Skip to main content
Log in

Successive estimations of bilateral bounds and trapping/stability regions of solution to some nonlinear nonautonomous systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Estimation of the degree of stability and the bounds of solutions to nonautonomous nonlinear systems present major concerns in numerous applied problems. Yet, current techniques frequently yield overconservative conditions which are unable to effectively gage these characteristics in time-varying nonlinear systems. This paper develops a novel methodology providing successive approximations to solutions that are stemmed from the trapping/stability regions of these systems and estimate the errors of such approximations. In turn, this leads to successive approximations of both the bilateral bounds of solutions and the boundaries of trapping/stability regions of the underlying systems. Along these lines we formulate enhanced stability/boundedness criteria and contrast our inferences with inclusive simulations which reveal dependence of the trapping/stability regions upon the structure of time-dependent components and initial time moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bacciotti, A., Rosier, L.: Lyapunov Functions and Stability in Control Theory, 2nd edn. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  2. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  3. Khalil, H.: Nonlinear Control. Prentice-Hall, Upper Saddle River (2015)

    MATH  Google Scholar 

  4. Lyapunov, A.M.: Stability of Motion. Academic Press, New York (1982)

    Google Scholar 

  5. Daletskii, Yu.L., Krein,M.G.: Stability of Solutions of Differential Equations in Banach Space. Amer. Math. Soc., Tran. of Math. Monographs, vol. 43, Providence, RI (1974)

  6. Barbashin, E.A.: Introduction to the Theory of Stability. Wolters-Noordhoff, Groningen (1970)

    MATH  Google Scholar 

  7. Leonov, G.A.: Strange Attractors and Classical Stability Theory. World Scientific, Singapore (2006)

    Book  MATH  Google Scholar 

  8. Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization and the Peron effects. Int. J. Bifurc. Chaos 17, 1079–1107 (2007)

    Article  MATH  Google Scholar 

  9. Mazenc, F.: Strict Lyapunov functions for time-varying systems. Automatica 39, 349–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Malisoff, M., Mazenc, F.: Further remarks on strict input-to-state stable Lyapunov functions for time-varying systems. Automatica 41, 1973–1978 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Michel, A.N., Hou, L.: Stability results involving time-averaged Lyapunov function derivatives. Nonlinear Anal. Hybrid Syst. 3, 51–64 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhou, B.: Stability analysis of non-linear time-varying systems by Lyapunov functions with indefinite derivatives. IET Control Theory Appl. 8, 1866–1874 (2017)

    MathSciNet  Google Scholar 

  13. Peuteman, J., Aeyels, D.: Averaging results and the study of uniform asymptotic stability of homogeneous differential equations that are not fast time-varying. SIAM J. Control Optim. 37, 97–1010 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peuteman, J., Aeyels, D.: Exponential stability of nonlinear time-varying differential equations and partial averaging. Math. Control Signals Syst. 15, 42–70 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Naser, M.F., Ikhouane, F.: Stability of time-varying systems in the absence of strict Lyapunov functions. IMA J. Math. Control Inf. 36, 461–483 (2019)

    Article  MathSciNet  Google Scholar 

  16. Abbaszadeh, M., Marquez, H.J.: Nonlinear observer design for one-sided Lipschitz systems. In: Proceedings of American Control Conference, vol. 30, pp. 5284–5289, Baltimore, MD (2010)

  17. Abbaszadeh, M., Marquez, H.J.: Design of nonlinear state observers for one-sided Lipschitz systems. arXiv:1302.5867 (2013)

  18. Van Loan, C.: The sensitivity of matrix exponentials. SIAM J. Numer. Anal. 14, 971–981 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zevin, A.A., Pinsky, M.A.: Exponential stability and solution bounds for systems with bounded nonlinearities. IEEE Trans. Autom Control 48, 1799–1804 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Giesl, P., Hafstein, S.: Review on computational methods for Lyapunov functions. Discrete Control Dyn. Syst. Ser. B 20(8), 2291–2331 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chiang, H.-D., Alberto, L.F.C.: Stability Regions for Nonlinear Dynamical Systems. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  22. Tan, W., Packard, A.: Stability region analysis using polynomial and composite polynomial Lyapunov functions and sum-of-squares programming. IEEE Trans. Autom. Control 53, 565–571 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Topcu, U., Packard, A., Seiler, P.: Local stability analysis using simulations and sum-of-squares programming. Automatica 44, 2669–2675 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Topcu, U., Packard, A., Seiler, P., Balas, G.: Robust region of attraction estimation. IEEE Trans. Autom. Control 55, 137–142 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khodadadi, L., Samadi, B., Khaloozadeh, H.: Estimation of region of attraction for polynomial nonlinear systems: a numerical method. ISA Trans. 53(1), 25–32 (2014)

