Skip to main content
Log in

Modeling and analysis of dynamic characteristics of multi-stable waterbomb origami base

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Origami has recently received wide attention, and the study on its dynamic characteristics remains a nascent field. The waterbomb origami is a common subtype of origami, and its base structure is treated as a bi-stable configuration in the literature. The systematical framework for modeling, simulation and dynamic analysis of the vibration for the waterbomb origami base is established in this paper. In the presented model, the motion of the waterbomb origami base is divided into two working patterns according to its geometric characteristic. The nonlinear governing equation of motion of the waterbomb origami base is formulated based on the Lagrange’s equation. The base’s free and forced responses can be calculated by using the fourth-order Runge–Kutta method. The developed model is validated by the results predicted by the simulation in ADAMS. With the developed theoretical framework, the base’s vertical effective stiffness and natural frequency of its linearized system are discussed to reveal their programmability with respect to the base’s structure and design parameters. Remarkably, the bifurcations of its equilibria, including the pitchfork, transcritical and (special) saddle-node bifurcations, are analyzed. Unlike the bi-stable configuration reported in the literature, the mono- and tri-stable configurations can also be realized by the base due to gravity. Furthermore, the complex nonlinear dynamic behaviors, including chaos, are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R., Vaziri, A.: Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci. Rep. 7, 46046 (2017). https://doi.org/10.1038/srep46046

    Article  Google Scholar 

  2. Tao, K., Yi, H., Yang, Y., Chang, H., Wu, J., Tang, L., Yang, Z., Wang, N., Hu, L., Fu, Y., Miao, J., Yuan, W.: Origami-inspired electret-based triboelectric generator for biomechanical and ocean wave energy harvesting. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2019.104197

    Article  Google Scholar 

  3. Silverberg, J.L., Na, J.H., Evans, A.A., Liu, B., Hull, T.C., Santangelo, C.D., Lang, R.J., Hayward, R.C., Cohen, I.: Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14(4), 389–393 (2015). https://doi.org/10.1038/nmat4232

    Article  Google Scholar 

  4. Castro, C.E., Kilchherr, F., Kim, D.N., Shiao, E.L., Wauer, T., Wortmann, P., Bathe, M., Dietz, H.: A primer to scaffolded DNA origami. Nat. Methods 8(3), 221–229 (2011). https://doi.org/10.1038/nmeth.1570

    Article  Google Scholar 

  5. Schenk, M., Viquerat, A.D., Seffen, K.A., Guest, S.D.: Review of inflatable booms for deployable space structures: packing and rigidization. J. Spacecr. Rockets 51(3), 762–778 (2014). https://doi.org/10.2514/1.A32598

    Article  Google Scholar 

  6. Turner, N., Goodwine, B., Sen, M.: A review of origami applications in mechanical engineering. Proc. Inst. Mech. Eng. C-J. Mech. 230(14), 2345–2362 (2015). https://doi.org/10.1177/0954406215597713

    Article  Google Scholar 

  7. Evans, A.A., Silverberg, J.L., Santangelo, C.D.: Lattice mechanics of origami tessellations. Phys. Rev. E. 92(1), 013205 (2015). https://doi.org/10.1103/PhysRevE.92.013205

    Article  MathSciNet  Google Scholar 

  8. Surjadi, J.U., Gao, L., Du, H., Li, X., Xiong, X., Fang, N.X., Lu, Y.: Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. (2019). https://doi.org/10.1002/adem.201800864

    Article  Google Scholar 

  9. Schenk, M., Guest, S.D.: Origami folding: a structural engineering approach. In: Wang-Iverson, P., J. Lang, R., Yim, M. (eds.) Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, pp. 291–304. CRC Press, Boca Raton (2011).

  10. Qiu, C., Zhang, K., Dai, J.S.: Repelling-screw based force analysis of origami mechanisms. J. Mech. Robot (2016). https://doi.org/10.1115/1.4031458

    Article  Google Scholar 

  11. Yasuda, H., Miyazawa, Y., Charalampidis, E.G., Chong, C., Kevrekidis, P.G., Yang, J.: Origami-based impact mitigation via rarefaction solitary wave creation. Sci. Adv. 5(5), eaau2835 (2019). https://doi.org/10.1126/sciadv.aau2835

    Article  Google Scholar 

  12. Wei, Z.Y., Guo, Z.V., Dudte, L., Liang, H.Y., Mahadevan, L.: Geometric mechanics of periodic pleated origami. Phys. Rev. Lett. 110(21), 215501 (2013). https://doi.org/10.1103/PhysRevLett.110.215501

    Article  Google Scholar 

  13. Li, S., Fang, H., Sadeghi, S., Bhovad, P., Wang, K.W.: Architected origami materials: how folding creates sophisticated mechanical properties. Adv. Mater. 31(5), e1805282 (2019). https://doi.org/10.1002/adma.201805282

