30. He, S., Ng, C.T.: Modelling and analysis of nonlinear guided waves interaction at a breathing crack using time-domain spectral finite element method. Smart Mater. Struct. 26(8), 085002 (2017). https://doi.org/10.1088/1361-665X/aa75f3

    Article  Google Scholar 

  31. Shen, Y., Giurgiutiu, V.: Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors. J. Intell. Mater. Syst. Struct. 25(4), 506–520 (2013). https://doi.org/10.1177/1045389x13500572

    Article  Google Scholar 

  32. Shen, Y., Giurgiutiu, V.: WaveFormRevealer: an analytical framework and predictive tool for the simulation of multi-modal guided wave propagation and interaction with damage. Struct. Health Monit. Int. J. 13(5), 491–511 (2014). https://doi.org/10.1177/1475921714532986

    Article  Google Scholar 

  33. Shen, Y., Cesnik, C.E.: Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach. Ultrasonics 74, 106–123 (2017). https://doi.org/10.1016/j.ultras.2016.10.001

    Article  Google Scholar 

  34. Radecki, R., Su, Z., Cheng, L., Packo, P., Staszewski, W.J.: Modelling nonlinearity of guided ultrasonic waves in fatigued materials using a nonlinear local interaction simulation approach and a spring model. Ultrasonics 84, 272–289 (2018). https://doi.org/10.1016/j.ultras.2017.11.008

    Article  Google Scholar 

  35. Hafezi, M.H., Alebrahim, R., Kundu, T.: Peri-ultrasound for modeling linear and nonlinear ultrasonic response. Ultrasonics 80, 47–57 (2017). https://doi.org/10.1016/j.ultras.2017.04.015

    Article  Google Scholar 

  36. Kim, J., Baltazar, A., Hu, J.W., Rokhlin, S.I.: Hysteretic linear and nonlinear acoustic responses from pressed interfaces. Int. J. Solids Struct. 43, 6436–6452 (2006). https://doi.org/10.1016/j.ijsolstr.2005.11.006

    Article  MATH  Google Scholar 

  37. Pecorari, C.: Nonlinear interaction of plane ultrasonic waves with an interface between rough surfaces in contact. J. Acoust. Soc. Am. 113(6), 3065–3072 (2003). https://doi.org/10.1121/1.1570437

    Article  Google Scholar 

  38. Jin, J., Johnson, P., Shokouhi, P.: An integrated analytical and experimental study of contact acoustic nonlinearity at rough interfaces of fatigue cracks. J. Mech. Phys. Solids 135, 103769 (2020). https://doi.org/10.1016/j.jmps.2019.103769

    Article  MathSciNet  Google Scholar 

  39. Shen, Y., Wang, J., Xu, W.: Nonlinear features of guided wave scattering from rivet hole nucleated fatigue cracks considering the rough contact surface condition. Smart Mater. Struct. 27(10), 105044 (2018). https://doi.org/10.1088/1361-665X/aadd2d

    Article  Google Scholar 

  40. Jhang, K.-Y.: Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009). https://doi.org/10.1007/s12541-009-0019-y

    Article  Google Scholar 

  41. Chopra, A.K.: Dynamics of Structures. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  42. Dziedziech, K., Pieczonka, L., Adamczyk, M., Klepka, A., Staszewski, W.J.: Efficient swept sine chirp excitation in the non-linear vibro-acoustic wave modulation technique used for damage detection. Struct. Health Monit. 17(3), 565–576 (2018). https://doi.org/10.1177/1475921717704638

    Article  Google Scholar 

  43. Solodov, I.: Resonant acoustic nonlinearity of defects for highly-efficient nonlinear NDE. J. Nondestr. Eval. 33(2), 252–262 (2014). https://doi.org/10.1007/s10921-014-0229-9

    Article  Google Scholar 

Download references

Acknowledgements

The supports from the National Natural Science Foundation of China (Contract Numbers 51605284 and 51975357) are thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Shen, Y., Rao, D. et al. An instantaneous-baseline multi-indicial nonlinear ultrasonic resonance spectral correlation technique for fatigue crack detection and quantification. Nonlinear Dyn 103, 677–698 (2021). https://doi.org/10.1007/s11071-020-06128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06128-x

Keywords

Navigation