Skip to main content
Log in

Reconstruction of pitchfork bifurcation with exogenous disturbances based on equivalent-input-disturbance approach

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Reconstructing a pitchfork bifurcation that is destroyed by an exogenous disturbance is important to control it. This paper extends the equivalent-input-disturbance (EID) approach to solve the problem of reconstructing a pitchfork bifurcation when there is an exogenous disturbance for the first time. A nonlinear term and a bifurcation parameter are designed in the system to reconstruct the pitchfork bifurcation. The bifurcation characteristics of the equilibriums of the system are analyzed by exploring the features of the EID-based system. This provides us analytic solutions for a system with a degree higher than four for the first time. Unlike other pitchfork-bifurcation control systems, the EID-based control system only rejects the disturbance and retains the nonlinearity. Numerical examples demonstrate the effectiveness of the presented method and show its superiority over others. The robustness of the reconstruction with respect to measurement noise and control of a pitchfork bifurcation are also shown by the examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kuznetsov, Y.X.: Elements of Applied Bifurcation Theory. Springer, New York (2013)

    Google Scholar 

  2. Huang, C., Cao, J., Xiao, M., Assaedi, A., Alsaadi, F.E.: Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders. Appl. Math. Comput. 293, 293–310 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Xie, Y., Chen, L., Kang, Y.M., Aihara, K.: Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Phys. Rev. E 77, 061921 (2008)

    Article  MathSciNet  Google Scholar 

  4. Cai, P., Yuan, Z.Z.: Hopf bifurcation and chaos control in a new chaotic system via hybrid control strategy. Chin. J. Phys. 55, 64–70 (2017)

    Article  MathSciNet  Google Scholar 

  5. Chen, G., Moiola, J.L., Wang, H.O.: Bifurcation control: theories, methods, and applications. Int. J. Bifurc. Chaos 10(3), 511–548 (2000)

    Article  MathSciNet  Google Scholar 

  6. Abed, E.H., Fu, J.H.: Local feedback stabilization and bifurcation control, II. Stationary bifurcation. Syst. Control Lett. 8(5), 467–473 (1987)

    Article  MathSciNet  Google Scholar 

  7. Abed, E.H., Fu, J.H.: Local feedback stabilization and bifurcation control, I. Hopf bifurcation. Syst. Control Lett. 7(1), 11–17 (1986)

    Article  MathSciNet  Google Scholar 

  8. Zhang, X., Zhang, Q.: Bifurcation analysis and control of a class of hybrid biological economic models. Nonlinear Anal. Hybrid Syst. 3(4), 578–587 (2009)

    Article  MathSciNet  Google Scholar 

  9. Luo, G.W., Lv, X.H.: Controlling bifurcation and chaos of a plastic impact oscillator. Nonlinear Anal. Real World Appl. 10(4), 2047–2061 (2009)

    Article  MathSciNet  Google Scholar 

  10. Liu, F., Guan, Z.H., Wang, H.O.: Controlling bifurcations and chaos in TCP-UDP-RED. Nonlinear Anal. Real World Appl. 11(3), 1491–1501 (2011)

    Article  MathSciNet  Google Scholar 

  11. Xiao, M., Zheng, W.X., Cao, J.: Bifurcation and control in a neural network with small and large delays. Neural Netw. 44, 132–142 (2013)

    Article  Google Scholar 

  12. Wang, X., Deng, L., Zhang, W.: Hopf bifurcation analysis and amplitude control of the modified Lorenz system. Appl. Math. Comput. 225, 333–344 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Zhu, L., Zhao, H., Wang, X.: Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control. Commun. Nonlinear Sci. Numer. Simul. 22(1–3), 747–768 (2015)

    Article  MathSciNet  Google Scholar 

  14. Yin, X., Liu, F., She, J.: Extension theorem of impulsive control and its applications. Acta Autom. Sin. 46(1), 55–64 (2020)

    MATH  Google Scholar 

  15. Gazor, M., Sadri, N.: Bifurcation controller designs for the generalized cusp plants of Bogdanov-Takens singularity with an application to ship control. SIAM J. Control Optim. 57(3), 2122–2151 (2019)

    Article  MathSciNet  Google Scholar 

  16. Moradi, H., Vossoughi, G.: Multivariable control of the bifurcation and harmonic perturbations to improve the performance of air-handling units. ISA Trans. 60, 119–127 (2016)