    Article  Google Scholar 

  14. Schenk, M., Guest, S.D.: Geometry of Miura-folded metamaterials. PNAS 110(9), 3276–3281 (2013). https://doi.org/10.1073/pnas.1217998110

    Article  Google Scholar 

  15. Zhang, J., Karagiozova, D., You, Z., Chen, Y., Lu, G.: Quasi-static large deformation compressive behaviour of origami-based metamaterials. Int. J. Mech. Sci. 153, 194–207 (2019). https://doi.org/10.1016/j.ijmecsci.2019.01.044

    Article  Google Scholar 

  16. Zhai, Z., Wang, Y., Jiang, H.: Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. PNAS 115(9), 2032–2037 (2018). https://doi.org/10.1073/pnas.1720171115

    Article  Google Scholar 

  17. Mukhopadhyay, T., Ma, J., Feng, H., Hou, D., Gattas, J.M., Chen, Y., You, Z.: Programmable stiffness and shape modulation in origami materials: emergence of a distant actuation feature. Appl. Mater. Today (2020). https://doi.org/10.1016/j.apmt.2019.100537

    Article  Google Scholar 

  18. Geradin, M., Rixen, D.J.: Mechanical Vibrations: Theory and Application to Structural Dynamics. Wiley, New York (2014)

    Google Scholar 

  19. Ishida, S., Suzuki, K., Shimosaka, H.: Design and experimental analysis of origami-inspired vibration isolator with quasi-zero-stiffness characteristic. J. Vib. Acoust. (2017). https://doi.org/10.1115/1.4036465

    Article  Google Scholar 

  20. Ishida, S., Uchida, H., Shimosaka, H., Hagiwara, I.: Design and numerical analysis of vibration isolators with quasi-zero-stiffness characteristics using bistable foldable structures. J. Vib. Acoust. (2017). https://doi.org/10.1115/1.4036096

    Article  Google Scholar 

  21. Fang, H., Li, S., Ji, H., Wang, K.W.: Dynamics of a bistable Miura-origami structure. Phys. Rev. E 95(5–1), 052211 (2017). https://doi.org/10.1103/PhysRevE.95.052211

    Article  MathSciNet  Google Scholar 

  22. Sadeghi, S., Li, S.: Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation. Smart Mater. Struct. (2019). https://doi.org/10.1088/1361-665X/ab143c

    Article  Google Scholar 

  23. Rodrigues, G.V., Fonseca, L.M., Savi, M.A., Paiva, A.: Nonlinear dynamics of an adaptive origami-stent system. Int. J. Mech. Sci. 133, 303–318 (2017). https://doi.org/10.1016/j.ijmecsci.2017.08.050

    Article  Google Scholar 

  24. Lee, D.Y., Kim, J.S., Kim, S.R., Koh, J.S., Cho, K.J.: The deformable wheel robot using magic-ball origami structure. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (2013), p. V06BT07A040

  25. Brunck, V., Lechenault, F., Reid, A., Adda-Bedia, M.: Elastic theory of origami-based metamaterials. Phys. Rev. E. 93(3), 033005 (2016). https://doi.org/10.1103/PhysRevE.93.033005

    Article  Google Scholar 

  26. Rus, D., Tolley, M.T.: Design, fabrication and control of origami robots. Nat. Rev. Mater. 3(6), 101–112 (2018). https://doi.org/10.1038/s41578-018-0009-8

    Article  Google Scholar 

  27. Kuder, I.K., Arrieta, A.F., Raither, W.E., Ermanni, P.: Variable stiffness material and structural concepts for morphing applications. Prog. Aerosp. Sci. 63, 33–55 (2013). https://doi.org/10.1016/j.paerosci.2013.07.001

    Article  Google Scholar 

  28. Hanna, B.H., Magleby, S.P., Lang, R.J., Howell, L.L.: Force-deflection modeling for generalized origami waterbomb-base mechanisms. J. Appl. Mech. (2015). https://doi.org/10.1115/1.4030659

    Article  Google Scholar 

  29. Hanna, B.H., Lund, J.M., Lang, R.J., Magleby, S.P., Howell, L.L.: Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. (2014). https://doi.org/10.1088/0964-1726/23/9/094009

    Article  Google Scholar 

  30. Bowen, L., Springsteen, K., Feldstein, H., Frecker, M., Simpson, T.W., von Lockette, P.: Development and validation of a dynamic model of magneto-active elastomer actuation of the origami waterbomb base. J. Mech. Robot (2015). https://doi.org/10.1115/1.4029290

