Skip to main content
Log in

Optimized flapping wing dynamics via DMOC approach

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Outstanding aerial capabilities that insects present in nature inspire researchers to undertake a challenge to develop a flapping aerial vehicle with performances unmatched by any manmade object. However, the complex aerodynamic phenomena crucial for the insect flight are not easily understood, let alone modeled and utilized for flight. The researchers managed to develop a quasi-steady aerodynamic model capable of capturing the most important aspects of a fruit fly-like insect flight, while still being efficient enough to allow for the usage in the flapping mechanism optimization loop. This experimentally justified quasi-steady model is used in the paper as a building block for creating a novel optimization algorithm, based on the discrete mechanics and optimal control framework. When compared to the conventional approaches to design optimization, this framework includes the natural description of the energy cost function, while incorporating the physical laws in the form of a discrete Lagrange–d’ Alembert equations inherently in optimization constraints. This leads to the discrete description of the inherently continuous problem, allowing the algorithm to search for the optimal solutions in the whole domain. In other words, in contrast to the conventional approaches involving the assumption on the function family and subsequent optimization on the parameters of that function type, this approach is not constrained by the user input and is capable of yielding any solution that respects the physical laws. As presented by the numerical test cases, optimizing the flapping patterns of a fruit fly-like aerial vehicle in standstill hovering leads to both effective and robust optimization tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The terms translation and rotation in the names of the first two phenomena are a bit misleading; however, in order to achieve a clear linguistic distinction between these substantially different phenomena, such terms have also been used in this paper. Translational circulation is due to stroke rotation, while rotational circulation is due to pitch rotation.

  2. Although the illustrative terms horseshoe-shaped vortex and doughnut-shaped vortex ring can be found in [1], or vortex ring and dumbbell-shaped vortex structure in [41], we have nevertheless opted for a new term, because we believe that its form is somewhat more practical. A similar approach can be found in [21].

  3. With the aim of minimizing the impact of inertial forces. [33]

  4. There is a misprint in the cited paper. The pitching acceleration is given instead of pitching speed, for comparison see [32] and [33].

References

  1. Aono, H., Liang, F., Liu, H.: Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J. Exp. Biol. 211(Pt 2), 239–257 (2008). https://doi.org/10.1242/jeb.008649

    Article  Google Scholar 

  2. Berman, G.J., Wang, Z.J.: Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 582, 153–168 (2007). https://doi.org/10.1017/S0022112007006209

    Article  MathSciNet  MATH  Google Scholar 

  3. Birch, J.M., Dickinson, M.H.: The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. J. Exp. Biol. 206(Pt 13), 2257–2272 (2003). https://doi.org/10.1242/jeb.00381

    Article  Google Scholar 

  4. Chin, D.D., Lentink, D.: Flapping wing aerodynamics: from insects to vertebrates. J. Exp. Biol. 219(Pt 7), 920–932 (2016). https://doi.org/10.1242/jeb.042317

    Article  Google Scholar 

  5. Choi, J.S., Zhao, L., Park, G.J., Agrawal, S.K., Kolonay, R.M.: Enhancement of a flapping wing using path and dynamic topology optimization. AIAA J. 49(12), 2616–2626 (2011). https://doi.org/10.2514/1.J050834

    Article  Google Scholar 

  6. Dickinson, M.H., Götz, K.G.: Unstedy aerodynamic performance of model wings at low reynolds numbers. J. Exp. Biol. 174(1), 45–64 (1993)

    Google Scholar 

  7. Dickinson, M.H., Lehmann, F.O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science (N. Y.) 284(5422), 1954–1960 (1999). https://doi.org/10.1126/science.284.5422.1954

    Article  Google Scholar 

  8. Doman, D., Oppenheimer, M., Sigthorsson, D.: Dynamics and control of a minimally actuated biomimetic vehicle: Part i—aerodynamic model. In: AIAA Guidance, Navigation, and Control Conference, p. 341. American Institute of Aeronautics and Astronautics, Reston, Virigina (2009). https://doi.org/10.2514/6.2009-6160

  9. Ellington, C.P., van den Berg, C., Willmott, A.P., Thomas, A.L.R.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996)

    Article  Google Scholar 

  10. Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of hovering flight in drosophila. J. Exp. Biol. 208(12), 2303–2318 (2005). https://doi.org/10.1242/jeb.01612

