Skip to main content
Log in

A high-efficiency second-order numerical scheme for time-fractional phase field models by using extended SAV method

  • Original Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a second-order numerical scheme for the time-fractional phase field models is proposed. In this scheme, the fractional backward difference formula is used to approximate the time-fractional derivative and the extended scalar auxiliary variable method is used to deal with the nonlinear terms. The energy dissipation property for the numerical scheme is proved. Our discussion includes the time-fractional Allen–Cahn equation, the time-fractional Cahn–Hilliard equation, and the time-fractional molecular beam epitaxy model. In the numerical implementation, a fast method based on a globally uniform approximation of the trapezoidal rule for the integral on the real line is adopted to decrease the memory requirement and computational cost. Finally, some numerical examples are given to confirm the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  Google Scholar 

  2. Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system, III: nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)

    Article  Google Scholar 

  3. van der Waals, J.: Thermodynamische theorie der kapillarität unter voraussetzung stetiger dichteänderung. Z. Phys. Chem. 34, 694 (1894)

    Google Scholar 

  4. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  MathSciNet  Google Scholar 

  5. Tariq, H., Akram, G.: New traveling wave exact and approximate solutions for the nonlinear Cahn-Allen equation: evolution of a nonconserved quantity. Nonlinear Dyn. 88, 581–594 (2017)

    Article  MathSciNet  Google Scholar 

  6. Elder, K.R., Katakowski, M., Haataja, M., Grant, M.: Modeling elasticity in crystal growth. Phys. Rev. Lett. 88, 245701 (2002)

    Article  Google Scholar 

  7. Gyure, M., Ratsch, C., Merriman, B., Caflisch, R., Osher, S., Zinck, J., Vvedensky, D.: Level-set methods for the simulation of epitaxial phenomena. Phys. Rev. E 58, 6927–6930 (1998)

    Article  Google Scholar 

  8. Qian, T., Wang, X.P., Sheng, P.: Molecular scale contact line hydrodynamics of immiscible flows. Phys. Rev. E 68, 016306 (2003)

    Article  Google Scholar 

  9. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  10. Li, B., Liu, J.G.: Thin film epitaxy with or without slope selection. Eur. J. Appl. Math. 14, 713–743 (2003)

    Article  MathSciNet  Google Scholar 

  11. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004)

    Article  MathSciNet  Google Scholar 

  12. Li, X., Cristini, V., Nie, Q., Lowengrub, J.: Nonlinear three-dimensional simulation of solid tumor growth. Discrete Contin. Dyn. Syst. Ser. B 7, 581–604 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Karma, A., Rappel, W.J.: Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E 53, R3017–R3020 (1996)

    Article  Google Scholar 

  14. Beckermann, C., Diepers, H.J., Steinbach, I., Karma, A., Tong, X.: Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys. 154, 468–496 (1999)

    Article  Google Scholar 

  15. Steinbach, I., Apel, M.: Multi phase field model for solid state transformation with elastic strain. Phys. D 217, 153–160 (2006)

    Article  Google Scholar 

  16. Chen, L.Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32, 113–140 (2002)

    Article  Google Scholar 

  17. Chen, L.Q., Yang, W.: Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics. Phys. Rev. B 50, 15752–15756 (1994)

    Article  Google Scholar 

  18. Lusk, M.T.: A phase-field paradigm for grain growth and recrystallization. Proc. R. Soc., Math. Phys. Eng. Sci 455, 677–700 (1999)

    Article  MathSciNet  Google Scholar 

  19. Liu, H., Cheng, A., Wang, H., Zhao, J.: Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation. Comput. Math. Appl. 76, 1876–1892 (2018)

    Article  MathSciNet  Google Scholar 

  20. Chen, L.Z., Zhang, J., Zhao, J., Cao, W.X., Wang, H., Zhang, J.W.: An accurate and efficient algorithm for the time-fractional molecular beam epitaxy model with slope selection. Commun. Comput. Phys. 245, 106842 (2019)