    Article  Google Scholar 

  31. Sadeghi, S., Li, S.: Analyzing the bi-directional dynamic morphing of a bi-stable water-bomb base origami. In: Proceedings Volume 10968 of SPIE Smart Structures + Nondestructive Evaluation, 109680S (2019). https://doi.org/10.1117/12.2512301

  32. You, Z.: Materials design. Folding structures out of flat materials. Science 345(6197), 623–624 (2014). https://doi.org/10.1126/science.1257841

    Article  Google Scholar 

  33. Arrieta, A.F., Hagedorn, P., Erturk, A., Inman, D.J.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3487780

    Article  Google Scholar 

  34. Lu, Z., Brennan, M.J., Chen, L.-Q.: On the transmissibilities of nonlinear vibration isolation system. J. Sound Vibr. 375, 28–37 (2016). https://doi.org/10.1016/j.jsv.2016.04.032

    Article  Google Scholar 

  35. Han, H., Cao, D., Liu, L.: A new approach for steady-state dynamic response of axially functionally graded and non-uniformed beams. Compos. Struct. (2019). https://doi.org/10.1016/j.compstruct.2019.111270

    Article  Google Scholar 

  36. Liu, J., Ou, H., Zeng, R., Zhou, J., Long, K., Wen, G., Xie, Y.M.: Fabrication, dynamic properties and multi-objective optimization of a metal origami tube with Miura sheets. Thin Wall. Struct. (2019). https://doi.org/10.1016/j.tws.2019.106352

    Article  Google Scholar 

  37. Chen, X., Zhang, X., Lu, Y., Li, Y.: Static and dynamic analysis of the postbuckling of bi-directional functionally graded material microbeams. Int. J. Mech. Sci. 151, 424–443 (2019). https://doi.org/10.1016/j.ijmecsci.2018.12.001

    Article  Google Scholar 

  38. Gottwald, G.A., Melbourne, I.: On the implementation of the 0–1 test for chaos. SIAM J. Appl. Dyn. Syst. 8(1), 129–145 (2009). https://doi.org/10.1137/080718851

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from China Scholarship Council (No. 201906120086) and National Natural Science Foundation of China (Grant Nos. 11732005 and 11902184).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihua Tang or Dengqing Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The first derivative expressions of \(\gamma\) which is given by Eq. (1) with respect to \(\theta\) are

$$ \frac{{{{\rm d}}\gamma }}{{{{\rm d}}\theta }} = \frac{\sin \left( \theta \right)}{{\gamma_{1} \cos \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}} - \frac{{\left[ {\cos \left( \alpha \right) + \cos \left( \theta \right)} \right]\sin \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{2\gamma_{1} \cos^{2} \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}\frac{{{{\rm d}}c}}{{{{\rm d}}\theta }}, $$
(45)

where

$$ \gamma_{1} = \sqrt {1 - {{\cos^{2} \theta } \mathord{\left/ {\vphantom {{\cos^{2} \theta } {\cos^{2} \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}} \right. \kern-\nulldelimiterspace} {\cos^{2} \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}} , $$
(46)
$$ \frac{{{{\rm d}}c}}{{{{\rm d}}\theta }} = \frac{{\sin \left( {2\theta } \right)\left[ {1 - \cos \left( {2\alpha } \right)} \right]}}{{\sqrt {1 - \left[ {\cos^{2} \theta + \sin^{2} \theta \cos \left( {2\alpha } \right)} \right]^{2} } }}. $$
(47)

Its second derivative expressions can be given by

$$ \begin{aligned} \frac{{{{\rm d}}^{2} \gamma }}{{{{\rm d}}\theta^{2} }} & = - \frac{{\left( {\cos \alpha + \cos \theta } \right)\left[ {1 + \cos^{2} \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)} \right]}}{{2\gamma_{1} \cos^{3} \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}\left( {\frac{{{{\rm d}}c}}{{{{\rm d}}\theta }}} \right)^{2} - \frac{{\left( {\cos \alpha + \cos \theta } \right)\sin \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{2\gamma_{1} \cos^{2} \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}\frac{{{{\rm d}}^{2} c}}{{{{\rm d}}\theta^{2} }} \\ & \quad - \frac{{\cos^{3} \alpha \sin^{2} \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{4\gamma_{1}^{3} \cos^{5} \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}\left( {\frac{{{{\rm d}}c}}{{{{\rm d}}\theta }}} \right)^{2} + \frac{1}{{\gamma_{1} }}\left[ {\frac{\cos \theta }{{\cos \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}} + \frac{{{\rm sin}\theta {\rm sin}\left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{\cos^{2} \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}\frac{{{{\rm d}}c}}{{{{\rm d}}\theta }}} \right] \\ & \quad + \frac{1}{{2\gamma_{1}^{3} }}\left[ { - \frac{\sin \theta }{{\cos \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}} + \frac{{\cos \theta {\rm sin}\left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{2\cos^{2} \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}\frac{{{{\rm d}}c}}{{{{\rm d}}\theta }}} \right]\left[ {\frac{{\sin \left( {2\theta } \right)}}{{\cos^{2} \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}} - \frac{{\cos^{2} \theta {\rm sin}\left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{\cos^{3} \left( {{c \mathord{\left/ {\vphantom {c 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}\frac{{{{\rm d}}c}}{{{{\rm d}}\theta }}} \right], \\ \end{aligned} $$
(48)

