Skip to main content
Log in

A novel perturbation method to reduce the dynamical degradation of digital chaotic maps

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A chaotic map, which is realized on finite precision device, such as computer, will suffer dynamical degradation. Such chaotic maps cannot be regarded as rigorous chaos anymore, since their chaotic characteristics are degraded, and naturally, these kinds of chaotic maps are not secure enough for cryptographic use. Therefore, in this paper, a novel perturbation method is proposed to reduce the dynamical degradation of digital chaotic maps. Once the state is repeated during the iteration, the parameter and state are both perturbed to make the state jump out from a cycle. This method is convenient to implement without any external sources and can be used for different kinds of digital chaotic maps. The most widely used logistic map is used as an example to prove the effectiveness of this method. Several numerical experiments are provided to prove the effectiveness of this method. Under the same precision, the number of iterations when entering a cycle and the period of the improved map are greater than those of the original one. The complexity analysis shows that the improved map can get an ideal complexity level under a lower precision. All these results prove that this perturbed method can greatly improve the dynamical characteristics of original chaotic map and is competitive with other remedies. Furthermore, we improve this method by using a variable perturbation, where the perturbation is affected according to the number of iteration steps. Numerical experiments further prove that this improved perturbation method has a better performance in suppressing dynamical degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Alvarez, G., Montoya, F., Romera, M., Pasto, G.: Keystream cryptanalysis of a chaotic cryprographic method. Comput. Phys. Commun. 156, 205–207 (2003)

    Article  Google Scholar 

  2. Hamza, R.: A novel pseudo random sequence generator for image-cryptographic applications. J. Inf. Secur. Appl. 35, 119–127 (2017)

    Google Scholar 

  3. Lambic, D., Nikolic, M.: Pseudo-random number generator based on discrete-space chaotic map. Nonlinear Dyn. 90, 223–232 (2017)

    Article  MathSciNet  Google Scholar 

  4. Chen, J.X., Zhu, Z.L., Zhang, L.B., Zhang, Y.S., Yang, B.Q.: Exploiting self-adaptive permutation-diffusion and DNA random encoding for secure and efficient image encryption. Sig. Process. 142, 340–353 (2017)

    Article  Google Scholar 

  5. Li, X.W., Wang, Y., Wang, Q.H., Liu, Y., Zhou, X.: Modified integral imaging reconstruction and encryption using an improved SR reconstruction algorithm. Opt. Lasers Eng. 112, 162–169 (2019)

    Article  Google Scholar 

  6. Wang, X.Y., Li, Z.M.: A color image encryption algorithm based on Hopfield chaotic neural network. Opt. Lasers Eng. 115, 107–118 (2019)

    Article  Google Scholar 

  7. Zhao, H.M., Liu, H.D., Xu, J.J., Wu, D.: Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine. IEEE Trans. Instrum. Meas. 69, 4165–4172 (2020)

    Article  Google Scholar 

  8. Zhao, H.M., Zheng, J.J., Deng, W., Song, Y.J.: Semi-supervised broad learning system based on manifold regularization and broad network. IEEE Trans. Circuits Syst. I Regul. Pap. 67, 983–994 (2020)

    Article  MathSciNet  Google Scholar 

  9. Deng, W., Liu, H.L., Xu, J.J., Zhao, H.M., Song, Y.J.: An improved quantum-inspired differential evolution algorithm for deep belief network. IEEE Trans. Instrum. Meas. 69, 7319–7327 (2020)

    Article  Google Scholar 

  10. Matthews, R.: On the derivation of a “chaotic” encryption algorithm. Cryptologia 13, 29–42 (1989)

    Article  MathSciNet  Google Scholar 

  11. Rajagopalan, S., Poori, S., Narasimhan, M., Rethinam, S., Kuppusamy, C.V., Balasubramanian, R., Annamalai, V.M.P., Rengarajan, A.: Chua’s diode and strange attractor: a three-layer hardware–software co-design for medical image confidentiality. IET Image Process. 14, 1354–1365 (2020)

    Article  Google Scholar 

  12. Wang, T., Wang, M.H.: Hyperchaotic image encryption algorithm based on bit-level permutation and DNA encoding. Opt. Laser Technol. 132, 106355 (2020)

    Article  Google Scholar 

  13. Yu, S.S., Zhou, N.R., Gong, L.H., Nie, Z.: Optical image encryption algorithm based on phase-truncated short-time fractional Fourier transform and hyper-chaotic system. Opt. Lasers Eng. 124, 105816 (2020)

    Article  Google Scholar 

  14. Tsafack, N., Kengne, J., Abd-El-Atty, B., Iliyasu, A.M., Hirota, K., Abd El-Latif, A.A.: Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption. Inf. Sci. 515, 191–217 (2020)

    Article  Google Scholar 

  15. Ben Farah, M.A., Guesmi, R., Kachouri, A., Samet, M.: A novel chaos based optical image encryption using fractional Fourier transform and DNA sequence operation. Opt. Laser Technol. 121, 105777 (2020)

    Article  Google Scholar 

  16. Ismail, S.M., Said, L.A., Radwan, A.G., Madian, A.H., Abu-ElYazeed, M.E.: A novel image encryption system merging fractional-order edge detection and generalized chaotic maps. Sig. Process. 167, 107280 (2020)

    Article  Google Scholar 

  17. Lambic, D.: A new discrete-space chaotic map based on the multiplication of integer numbers and its application in S-box design. Nonlinear Dyn. 100, 699–711 (2020)

