Skip to main content
Log in

Riemann–Hilbert method and multi-soliton solutions of the Kundu-nonlinear Schrödinger equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we study the Kundu-nonlinear Schrödinger (Kundu-NLS) equation (so-called the extended NLS equation), which can describe the propagation of the waves in dispersive media. A Lax spectral problem is used to construct the Riemann–Hilbert problem, via a matrix transformation. Based on the inverse scattering transformation, the general solutions of the Kundu-NLS equation are calculated. In the reflection-less case, the special matrix Riemann–Hilbert problem is carefully proposed to derive the multi-soliton solutions. Finally, some novel dynamics behaviors of the nonlinear system are theoretically and graphically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bailung, H., Nakamura, Y.: Observation of modulational instability in a multi-component plasma with negative ions. J. Plasma Phys. 50, 231–242 (1993)

    Google Scholar 

  2. Agrawal, G.P.: Nonlinear Fiber Optics, 5th edn. Academic Press, New York (2012)

    MATH  Google Scholar 

  3. Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, New York (2013)

    Google Scholar 

  4. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53 (2005)

    Google Scholar 

  5. Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation and Superfluidity. Oxford University Press, Oxford (2016)

    MATH  Google Scholar 

  6. Osborne, A.R.: Nonlinear Ocean Waves. Academic, New York (2009)

    Google Scholar 

  7. Yan, Z.: Financial rogue waves. Commun. Theor. Phys. 54, 947–949 (2010)

    MATH  Google Scholar 

  8. Ohta, Y., Yang, J.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468, 1716 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Wang, X.B., Tian, S.F., Zhang, T.T.: Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation. Proc. Am. Math. Soc. 146, 3353–3365 (2018)

    MATH  Google Scholar 

  10. Wang, X.B., Han, B.: The three-component coupled nonlinear Schrödinger equation: Rogue waves on a multi-soliton background and dynamics. Europhys. Lett. 126, 15001 (2019)

    Google Scholar 

  11. Mu, G., Qin, Z., Grimshaw, R.: Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation. SIAM J. Appl. Math. 75, 1–20 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Dai, C.Q., Zhou, G.Q., Zhang, J.F.: Controllable optical rogue waves in the femtosecond regime. Phys. Rev. E 85, 016603 (2012)

    Google Scholar 

  13. Matveev, V.E., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)

    MATH  Google Scholar 

  14. Bluman, G.M., Kumei, S.: Symmetries and Differential Equations. Springer-Verlag, New York (1989)

    MATH  Google Scholar 

  15. Ablowitz, M.J., Clarkson, P.A.: Solitons: Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  16. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadephia (1981)

    MATH  Google Scholar 

  17. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)

    MATH  Google Scholar 

  18. Hirota, R.: Direct Methods in Soliton Theory. Springer, Berlin (2004)

    MATH  Google Scholar 

  19. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Wazwaz, A.M., El-Tantawy, S.A.: A new (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn. 84, 1107–1112 (2016)

    MathSciNet  Google Scholar 

  21. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)

    Google Scholar 

  22. Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)

    MATH  Google Scholar 

  23. Tian, S.F.: Initial-boundary value problems of the coupled modified Korteweg-de Vries equation on the half-line via the Fokas method. J. Phys. A: Math. Theor. 50, 395204 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Tian, S.F.: The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method. Proc. R. Soc. Lond. A 472, 20160588 (2016)

    MATH  Google Scholar 

  25. Yan, X.W., Tian, S.F., Dong, M.J., Zhang, T.T.: Rogue waves and their dynamics on bright-dark soliton background of the coupled higher order nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 88, 074004 (2019)

    Google Scholar 

  26. Yan, X.W., Tian, S.F., Dong, M.J., Zou, L., Zhang, T.T.: Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation. Comput. Math. Appl. 76, 179–186 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Yan, X.W.: Lax pair, Darboux-dressing transformation and localized waves of the coupled mixed derivative nonlinear Schrödinger equation in a birefringent optical fiber. Appl. Math. Lett. 107, 106414 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Yan, X.W.: Coupled cubic-quintic nonlinear Schrödinger equation: novel bright-dark rogue waves and dynamics. Nonlinear Dyn. 100, 3733–3743 (2020)

    Google Scholar 

  29. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirotas method. Nonlinear Dyn. 88, 3017–3021 (2017)

    MathSciNet  Google Scholar 

  30. Yang, J.K.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    MATH  Google Scholar 

  31. Wang, D.S., Zhang, D.J., Yang, J.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51, 023510 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Ma, W.X.: Riemann–Hilbert problems and N-soliton solutions for a coupled mKdV system. J. Geom. Phys. 132, 45–54 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Ma, W.X.: Application of the Riemann–Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal. RWA 47, 1–17 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Guo, B., Ling, L.: Riemann–Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation. J. Math. Phys. 53, 133–3966 (2012)

    MATH  Google Scholar 

  35. Zhang, Y.S., Cheng, Y., He, J.S.: Riemann–Hilbert method and N-soliton for two-component Gerdjikov–Ivanov equation. J. Nonlinear Math. Phys. 24, 210–223 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Wang, X.B., Han, B.: The pair-transition-coupled nonlinear Schrödinger equation: the Riemann–Hilbert problem and N-soliton solutions. Eur. Phys. J. Plus 134, 78 (2019)

    Google Scholar 

  37. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T., Fang, Y.: Riemann-Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations. J. Geom. Phys. 146, 103508 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Ma, W.X.: Riemann–Hilbert problems of a six-component mKdV system and its soliton solutions. Act. Math. Sci. 39, 509–523 (2019)

    MathSciNet  Google Scholar 

  39. Kundu, A.: Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. 25, 3433–3438 (1984)

    MathSciNet  Google Scholar 

  40. Kundu, A.: Integrable hierarchy of higher nonlinear Schrödinger type equations. SIGMA 2, 078 (2006)

    MATH  Google Scholar 

  41. Wang, X.B., Han, B.: The Kundu-nonlinear Schrödinger equation: breathers, rogue waves and their dynamics. J. Phys. Soc. Jpn. 89, 014001 (2020)

    Google Scholar 

  42. Zhang, C., Li, C., He, J.: Darboux transformation and rogue waves of the Kundu-nonlinear Schrödinger equation. Math. Method Appl. Sci. 38, 2411–2425 (2015)

    MATH  Google Scholar 

  43. Shi, X., Li, J., Wu, C.: Dynamics of soliton solutions of the nonlocal Kundu-nonlinear Schrödinger equation. Chaos 29, 023120 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Ma, W.X., Yong, X.L., Qin, Z.Y., Gu, X., Zhou, Y.: A generalized Liouville’s formula. preprint (2016)

Download references

Acknowledgements

We are grateful to the reviewers for their encouraging suggestions that were helpful in improving this paper further. This research was supported by the Major Program of Natural Science Foundation of Anhui Higher Institutions under Grant No. KJ2020ZD008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Wei Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, XW. Riemann–Hilbert method and multi-soliton solutions of the Kundu-nonlinear Schrödinger equation. Nonlinear Dyn 102, 2811–2819 (2020). https://doi.org/10.1007/s11071-020-06102-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06102-7

Keywords

Navigation