Skip to main content
Log in

Security control of interval type-2 fuzzy system with two-terminal deception attacks under premise mismatch

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on security control of nonlinear networked control systems with parameter uncertainties. Interval type-2 T–S fuzzy model is used to represent the original nonlinear system, so as to capture the parameter uncertainties. Stochastic deception attacks are considered in the sensor to controller channel and the controller to actuator channel. By constructing Lyapunov–Krasovskii functional with the information of time-varying delays in the deception attacks, new stabilization conditions are derived. Furthermore, considering the information of upper and lower bounds of membership functions, less conservative membership-function-dependent conditions are developed in terms of linear matrix inequality. Finally, simulation results show that the proposed method is effective under the influence of deception attacks and parameter uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 6, 1–10 (2017)

    Google Scholar 

  2. Ge, X., Yang, F., Han, Q.-L.: Distributed networked control systems: a brief overview. Inf. Sci. 380, 117–131 (2017)

    Google Scholar 

  3. Zhang, H., Wang, J.: State estimation of discrete-time Takagi–Sugeno fuzzy systems in a network environment. IEEE Trans. Cybern. 45(8), 1525–1536 (2014)

    Google Scholar 

  4. Brindha, M., Mendiratta, J.-K.: Networked control system-A survey. Int. J. Mod. Edu. Comput. Sci. 5(6), 42 (2013)

    Google Scholar 

  5. Zhang, D., Shi, P., Wang, Q.-G., et al.: Analysis and synthesis of networked control systems: a survey of recent advances and challenges. ISA Trans. 66, 376–392 (2017)

    Google Scholar 

  6. Zhang, K., Zhao, T., Dian, S.: Dynamic output feedback control for nonlinear networked control systems with a two-terminal event-triggered mechanism. Nonlinear Dyn. 100, 2537–2555 (2020)

    Google Scholar 

  7. Cao, L., Li, H., Dong, G., et al.: Event-triggered control for multiagent systems with sensor faults and input saturation. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2938216

  8. Ding, S., Xie, X., Liu, Y., et al.: Event-triggered static/dynamic feedback control for discrete-time linear systems. Inf. Sci. (2020). https://doi.org/10.1016/j.ins.2020.03.044

    Article  MathSciNet  Google Scholar 

  9. Ding, S., Wang, Z.: Event-triggered synchronization of discrete-time neural networks: a switching approach. Neural Netw. 125, 31–40 (2020)

    MATH  Google Scholar 

  10. Guerra, T.-M., Sala, A., Tanaka, K.: Fuzzy control turns 50: 10 years later. Fuzzy Sets Syst. 281, 168–182 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Chang, X.-H.: Robust nonfragile \( H_\infty \) filtering of fuzzy systems with linear fractional parametric uncertainties. IEEE Trans. Fuzzy Syst. 20(6), 1001–1011 (2012)

    Google Scholar 

  12. Xie, X., Yue, D., Park, J.-H.: Observer-based state estimation of discrete-time fuzzy systems based on a joint switching mechanism for adjacent instants. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2917929

  13. Su, X., Shi, P., Wu, L., et al.: Fault detection filtering for nonlinear switched stochastic systems. IEEE Trans. Autom. Control 61(5), 1310–1315 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Wang, L., Lam, H.-K.: A new approach to stability and stabilization analysis for continuous-time Takagi–Sugeno fuzzy systems with time delay. IEEE Trans. Fuzzy Syst. 26(4), 2460–2465 (2017)

    Google Scholar 

  15. Li, X.-J., Yang, G.-H.: Fault detection in finite frequency domain for Takagi–Sugeno fuzzy systems with sensor faults. IEEE Trans. Cybern. 44(8), 1446–1458 (2013)

    Google Scholar 

  16. Qiu, J., Gao, H., Ding, S.-X.: Recent advances on fuzzy-model-based nonlinear networked control systems: a survey. IEEE Trans. Ind. Electron. 63(2), 1207–1217 (2015)