    Article  Google Scholar 

  18. Dogan, S.: A new data hiding method based on chaos embedded genetic algorithm for color image. Artif. Intell. Rev. 46, 129–143 (2016)

    Article  Google Scholar 

  19. Golomb, S.W.: Shift Register Sequences. Holden-Day, San Francisco, CA (1967)

    MATH  Google Scholar 

  20. Gustafson, H., Dawson, E., Nielsen, L., Caelli, W.: A computer package for measuring the strength of encryption algorithms. Comput. Secur. 13, 687–697 (1994)

    Article  Google Scholar 

  21. Hu, H.P., Xu, Y., Zhu, Z.Q.: A method of improving the properties of digital chaotic system. Chaos, Solitons Fractals 38, 439–446 (2008)

    Article  MATH  Google Scholar 

  22. Hu, H.P., Liu, L.F., Ding, N.D.: Pseudorandom sequence generator based on the Chen chaotic system. Comput. Phys. Commun. 184, 765–768 (2013)

    Article  MathSciNet  Google Scholar 

  23. Jawad, L.M., Sulong, G.: Chaotic map-embedded Blowfish algorithm for security enhancement of colour image encryption. Nonlinear Dyn. 81, 2079–2093 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Flores-Vergara, A., Inzunza-Gonzalez, E., Garcia-Guerrero, E.E., Lopez-Bonilla, O.R., Rodriguez-Orozco, E., Hernandez-Ontiveros, J.M., Cardenas-Valdez, J.R., Tlelo-Cuautle, E.: Implementing a chaotic cryptosystem by performing parallel computing on embedded systems with multiprocessors. Entropy 21, 268 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, S.J., Chen, G.R., Mou, X.Q.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc. Chaos 15, 3119–3151 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, S.H., Liu, W.R., Lu, H.P., Kuang, J.Y., Hu, G.: Periodicity of chaotic trajectories in realizations of finite computer precisions and its implication in chaos communications. Int. J. Mod. Phys. B 18, 2617–2622 (2004)

    Article  Google Scholar 

  27. Cristina, D.A., Eugen, B.R.: A new method to improve cryptographic properties of chaotic discrete dynamical systems. In: 2012 International Conference for Internet Technology and Secured Transactions, pp. 60–65 (2012)

  28. Zhou, Y.C., Hua, Z.Y., Pun, C.M., Chen, C.L.P.: Cascade chaotic system with applications. IEEE Trans. Cybern. 45, 2001–2012 (2015)

    Article  Google Scholar 

  29. Hua, Z.Y., Zhou, Y.C.: One-dimensional nonlinear model for producing chaos. IEEE Trans. Circuits Syst. I-Regul. Pap. 65, 235–246 (2018)

    Article  Google Scholar 

  30. Liu, L.F., Lin, J., Miao, S.X., Liu, B.C.: A double perturbation method for reducing dynamical degradation of the digital baker map. Int. J. Bifurc. Chaos 27, 1750103 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, Y.Q., Luo, Y.L., Song, S.X., Cao, L.C., Liu, J.X., Harkin, J.: Counteracting dynamical degradation of digital chaotic Chebyshev map via perturbation. Int. J. Bifurc. Chaos 27, 1750033 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Deng, Y.S., Hu, H.P., Xiong, W., Xiong, N.N., Liu, L.F.: Analysis and design of digital chaotic systems with desirable performance via feedback control. IEEE Trans. Syst. Man Cybern.-Syst. 45, 1187–1200 (2015)

    Article  Google Scholar 

  33. Liu, L.F., Hu, H.P., Deng, Y.S.: An analogue-digital mixed method for solving the dynamical degradation of digital chaotic systems. IMA J. Math. Control Inf. 32, 703–715 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Deng, Y.S., Hu, H.P., Xiong, N.X., Xiong, W., Liu, L.F.: A general hybrid model for chaos robust synchronization and degradation reduction. Inf. Sci. 305, 146–164 (2015)

    Article  MATH  Google Scholar 

  35. Liu, L.F., Liu, B.C., Hu, H.P., Miao, S.X.: Reducing the dynamical degradation by bi-coupling digital chaotic maps. Int. J. Bifurc. Chaos 28, 1850059 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, L.F., Miao, S.X.: Delay-introducing method to improve the dynamical degradation of a digital chaotic map. Inf. Sci. 396, 1–13 (2017)

    Article  Google Scholar 

  37. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. 88, 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002)

    Article  Google Scholar 

  39. Toomey, J.P., Kane, D.M.: Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy. Opt. Express 22, 1713–1725 (2014)

    Article  Google Scholar 

  40. Liu, L.F., Miao, S.X.: A universal method for improving the dynamical degradation of a digital chaotic system. Phys. Scr. 90, 085205 (2015)

    Article  Google Scholar 

  41. Xiang, H.Y., Liu, L.F.: An improved digital logistic map and its application in image encryption. Multimedia Tools Appl. 79, 30329–30355 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61862042), and the Innovation Special Fund Designated for Graduate Students of Jiangxi Province (YC2019-S101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingfeng Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Xiang, H. & Li, X. A novel perturbation method to reduce the dynamical degradation of digital chaotic maps. Nonlinear Dyn 103, 1099–1115 (2021). https://doi.org/10.1007/s11071-020-06113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06113-4

Keywords

Navigation