    Article  MathSciNet  Google Scholar 

  21. Tang, T., Yu, H.J., Zhou, T.: On energy dissipation theory and numerical stability for time-fractional phase field equations. SIAM J. Sci. Comput. 41, A3757–A3778 (2019)

    Article  MathSciNet  Google Scholar 

  22. Ji, B.Q., Liao, H.L., Gong, Y.Z., Zhang, L.M.: Adaptive second-order Crank–Nicolson time-stepping schemes for time fractional molecular beam epitaxial growth models. (2019). arXiv:1906.11737

  23. Li, Z., Wang, H., Yang, D.: A space-time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation. J. Comput. Phys. 347, 20–38 (2017)

    Article  MathSciNet  Google Scholar 

  24. Du, Q., Yang, J., Zhou, Z.: Time-fractional Allen–Cahn equations: analysis and numerical methods. (2019). arXiv:1906.06584

  25. Hou, D.M., Zhu, H.Y., Xu, C.J.: Highly efficient and accurate schemes for time fractional Allen–Cahn equation by using extended SAV approach. (2019). arXiv:1910.09087

  26. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  27. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  Google Scholar 

  28. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56, 210–227 (2018)

    Article  MathSciNet  Google Scholar 

  29. Zhao, J.H., Zheng, L.C., Zhang, X.X., Liu, F.W.: Convection heat and mass transfer of fractional MHD Maxwell fluid in a porous medium with Soret and Dufour effects. Int. J. Heat Mass Transf. 97, 760–766 (2016)

    Article  Google Scholar 

  30. Feng, L.B., Liu, F.W., Turner, I., Zhuang, P.H.: Numerical methods and analysis for simulating the flow of a generalized Oldroyd-B fluid between two infinite parallel rigid plates. Int. J. Heat Mass Transf. 115, 1309–1320 (2017)

    Article  Google Scholar 

  31. Li, J.R.: A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31, 4696–4714 (2010)

    Article  MathSciNet  Google Scholar 

  32. López-Fernández, M., Lubich, C., Schädle, A.: Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30, 1015–1037 (2008)

    Article  MathSciNet  Google Scholar 

  33. Zeng, F., Turner, I., Burrage, K.: A stable fast time-stepping method for fractional integral and derivative operators. J. Sci. Comput. 77, 283–307 (2018)

    Article  MathSciNet  Google Scholar 

  34. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  35. Yan, Y., Sun, Z., Zhang, J.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme. Commun. Comput. Phys. 22, 1028–1048 (2017)

    Article  MathSciNet  Google Scholar 

  36. Baffet, D., Hesthaven, J.S.: High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equations. J. Sci. Comput. 72, 1169–1195 (2017)

    Article  MathSciNet  Google Scholar 

  37. Guo, L., Zeng, F., Turner, I., Burrage, K., Karniadakis, G.E.: Efficient multistep methods for tempered fractional calculus: algorithms and simulations. SIAM J. Sci. Comput. 41, A2510–A2535 (2019)

    Article  MathSciNet  Google Scholar 

  38. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  39. Yin, B.L., Liu, Y., Li, H.: A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations. Appl. Math. Comput. 368, 124799 (2019)

    MathSciNet  MATH  Google Scholar 

  40. McLean, W.: Exponential sum approximations for \(t^{-\beta }\). In: Dick, J., Kuo, F., Woźniakowski, H. (eds.) Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan. Springer, Cham (2018)

    Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the Editor for taking time to handle the manuscript. This work has been supported by the National Natural Science Foundation of China (Grants Nos. 11771254, 11672163), Major Basic Research Projects of Natural Science Foundation of Shandong Province (Grants No. ZR2019ZD42), and Natural Postdoctoral Innovative Talents Support Program (Grant No. BX20190191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Jiang, X. A high-efficiency second-order numerical scheme for time-fractional phase field models by using extended SAV method . Nonlinear Dyn 102, 589–603 (2020). https://doi.org/10.1007/s11071-020-05943-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05943-6

Keywords

Navigation