Skip to main content
Log in

Analytical study of time-delayed feedback control of rectangular prisms undergoing subcritical galloping

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, time-delayed feedback control is investigated for an elastically mounted rectangular prism undergoing subcritical galloping in the transverse direction, when subjected to wind excitation. The mathematical model of the galloping system under consideration is established by using the quasi-steady aerodynamic theory. The control performance in terms of the galloping onset speed of the time-delayed displacement, velocity and acceleration feedback is investigated via linear stability analysis, respectively. Subsequently, the method of multiple scales is implemented for nonlinear analysis in order to derive the analytical expression of the vibration amplitude of the galloping system and determine the criticality curve that is the boundary of the subcritical and supercritical bifurcation regions. The results show that the hybrid objective of increasing the galloping onset speed, changing the Hopf bifurcation behavior from subcritical to supercritical and reducing the amplitude of limit-cycle oscillations can be achieved by means of delayed acceleration feedback. This study provides an analytical tool and procedure for time-delayed feedback control design of such a kind of flow–structure interaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Païdoussis, M.P., Price, S.J., De Langre, E.: Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  2. Dowell, E., Edwards, J., Strganac, T.: Nonlinear aeroelasticity. J. Aircraft 40(5), 857–874 (2003)

    Article  Google Scholar 

  3. Librescu, L., Marzocca, P.: Advances in the linear/nonlinear control of aeroelastic structural systems. Acta Mech. 178(3–4), 147–186 (2005)

    Article  Google Scholar 

  4. Livne, E.: Aircraft active flutter suppression: state of the art and technology maturation needs. J. Aircraft 55(1), 410–452 (2017)

    Article  Google Scholar 

  5. Mukhopadhyay, V.: Transonic flutter suppression control law design and wind-tunnel test results. J. Guid. Control Dyn. 23(5), 930–937 (2000)

    Article  Google Scholar 

  6. Abdelkefi, A.: Aeroelastic energy harvesting: a review. Int. J. Eng. Sci. 100, 112–135 (2016)

    Article  Google Scholar 

  7. Li, D., Wu, Y., Da Ronch, A., Xiang, J.: Energy harvesting by means of flow-induced vibrations on aerospace vehicles. Prog. Aerosp. Sci. 86, 28–62 (2016)

    Article  Google Scholar 

  8. Zhao, L., Tang, L., Yang, Y.: Comparison of modeling methods and parametric study for a piezoelectric wind energy harvester. Smart Mater. Struct. 22(12), 125003 (2013)

    Article  Google Scholar 

  9. Barrero-Gil, A., Sanz-Andres, A., Roura, M.: Transverse galloping at low Reynolds numbers. J. Fluid. Struct. 25(7), 1236–1242 (2009)

    Article  Google Scholar 

  10. Lu, M.L., Popplewell, N., Shah, A.H., Chan, J.K.: Hybrid nutation damper for controlling galloping power lines. IEEE T. Power Deliver. 22(1), 450–456 (2006)

    Article  Google Scholar 

  11. Saadabad, N.A., Moradi, H., Vossoughi, G.: Semi-active control of forced oscillations in power transmission lines via optimum tuneable vibration absorbers: with review on linear dynamic aspects. Int. J. Mech. Sci. 87, 163–178 (2014)

    Article  Google Scholar 

  12. Guo, H., Liu, B., Yu, Y., Cao, S., Chen, Y.: Galloping suppression of a suspended cable with wind loading by a nonlinear energy sink. Arch. Appl. Mech. 87(6), 1007–1018 (2017)

    Article  Google Scholar 

  13. Luongo, A., Zulli, D.: Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn. 81(1–2), 425–435 (2015)

    Article  MathSciNet  Google Scholar 

  14. Baicu, C.F., Rahn, C.D., Nibali, B.D.: Active boundary control of elastic cables: theory and experiment. J. Sound Vib. 198(1), 17–26 (1996)

    Article  Google Scholar 

  15. Hébrard, P., Henrott, A.: Optimal shape and position of the actuators for the stabilization of a string. Syst. Control Lett. 48(3–4), 199–209 (2003)

    Article  MathSciNet  Google Scholar 

  16. Ghabraei, S., Moradi, H., Vossoughi, G.: Finite time-Lyapunov based approach for robust adaptive control of wind-induced oscillations in power transmission lines. J. Sound Vib. 371, 19–34 (2016)

    Article  Google Scholar 

  17. Gouder, K., Zhao, X., Limebeer, D.J., Graham, J.M.R.: Experimental aerodynamic control of a long-span suspension bridge section using leading-and trailing-edge control surfaces. IEEE T. Contr. Syst. T. 24(4), 1441–1453 (2015)