where

$$ \frac{{{{\rm d}}^{2} c}}{{{{\rm d}}\theta^{2} }} = \frac{{2\cos \left( {2\theta } \right)\left[ {1 - \cos \left( {2\alpha } \right)} \right]}}{{\sqrt {1 - \left[ {\cos^{2} \theta + \sin^{2} \theta \cos \left( {2\alpha } \right)} \right]^{2} } }} - \frac{{\sin^{2} \left( {2\theta } \right)\left[ {1 - \cos \left( {2\alpha } \right)} \right]^{2} \left( {\cos^{2} \theta + \sin^{2} \theta \cos \left( {2\alpha } \right)} \right)}}{{\left\{ {1 - \left[ {\cos^{2} \theta + \sin^{2} \theta \cos \left( {2\alpha } \right)} \right]^{2} } \right\}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}}} }}. $$
(49)

The expressions of \(T_{1}\), \(T_{2}\) and \(T_{3}\) in Eq. (18) are

$$ \begin{aligned} T_{1} & = - \sin^{2} \alpha \sin^{2} \theta + 2\cos^{2} \left( {\frac{\alpha }{2}} \right) + 1, \\ T_{2} & = s_{1} \sin \theta \left[ {\left( {4s_{0} \cos \theta \cos \gamma - 1} \right)\sin \alpha - 4\left( {2s_{0} \sin \gamma - \sin \alpha } \right)\cos^{2} \left( {\frac{\alpha }{2}} \right)} \right]\;, \\ T_{3} & = - 4s_{0} \sin \alpha \sin \gamma \sin^{2} \theta + 6s_{0} \sin^{2} \theta + \sin^{2} \alpha , \\ \end{aligned} $$
(50)

while their derivatives with respect to \(\theta\) can be expressed as

$$ \begin{aligned} \frac{{{{\rm d}}T_{1} }}{{{{\rm d}}\theta }} & = - \sin^{2} \alpha \sin \left( {2\theta } \right), \\& \frac{{{{\rm d}}T_{2} }}{{{{\rm d}}\theta }} = s_{1} \cos \theta \left[ {\left( {4s_{0} \cos \theta \cos \gamma - 1} \right)\sin \alpha - 4\left( {2s_{0} \sin \gamma - \sin \alpha } \right)\cos^{2} \left( {\frac{\alpha }{2}} \right)} \right] \\ & \quad - s_{1} \sin \theta \left[ {4s_{0} \left( {\sin \theta \cos \gamma + \cos \theta \sin \gamma \frac{{{{\rm d}}\gamma }}{{{{\rm d}}\theta }}} \right)\sin \alpha + 8s_{0} \cos^{2} \left( {\frac{\alpha }{2}} \right)\cos \gamma \frac{{{{\rm d}}\gamma }}{{{{\rm d}}\theta }}} \right], \\ \frac{{{{\rm d}}T_{3} }}{{{{\rm d}}\theta }} & = - 4s_{0} \sin \alpha \left[ {\cos \gamma \sin^{2} \theta \frac{{{{\rm d}}\gamma }}{{{{\rm d}}\theta }} + \sin \gamma \sin \left( {2\theta } \right)} \right] + 6s_{0} \cos \left( {2\theta } \right). \\ \end{aligned} $$
(51)

Appendix B

The dimensionless time history, spectrogram, phase space and Poincare section corresponding to Figs. 14 and 17 are shown as follows (Figs. 19, 20).

Fig. 19
figure 19figure 19

Dimensionless time history, spectrogram, phase space and Poincare section (red point) of the response of the WOB under the excitation at different \(\overline{\omega }_{{ f}}\). System parameters are the same as those in Sect. 3.6. (Color figure online)

Fig. 20
figure 20

Dimensionless time history, spectrogram, phase space and Poincare section (red point) of the response of the WOB at \(\overline{\omega }_{{ f}} = 1\) with different \(\overline{k}\). System parameters are the same as those in Sect. 3.6. (Color figure online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Tang, L., Cao, D. et al. Modeling and analysis of dynamic characteristics of multi-stable waterbomb origami base. Nonlinear Dyn 102, 2339–2362 (2020). https://doi.org/10.1007/s11071-020-06082-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06082-8

Keywords

Navigation