    Google Scholar 

  17. Zhao, T., Huang, M., Dian, S.: Robust stability and stabilization conditions for nonlinear networked control systems with network-induced delay via TS fuzzy model. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2955054

    Article  Google Scholar 

  18. Hu, S., Yue, D., Peng, C., et al.: Event-triggered controller design of nonlinear discrete-time networked control systems in TS fuzzy model. Appl. Soft Comput. 30, 400–411 (2015)

    Google Scholar 

  19. Wang, S., Jiang, Y., Li, Y., et al.: Fault detection and control co-design for discrete-time delayed fuzzy networked control systems subject to quantization and multiple packet dropouts. Fuzzy Sets Syst. 306, 1–25 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Wang, H., Shi, P., Zhang, J.: Event-triggered fuzzy filtering for a class of nonlinear networked control systems. Signal Process. 113, 159–168 (2015)

    Google Scholar 

  21. Lam, H.-K., Seneviratne, L.-D.: Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 38(3), 617–628 (2008)

    Google Scholar 

  22. Zadeh, L.-A.: The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 8(3), 199–249 (1975)

    MathSciNet  MATH  Google Scholar 

  23. Mendel, J.-M., John, R.-I.-B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)

    Google Scholar 

  24. Castillo, O., Melin, P., Kacprzyk, J., et al.: Type-2 fuzzy logic: theory and applications. In: IEEE International Conference on Granular Computing (GRC 2007). IEEE (2007). https://doi.org/10.1007/978-3-540-76284-3

  25. Hagras, H.-A.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2004)

    Google Scholar 

  26. Liang, Q., Mendel, J.-M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Google Scholar 

  27. Du, Z., Kao, Y., Zhao, X., et al.: An input delay approach to interval type-2 fuzzy exponential stabilization for nonlinear unreliable networked sampled-data control systems. IEEE Trans. Syst. Man Cybern Syst. (2019). https://doi.org/10.1109/TSMC.2019.2930473

  28. Du, Z., Kao, Y., Park, J.-H., et al.: New results for sampled-data control of interval type-2 fuzzy nonlinear systems. J. Frankl. Inst. Eng. Appl. Math. 357(1), 121–141 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Du, Z., Yan, Z., Zhao, Z., et al.: Interval type-2 fuzzy tracking control for nonlinear systems via sampled-data controller. Fuzzy Sets Syst. 356(1), 92–112 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Zhao, T., Chen, C., Dian, S.: Local stability and stabilization of uncertain nonlinear systems with two additive time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 83, 105097 (2020)

    MathSciNet  Google Scholar 

  31. Li, H., Yin, S., Pan, Y., et al.: Model reduction for interval type-2 Takagi–Sugeno fuzzy systems. Automatica 61, 308–314 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Pan, Y., Yang, G.-H.: Event-triggered fuzzy control for nonlinear networked control systems. Fuzzy Sets Syst. 329, 91–107 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Li, H., Wu, C., Jing, X., et al.: Fuzzy tracking control for nonlinear networked systems. IEEE Trans. Cybern. 47(8), 2020–2031 (2016)

    Google Scholar 

  34. Lu, Q., Shi, P., Lam, H.-K., et al.: Interval type-2 fuzzy model predictive control of nonlinear networked control systems. IEEE Trans. Fuzzy Syst. 23(6), 2317–2328 (2015)

    Google Scholar 

  35. Du, Z., Kao, Y., Karimi, H.-R., et al.: Interval type-2 fuzzy sampled-data \( H_ {\infty } \) control for nonlinear unreliable networked control systems. IEEE Trans. Fuzzy Syst. 28(7), 1434–1448 (2020)

    Google Scholar 

  36. Ding, D., Han, Q.-L., Xiang, Y., et al.: A survey on security control and attack detection for industrial cyber-physical systems. Neurocomputing 275, 1674–1683 (2018)

    Google Scholar 

  37. Mousavinejad, E., Yang, F., Han, Q.-L., et al.: A novel cyber attack detection method in networked control systems. IEEE Trans. Cybern. 48(11), 3254–3264 (2018)