    Article  Google Scholar 

  11. Gail, T., Ober Blöbaum, S., Leyendecker, S.: Variational multirate integration in discrete mechanics and optimal control (2017)

  12. Ghommem, M., Hajj, M.R., Mook, D.T., Stanford, B.K., Beran, P.S., Snyder, R.D., Watson, L.T.: Global optimization of actively morphing flapping wings. J. Fluids Struct. 33, 210–228 (2012). https://doi.org/10.1016/j.jfluidstructs.2012.04.013

    Article  Google Scholar 

  13. Harbig, R.R., Sheridan, J., Thompson, M.C.: Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. J. Fluid Mech. 717, 166–192 (2013). https://doi.org/10.1017/jfm.2012.565

    Article  MATH  Google Scholar 

  14. Johnson, E., Schultz, J., Murphey, T.: Structured linearization of discrete mechanical systems for analysis and optimal control. IEEE Trans. Autom. Sci. Eng. 12(1), 140–152 (2015). https://doi.org/10.1109/TASE.2014.2333239

    Article  Google Scholar 

  15. Jones, M., Yamaleev, N.K.: Adjoint-based optimization of three-dimensional flapping-wing flows. AIAA J. 53(4), 934–947 (2015). https://doi.org/10.2514/1.J053239

    Article  Google Scholar 

  16. Kane, C., Marsden, J.E., Ortiz, M., West, M.: Variational integrators and the newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49(10), 1295–1325 (2000). https://doi.org/10.1002/1097-0207(20001210)49:10<1295::AID-NME993>3.0.CO;2-W

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaya, M., Tuncer, I.H.: Nonsinusoidal path optimization of a flapping airfoil. AIAA J. 45(8), 2075–2082 (2007). https://doi.org/10.2514/1.29478

    Article  Google Scholar 

  18. Lehmann, F.O.: The mechanisms of lift enhancement in insect flight. Die Naturwissenschaften 91(3), 101–122 (2004). https://doi.org/10.1007/s00114-004-0502-3

    Article  Google Scholar 

  19. Lehmann, F.O.: The aerodynamic effects of wing-wing interaction in flapping insect wings. J. Exp. Biol. 208(16), 3075–3092 (2005). https://doi.org/10.1242/jeb.01744

    Article  Google Scholar 

  20. Lentink, D., Dickinson, M.H.: Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Exp. Biol. 212(Pt 16), 2705–2719 (2009). https://doi.org/10.1242/jeb.022269

    Article  Google Scholar 

  21. Li, C., Dong, H.: Three-dimensional wake topology and propulsive performance of low-aspect-ratio pitching-rolling plates. Phys. Fluids 28(7), 071901 (2016). https://doi.org/10.1063/1.4954505

    Article  Google Scholar 

  22. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001). https://doi.org/10.1017/S096249290100006X

    Article  MathSciNet  MATH  Google Scholar 

  23. Milano, M., Gharib, M.: Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403–409 (2005). https://doi.org/10.1017/S0022112005004842

    Article  MATH  Google Scholar 

  24. Nguyen, A.T., Tran, N.D., Vu, T.T., Pham, T.D., Vu, Q.T., Han, J.H.: A neural-network-based approach to study the energy-optimal hovering wing kinematics of a bionic hawkmoth model. J. Bionic Eng. 16(5), 904–915 (2019). https://doi.org/10.1007/s42235-019-0105-5

    Article  Google Scholar 

  25. Ober-Blöbaum, S.: Discrete mechanics and optimal control (2008)

  26. Ober-Blöbaum, S., Junge, O., Marsden, J.E.: Discrete mechanics and optimal control: an analysis. ESAIM: Control Optim. Calc. Var. 17(2), 322–352 (2011). https://doi.org/10.1051/cocv/2010012

    Article  MathSciNet  MATH  Google Scholar 

  27. Phan, H.V., Park, H.C.: Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects. J. Exp. Biol. 221(19), 187369 (2018). https://doi.org/10.1242/jeb.187369

    Article  Google Scholar 

  28. Poelma, C., Dickson, W.B., Dickinson, M.H.: Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp. Fluids 41(2), 213–225 (2006). https://doi.org/10.1007/s00348-006-0172-3