    Article  Google Scholar 

  17. Moradi, H., Abbasi, M.H., Moradian, H.: Improving the performance of a nonlinear boiler-turbine unit via bifurcation control of external disturbances: a comparison between sliding mode and feedback linearization control approaches. Nonlinear Dyn. 85(1), 229–243 (2016)

    Article  MathSciNet  Google Scholar 

  18. Guo, L., Cao, S.: Anti-disturbance control theory for systems with multiple disturbances: A survey. ISA Transactions. 53(2014), 846–849 (2014)

  19. She, J., Fang, M.X., Ohyama, Y., Kobayashi, H., Wu, M.: Improving disturbance-rejection performance based on an equivalent-input-disturbance approach. IEEE Trans. Ind. Electron. 55(1), 380–389 (2008)

    Article  Google Scholar 

  20. Liu, R., Liu, G., Wu, M., Nie, Z.: Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach. J. Franklin Inst. 351(6), 3364–3377 (2014)

    Article  MathSciNet  Google Scholar 

  21. Liu, R., Liu, G., Wu, M., Xiao, F., She, J.: Robust disturbance rejection based on equivalent-input-disturbance approach. IET Control Theory Appl. 7(9), 1261–1268 (2013)

    Article  MathSciNet  Google Scholar 

  22. Yu, P., Wu, M., She, J., Liu, K., Nakanishi, Y.: Robust tracking and disturbance rejection for linear uncertain system with unknown state delay and disturbance. IEEE/ASME Trans. Mechatron. 23(3), 1445–1455 (2018)

    Article  Google Scholar 

  23. Ding, M., She, J., Yokoyama, R., Wu, M., Cao, W.: Two-loop power-flow control of grid-connected microgrid based on equivalent-input-disturbance approach. IEEJ Trans. Electr. Electron. Eng. 10(1), 36–43 (2015)

    Article  Google Scholar 

  24. Miyamoto, K., She, J., Imani, J., Xin, X., Sato, D.: Equivalent-input-disturbance approach to active structural control for seismically excited buildings. Eng. Struct. 125, 392–399 (2016)

    Article  Google Scholar 

  25. Cai, W., She, J., Wu, M., Ohyama, Y.: Disturbance suppression for quadrotor UAV using sliding-mode-observer-based equivalent-input-disturbance approach. ISA Trans. 92, 86–297 (2019)

    Article  Google Scholar 

  26. Cai, W., She, J., Wu, M., Ohyama, Y.: Quadrotor waypoint-tracking control under exogenous disturbances based on equivalent-input-disturbance approach. J. Franklin Inst. 357(8), 4709–4741 (2020)

    Article  MathSciNet  Google Scholar 

  27. Zhang, A., Lai, X., Wu, M., She, J.: Nonlinear stabilizing control for a class of underactuated mechanical systems with multi degree of freedoms. Nonlinear Dyn. 89, 2241–2253 (2017)

    Article  MathSciNet  Google Scholar 

  28. Ohishi, K., Nakao, M., Ohnishi, K., Miyachi, K.: Microprocessor-controlled dc motor for load-insensitive position servo system. IEEE Trans. Ind. Electron. 34(1), 44–49 (1987)

    Article  Google Scholar 

  29. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  30. Chen, W., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods: an overview. IEEE Trans. Ind. Electron. 632, 1083–1095 (2016)

    Article  Google Scholar 

  31. Yin, X., She, J., Wu, M., Sato, D., Hirota, K.: Disturbance rejection and performance analysis for nonlinear systems based on nonlinear equivalent-input-disturbance approach. Nonlinear Dyn. 100, 3497–3511 (2020)

    Article  Google Scholar 

  32. Fan, S.: A new extracting formula and a new distinguishing means on the one variable cubic equation. Nat. Sci. J. Hainan Teach. College 2(2), 91–98 (1989)

    Google Scholar 

  33. Gao, F., Wu, M., She, J., Cao, W.: Disturbance rejection in nonlinear systems based on equivalent-input-disturbance approach. Appl. Math. Comput. 282, 244–253 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Wang, O.H., Abed, E.H.: Bifurcation control of a chaotic system. Automatica 31(9), 1213–1226 (1995)

    Article  MathSciNet  Google Scholar 

  35. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  36. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  37. Rajapakse, I., Smale, S.: The pitchfork bifurcation. Int. J. Bifurc. Chaos 27(09), 1750132 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China under Grant 2017YFB1300900; the National Natural Science Foundation of China under Grant 61873348; the Natural Science Foundation of Hubei Province, China, under Grant 2020CFA031; Wuhan Applied Foundational Frontier Project under Grant 2020010601012175; and the 111 Project under Grant B17040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Convergence of the stable equilibrium in Fig. 1 for \(\lambda =\pm 1.5\) is analyzed below.