    Article  Google Scholar 

  18. Li, K., Zhao, L., Ge, Y.J., Guo, Z.W.: Flutter suppression of a suspension bridge sectional model by the feedback controlled twin-winglet system. J. Wind Eng. Ind. Aerod. 168, 101–109 (2017)

    Article  Google Scholar 

  19. Barrero-Gil, A., Alonso, G., Sanz-Andres, A.: Energy harvesting from transverse galloping. J. Sound Vib. 329(14), 2873–2883 (2010)

    Article  Google Scholar 

  20. Yang, Y., Zhao, L., Tang, L.: Comparative study of tip cross-sections for efficient galloping energy harvesting. Appl. Phys. Lett. 102(6), 064105 (2013)

    Article  Google Scholar 

  21. Hu, H.Y., Wang, Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer, Berlin (2013)

    Google Scholar 

  22. Cai, G., Huang, J.: Instantaneous optimal method for vibration control of linear sampled-data systems with time delay in control. J. Sound Vib. 262(5), 1057–1071 (2003)

    Article  MathSciNet  Google Scholar 

  23. Saha, A., Wahi, P.: An analytical study of time-delayed control of friction-induced vibrations in a system with a dynamic friction model. Int. J. Nonlin. Mech. 63, 60–70 (2014)

    Article  Google Scholar 

  24. Masoud, Z.N., Nayfeh, A.H.: Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 34(3–4), 347–358 (2003)

    Article  Google Scholar 

  25. Zhang, L., Stepan, G., Insperger, T.: Saturation limits the contribution of acceleration feedback to balancing against reaction delay. J. R. Soc. Interface 15, 20170771 (2018)

    Article  Google Scholar 

  26. Zhang, L., Stepan, G.: Bifurcations in basic models of delayed force control. Nonlinear Dyn. 99, 99–108 (2020)

    Article  Google Scholar 

  27. Yuan, Y., Yu, P., Librescu, L., Marzocca, P.: Aeroelasticity of time-delayed feedback control of two-dimensional supersonic lifting surfaces. J. Guid. Control Dyn. 27(5), 795–803 (2004)

    Article  Google Scholar 

  28. Marzocca, P., Librescu, L., Silva, W.A.: Time-delay effects on linear/nonlinear feedback control of simple aeroelastic systems. J. Guid. Control Dyn. 28(1), 53–62 (2005)

    Article  Google Scholar 

  29. Zhao, Y.H.: Stability of a time-delayed aeroelastic system with a control surface. Aerosp. Sci. Technol. 15(1), 72–77 (2011)

    Article  Google Scholar 

  30. Wang, L., Liu, W.B., Dai, H.L.: Aeroelastic galloping response of square prisms: the role of time-delayed feedbacks. Int. J. Eng. Sci. 75, 79–84 (2014)

    Article  Google Scholar 

  31. Dai, H.L., Abdelkefi, A., Wang, L., Liu, W.B.: Control of cross-flow-induced vibrations of square cylinders using linear and nonlinear delayed feedbacks. Nonlinear Dyn. 78(2), 907–919 (2014)

    Article  MathSciNet  Google Scholar 

  32. Wang, Z., Hu, H., Xu, Q., Stepan, G.: Effect of delay combinations on stability and Hopf bifurcation of an oscillator with acceleration-derivative feedback. Int. J. Nonlin. Mech. 94, 392–399 (2017)

    Article  Google Scholar 

  33. Shukla, H., Patil, M.J.: Nonlinear state feedback control design to eliminate subcritical limit cycle oscillations in aeroelastic systems. Nonlinear Dyn. 88(3), 1599–1614 (2017)

    Article  Google Scholar 

  34. Novak, M., Tanaka, H.: Effect of turbulence on galloping instability. J. Eng. Mech. Div. ASCE 100(1), 27–47 (1974)

    Google Scholar 

  35. Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Software (TOMS) 28, 1–21 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of Jiangsu Province (Grant No. BK20190664) and the National Natural Science Foundation of China (Grant No. 11902146). The authors wish to thank Associate Prof. Zhang Li of Nanjing University of Aeronautics and Astronautics for her support on the numerical simulation of the neutral-type time-delay system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumin Gao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in relation to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Gao, X. Analytical study of time-delayed feedback control of rectangular prisms undergoing subcritical galloping. Nonlinear Dyn 103, 103–114 (2021). https://doi.org/10.1007/s11071-020-06103-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06103-6

Keywords

Navigation