    Article  Google Scholar 

  29. Pohly, J.A., Kang, C.K., Sridhar, M., Landrum, D.B., Fahimi, F., Bluman, J.E., Aono, H., Liu, H.: Payload and power for dynamically similar flapping wing hovering flight on mars. In: 2018 AIAA Atmospheric Flight Mechanics Conference, p. 19. American Institute of Aeronautics and Astronautics, Reston, Virginia (01082018). https://doi.org/10.2514/6.2018-0020

  30. Pohly, J.A., Salmon, J.L., Bluman, J.E., Nedunchezian, K., Kang, C.K.: Quasi-steady versus Navier–Stokes solutions of flapping wing aerodynamics. Fluids 3(4), 81 (2000)

    Article  Google Scholar 

  31. Sane, S.P.: The aerodynamics of insect flight. J. Exp. Biol. 206(Pt 23), 4191–4208 (2003). https://doi.org/10.1242/jeb.00663

    Article  Google Scholar 

  32. Sane, S.P., Dickinson, M.H.: The control of flight force by a flapping wing: lift and drag production. J. Exp. Biol. 204(15), 2607–2626 (2001)

    Google Scholar 

  33. Sane, S.P., Dickinson, M.H.: The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol. 205(8), 1087–1096 (2002)

    Google Scholar 

  34. Soueid, H., Guglielmini, L., Airiau, C., Bottaro, A.: Optimization of the motion of a flapping airfoil using sensitivity functions. Comput. Fluids 38(4), 861–874 (2009). https://doi.org/10.1016/j.compfluid.2008.09.012

    Article  MATH  Google Scholar 

  35. Stanford, B.K., Beran, P.S.: Analytical sensitivity analysis of an unsteady vortex-lattice method for flapping-wing optimization. J. Aircr. 47(2), 647–662 (2010). https://doi.org/10.2514/1.46259

    Article  Google Scholar 

  36. Sun, M., Tang, J.: Lift and power requirements of hovering flight in drosophila virilis. J. Exp. Biol. 205(16), 2413–2427 (2002)

    Google Scholar 

  37. Sun, M., Tang, J.: Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 205(1), 55–70 (2002)

    Google Scholar 

  38. Taha, H.E., Hajj, M.R., Nayfeh, A.H.: Flight dynamics and control of flapping-wing mavs: a review. Nonlinear Dyn. 70(2), 907–939 (2012). https://doi.org/10.1007/s11071-012-0529-5

    Article  MathSciNet  Google Scholar 

  39. Taha, H.E., Hajj, M.R., Nayfeh, A.H.: Wing kinematics optimization for hovering micro air vehicles using calculus of variation. J. Aircr. 50(2), 610–614 (2013). https://doi.org/10.2514/1.C031969

    Article  Google Scholar 

  40. Tuncer, I.H., Kaya, M.: Optimization of flapping airfoils for maximum thrust and propulsive efficiency. AIAA J. 43(11), 2329–2336 (2005). https://doi.org/10.2514/1.816

    Article  Google Scholar 

  41. van den Berg, C., Ellington, C.P.: The vortex wake of a ’hovering’ model hawkmoth. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 352(1351), 317–328 (1997). https://doi.org/10.1098/rstb.1997.0023

    Article  Google Scholar 

  42. Weis-Fogh, T.: Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 59(1), 169–230 (1973)

    Google Scholar 

  43. Xu, M., Wei, M.: Using adjoint-based optimization to study kinematics and deformation of flapping wings. J. Fluid Mech. 799, 56–99 (2016). https://doi.org/10.1017/jfm.2016.351

    Article  MathSciNet  Google Scholar 

  44. Xu, M., Wei, M., Li, C., Dong, H.: Adjoint-based optimization for thrust performance of three-dimensional pitching-rolling plate. AIAA J. 57(9), 3716–3727 (2019). https://doi.org/10.2514/1.J057203

    Article  Google Scholar 

  45. Zheng, L., Hedrick, T.L., Mittal, R.: A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight. J. Fluid Mech. 721, 118–154 (2013). https://doi.org/10.1017/jfm.2013.46

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Pandža.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been fully supported by Croatian Science Foundation under the Project IP-2016-06-6696.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terze, Z., Pandža, V., Kasalo, M. et al. Optimized flapping wing dynamics via DMOC approach. Nonlinear Dyn 103, 399–417 (2021). https://doi.org/10.1007/s11071-020-06119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06119-y

Keywords

Navigation