We first analyze the convergence of the stable equilibrium for

$$\begin{aligned} \lambda =1.5. \end{aligned}$$
(A.1)

Substituting (A.1) in (1) yields

$$\begin{aligned} \frac{\mathrm{{d}}x(t)}{\mathrm{{d}}t}=f_1(x,\lambda )=1.5x(t)-x^3(t). \end{aligned}$$
(A.2)

Solving

$$\begin{aligned} 1.5x(t)-x^3(t)=0 \end{aligned}$$
(A.3)

obtains the equilibriums

$$\begin{aligned} x_o=0,~\pm \sqrt{1.5}. \end{aligned}$$
(A.4)

For

$$\begin{aligned} x_o=0, \end{aligned}$$
(A.5)

the Jacobian matrix is

$$\begin{aligned} \alpha _1=\frac{\partial f_1(x,\lambda )}{\partial x}\bigg |_{x=0}=1.5>0.\nonumber \\ \end{aligned}$$
(A.6)

Thus, \(x_o=0\) is an unstable equilibrium. For

$$\begin{aligned} x_o=~\pm \sqrt{1.5}, \end{aligned}$$
(A.7)

the Jacobian matrix is

$$\begin{aligned} \alpha _1=\frac{\partial f_1(x,\lambda )}{\partial x}\bigg |_{x=\pm \sqrt{1.5}}=1.5-4.5=-3<0. \end{aligned}$$
(A.8)

Thus, \(x_o=~\pm \sqrt{1.5}\) are stable equilibriums. To analyze the convergence of the stable equilibrium, we have to make a coordinate transformation. Let

$$\begin{aligned} z(t)=x(t)-\sqrt{1.5}. \end{aligned}$$
(A.9)

Substituting (A.9) in (A.2) yields

$$\begin{aligned} \begin{aligned} \displaystyle \frac{\mathrm{{d}}z(t)}{\mathrm{{d}}t}&= h(z)= 1.5 (z(t)+\sqrt{1.5})\\ \displaystyle&\quad -(z(t)+\sqrt{1.5})^3= A_Nz(t)+f_z(z),\\ \end{aligned} \end{aligned}$$
(A.10)

where

$$\begin{aligned} A_N=-3,~f_z(z)=-3\sqrt{1.5}z^2(t)-z^3(t). \end{aligned}$$
(A.11)

The stable equilibrium \(x_o=\sqrt{1.5}\) for (A.2) is transformed to the stable equilibrium \(z_o=0\) for (A.10).

Since

$$\begin{aligned} A_N<0 \end{aligned}$$

is Hurwitz, for any positive definite symmetric matrix \(Q_N\), the solution, \(P_N\), of

$$\begin{aligned} P_NA_N+A_N^\mathrm{{T}}P_N=-Q_N \end{aligned}$$

is positive definite. Let

$$\begin{aligned} V_N(z)=z^{\mathrm{T}}(t)P_Nz(t) \end{aligned}$$

be a Lyapunov function candidate of (A.10). The derivative of \(V_N(z)\) along the trajectories of (A.10) is given by

$$\begin{aligned} \begin{aligned} \frac{\mathrm{{d}}{V_N(z)}}{\mathrm{{d}}t}=-z^\mathrm{{T}}(t)Q_Nz(t)+2z^\mathrm{{T}}(t)P_Nf_z(z). \end{aligned} \end{aligned}$$
(A.12)

The first term on the right side of (A.12) is negative definite, while the second term is indefinite. Since the function \(f_z(z)\) satisfies

$$\begin{aligned} \frac{\Vert f_z\Vert _2}{\Vert z\Vert _2}\rightarrow 0 ~\mathrm{{as}} ~\Vert z\Vert _2\rightarrow 0. \end{aligned}$$
(A.13)

Therefore, for any \(\gamma >0\), there exists \(\nu >0\) such that

$$\begin{aligned} \Vert f_z\Vert _2<\gamma \Vert z\Vert _2,~\forall \Vert z\Vert _2<\nu . \end{aligned}$$