    Article  Google Scholar 

  26. Najafi, E., Babusˇka, R., Lopes, G.: A fast sampling method for estimating the domain of attraction. Nonlinear Dyn. 86(2), 823–834 (2016)

    Article  MathSciNet  Google Scholar 

  27. Valmorbida, G., Anderson, J.: Region of attraction estimation using invariant sets and rational Lyapunov functions. Automatica 75, 37–45 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chiang, H.D., Thorp, J.: Stability regions of nonlinear dynamical systems: a constructive methodology. IEEE Trans. Autom. Control 34(12), 1229–1241 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Genesio, R., Tartaglia, M., Vicino, A.: On the estimation of asymptotic stability regions: state of the art and new proposals. IEEE Trans. Autom. Control 30, 747–755 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Genesio, R., Vicino, A.: New techniques for constructing asymptotic stability regions for nonlinear systems. IEEE Trans. Circuits Syst. 31, 574–581 (1984)

    Article  MathSciNet  Google Scholar 

  31. Loccufier, M., Noldus, E.: A new trajectory reversing method for estimating stability regions of autonomous nonlinear systems. Nonlinear Dyn. 21, 265–288 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kant, N., Mukherjee, R., Chowdhury, D., Khalil, H.: Estimation of the region of attraction of underactuated systems and its enlargement using impulsive inputs. IEEE Trans. Robot. 35, 618–632 (2019)

    Article  Google Scholar 

  33. Koo, T.J., Su, H.: A computational approach for estimating stability regions. In: Proceedings of IEEE Conf. Computer Aided Control Systems Design. Munich (2006)

  34. Yuan, G., Li, Y.: Estimation of the regions of attraction for autonomous nonlinear systems. Trans. Inst. Meas. Control 41(1), 97–106 (2019)

    Article  Google Scholar 

  35. Chiang, H.D., Hirsch, M.W., Wu, F.F.: Stability regions of nonlinear autonomous dynamical systems. IEEE Trans. Autom. Control 33, 16–27 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chiang, H.D., Wang, T.: On the number and types of unstable equilibria in nonlinear dynamical systems with uniformly-bounded stability regions. IEEE Trans. Autom. Control 61(2), 485–490 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Wang, T., Chiang, H.D.: On the number of unstable equilibrium points on spatially-periodic stability boundary. IEEE Trans. Autom. Control 61(9), 2553–2558 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, Y., et al.: Characterizing regions of attraction for piecewise affine systems by continuity of discrete transition functions. Nonlinear Dyn. 90, 2093–2110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lohmiller, W., Slotine, J.-J.E.: On contraction analysis for non-linear systems. Automatica 34(6), 683–696 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Malikov, A.: Ellipsoidal estimation of solutions of differential equations using matrix comparison systems. Russ. Math. (Izvestiya VUZ. Matematika) 46(8), 27–39 (2002)

    MathSciNet  Google Scholar 

  41. Malikov, A.: State estimation and stabilization of continuous systems with uncertain nonlinearities and disturbances. Autom. Remote Control 77, 764–778 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Amato, F., et al.: Finite Time Stability and Control. Springer, Berlin (2014)

    Book  Google Scholar 

  43. Pinsky, M.A., Koblik, S.: Solution bounds, stability, and estimation of trapping/stability regions of some nonlinear time-varying systems. Math. Probl. Eng. Article ID 5128430, 16 pp (2020). https://doi.org/10.1155/2020/5128430

  44. Perron, O.: Die ordnungszahlen linearer differentialgleichungssysteme. Math. Z. 31, 748–766 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  45. Millionshchikov, V.: Structurally stable properties of linear systems of differential equations. Differentsial’nye Uravneniya 5, 1775–1784 (1969)