Hence,

$$\begin{aligned} \begin{aligned} \frac{\mathrm{{d}}{V_N(z)}}{\mathrm{{d}}t}<-z^\mathrm{{T}}(t)Q_Nz(t)+2{\gamma }\Vert P_N\Vert _2\Vert z\Vert _2^2,~\forall \Vert z\Vert _2<\nu . \end{aligned} \end{aligned}$$

However,

$$\begin{aligned} z^\mathrm{{T}}(t)Q_Nz(t)\ge {\delta _{\min }(Q_N)}\Vert z\Vert _2^2. \end{aligned}$$

Note that \(\delta _{\min }(Q_N)\) is real and positive because \(Q_N\) is symmetric and positive definite. Thus,

$$\begin{aligned} \frac{\mathrm{{d}}{V_N(z)}}{\mathrm{{d}}t}<-\left[ \delta _\mathrm{{min}}(Q_N)-2\gamma \Vert P_N\Vert _2 \right] \Vert z\Vert _2^2,~\forall \Vert z\Vert _2<\nu . \end{aligned}$$

Choosing

$$\begin{aligned} \displaystyle \gamma <\frac{\delta _\mathrm{{min}}(Q_N)}{2\Vert P_N\Vert _2} \end{aligned}$$

ensures that \(\mathrm{d}{V}_N(z)/\mathrm{d}t\) is negative definite. Thus, \(z_o=0\) is asymptotically stable, which means that for \(z(0)<\nu \), z(t) converges to 0 as \(t\rightarrow \infty \).

The proof for \(x_o=-\sqrt{1.5}\) is the same as that for \(x_o=\sqrt{1.5}\). Thus, it is omitted.

Next, we analyze the convergence of the stable equilibrium for

$$\begin{aligned} \lambda =-1.5. \end{aligned}$$
(A.14)

Substituting (A.14) in (1) yields

$$\begin{aligned} \frac{\mathrm{{d}}x(t)}{\mathrm{{d}}t}=f_1(x,\lambda )=A_Mx(t)-f_x(x), \end{aligned}$$
(A.15)

where

$$\begin{aligned} A_M=-1.5,~f_x(x)=-x^3(t). \end{aligned}$$

Solving

$$\begin{aligned} -1.5x(t)-x^3(t)=0 \end{aligned}$$
(A.16)

obtains the equilibrium

$$\begin{aligned} x_o=0. \end{aligned}$$
(A.17)

For (A.17),

$$\begin{aligned} \alpha _1=\frac{\partial f_1(x,\lambda )}{\partial x}\bigg |_{x=0}=-1.5<0. \end{aligned}$$
(A.18)

Thus, \(x_o=0\) is a stable equilibrium.

Since

$$\begin{aligned} A_M<0 \end{aligned}$$

is Hurwitz, for any positive definite symmetric matrix \(Q_M\), the solution, \(P_M\), of

$$\begin{aligned} P_MA_M+A_M^\mathrm{{T}}P_M=-Q_M \end{aligned}$$

is positive definite. Let

$$\begin{aligned} V_M(x)=x^{\mathrm{T}}(t)P_Mx(t) \end{aligned}$$

be a Lyapunov function candidate of (A.15). The derivative of \(V_M(x)\) along the trajectories of (A.15) is given by

$$\begin{aligned} \frac{\mathrm{{d}}{V_M(x)}}{\mathrm{{d}}t}=-x^\mathrm{{T}}(t)Q_Mx(t)+2x^\mathrm{{T}}(t)P_Mf_x(x).\nonumber \\ \end{aligned}$$
(A.19)

The first term on the right side of (A.19) is negative definite, while the second term is indefinite. Since the function \(f_x(x)\) satisfies

$$\begin{aligned} \frac{\Vert f_x\Vert _2}{\Vert x\Vert _2}\rightarrow 0 ~\mathrm{{as}} ~\Vert x\Vert _2\rightarrow 0, \end{aligned}$$

which is the same as (A.13), the convergence analysis of \(x_o=0\) for \(\lambda =-1.5\) is the same as that of \(x_o=\sqrt{1.5}\) for \(\lambda =1.5\), thus is omitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, J., Yin, X., Wu, M. et al. Reconstruction of pitchfork bifurcation with exogenous disturbances based on equivalent-input-disturbance approach. Nonlinear Dyn 102, 2699–2709 (2020). https://doi.org/10.1007/s11071-020-06066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06066-8

Keywords

Navigation