    MathSciNet  Google Scholar 

  46. Bylov, B., Izobov, N.: Necessary and sufficient conditions for the stability of the characteristic exponents of a linear system. Differentsial’nye Uravneniya 5, 1794–1803 (1969)

    MathSciNet  Google Scholar 

  47. Kauderer, H.: Nonlineare Mechanik. Springer, Berlin (1958)

    MATH  Google Scholar 

  48. Hamming, R.W.: Numerical Methods for Scientists and Engineers. McGraw-Hill, New York (1962)

    MATH  Google Scholar 

Download references

Acknowledgements

The programs used to simulate the models in Sect. 8 of this paper were developed by Steve Koblik who also was engaged in discussions of the corresponding results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Pinsky.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let us sketch, for instance, how to derive inequalities (7.2). Assume that \( f\left( {t,x} \right) = [f_{1} , \ldots ,f_{n} ]^{\text{T}} \), \( x,\,\,u\,,z \in {\mathbb{R}}^{n} \), \( f_{i} \left( {t,x} \right) = \zeta_{i} \left( t \right)x_{i}^{{d_{i} }} = \zeta_{i} \left( t \right)\left( {z_{i} + u_{i} } \right)^{{d_{i} }} ,\,\,d_{i} \in {\mathbb{N}} \). Thus, \( \left| {f_{i} } \right| = \left| {\zeta_{i} \left( {z_{i} + u_{i} } \right)^{{d_{i} }} } \right| \le \left| {\zeta_{i} } \right|\left| {z_{i} + u_{i} } \right|^{{d_{i} }} \)\( \le \left| {\zeta_{i} } \right|\left( {\left| {z_{i} } \right| + \left| {u_{i} } \right|} \right)^{{d_{i} }} \le \left| {\zeta_{i} } \right|\left( {\left\| z \right\| + \left| {u_{i} } \right|} \right)^{{d_{i} }} \)\( \le \left| {\zeta_{i} } \right|\left( {\left\| z \right\| + \left\| u \right\|} \right)^{{d_{i} }} \).Then, taking into account that \( \left\| f \right\| \le \left\| f \right\|_{1} = \sum\nolimits_{i = 1}^{n} {\left| {f_{i} } \right|} \), we infer that \( \gamma_{*} \left( {t,u} \right) = \sum\nolimits_{i = 1}^{n} {\left| {\zeta_{i} } \right|\left| {u_{i} } \right|^{{d_{i} }} } \), \( \varPi_{*} \left( {t,y} \right) = \,\sum\nolimits_{i = 1}^{n} {\left| {\zeta_{i} } \right|\left( {\left\| z \right\| + \left| {u_{i} } \right|} \right)^{{d_{i} }} } - \gamma_{*} \left( {t,u} \right) \), \( \hat{\gamma }\left( {t,\left\| u \right\|} \right) = \sum\nolimits_{i = 1}^{n} {\left| {\zeta_{i} } \right|\left\| u \right\|^{{d_{i} }} } \) if \( F_{0} = 0 \). Subsequently, we enter in this formula that \( \left\| u \right\| \le \left\| u \right\|_{1} \). The prior formula holds if \( F_{0} > 0 \) with obvious change in notation.

Assume next that \( f_{id} \left( {t,x} \right) = \zeta_{id} \left( t \right)x^{d} \), where \( x^{d} = x_{1}^{{d_{1} }} \ldots x_{n}^{{d_{n} }} ,\,\,d_{i} \in {\mathbb{Z}},\,\,\,d = \sum\nolimits_{i = 1}^{n} {d_{i} } \). Then, \( \left| {f_{id} \left( {t,x} \right)} \right| = \left| {\zeta_{id} } \right|\left| {x_{1}^{{d_{1} }} } \right| \ldots \left| {x_{n}^{{d_{n} }} } \right| \) which enables utility of the prior procedure for every \( \left| {x_{i}^{{d_{i} }} } \right| \). Clearly, such sequence of steps yields (7.2) if \( f\left( {t,x} \right) \) is a vector polynomial in \( x \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinsky, M.A. Successive estimations of bilateral bounds and trapping/stability regions of solution to some nonlinear nonautonomous systems. Nonlinear Dyn 103, 517–539 (2021). https://doi.org/10.1007/s11071-020-06033-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-06033-3

Keywords

Navigation