    Google Scholar 

  38. Yılmaz, E.-N., Gönen, S.: Attack detection/prevention system against cyber attack in industrial control systems. Comput. Secur. 77, 94–105 (2018)

    Google Scholar 

  39. Liu, J., Yin, T., Xie, X., et al.: Event-triggered state estimation for T-S fuzzy neural networks with stochastic cyber-attacks. Int. J. Fuzzy Syst. 21(2), 532–544 (2019)

    MathSciNet  Google Scholar 

  40. Liu, J., Wei, L., Xie, X., et al.: Quantized stabilization for T–S fuzzy systems with hybrid-triggered mechanism and stochastic cyber-attacks. IEEE Trans. Fuzzy Syst. 26(6), 3820–3834 (2018)

    Google Scholar 

  41. An, L., Yang, G.-H.: Decentralized adaptive fuzzy secure control for nonlinear uncertain interconnected systems against intermittent dos attacks. IEEE Trans. Cybern. 49(3), 827–838 (2018)

    Google Scholar 

  42. Park, M.-J., Kwon, O.-M.: Stability and stabilization of discrete-time T–S fuzzy systems with time-varying delay via Cauchy–Schwartz-based summation inequality. IEEE Trans. Fuzzy Syst. 25(1), 128–140 (2016)

    Google Scholar 

  43. Zhang, X.-M., Han, Q.-L., Seuret, A., Gouaisbaut, F.: An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay. Automatica 84(1), 221–226 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Yang, X., Wu, L., Lam, H.-K., et al.: Stability and stabilization of discrete-time T–S fuzzy systems with stochastic perturbation and time-varying delay. IEEE Trans. Fuzzy Syst. 22(1), 124–138 (2013)

    Google Scholar 

  45. Li, X.-H., Ye, D.: Asynchronous event-triggered control for networked interval type-2 fuzzy systems against DoS attacks. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2975495

    Article  Google Scholar 

  46. Zhang, Z.-N., Niu, Y.-G., Cao, Z.-R., et al.: Security sliding mode control of interval type-2 fuzzy systems subject to cyber attacks: the stochastic communication protocol case. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2972785

  47. Zhang, Z.-N., Niu, Y.-G., Song, J.: Input-to-state stabilization of interval type-2 fuzzy systems subject to cyberattacks: an observer-based adaptive sliding mode approach. IEEE Trans. Fuzzy Syst. 28(1), 190–203 (2020)

    Google Scholar 

  48. Han, S.-Y., Kommuri, S.-K., Lee, S.: Affine transformed IT2 fuzzy event-triggered control under deception attacks. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2999779

    Article  Google Scholar 

  49. Li, H., Sun, X., Wu, L., et al.: State and output feedback control of interval type-2 fuzzy systems with mismatched membership functions. IEEE Trans. Fuzzy Syst. 23(6), 1943–1957 (2015)

    Google Scholar 

  50. Lam, H.-K., Li, H., Deters, C., et al.: Control design for interval type-2 fuzzy systems under imperfect premise matching. IEEE Trans. Ind. Electron. 61(2), 956–968 (2013)

    Google Scholar 

  51. Zhao, T., Dian, S.: State feedback control for interval type-2 fuzzy systems with time-varying delay and unreliable communication links. IEEE Trans. Fuzzy Syst. 26(2), 951–966 (2018)

    Google Scholar 

  52. Wu, L., Su, X., Shi, P.: Fuzzy Control Systems with Time-Delay and Stochastic Perturbation. Springer, Berlin (2015)

    MATH  Google Scholar 

  53. Lam, H.-K., Leung, F.-H.-F.: Stability analysis of fuzzy control systems subject to uncertain grades of membership. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 35(6), 1322–1325 (2005)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61703291) and Sichuan Science and Technology Program (2020YFG0115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songyi Dian.

Ethics declarations

Conflicts of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof

Define the following Lyapunov–Krasovskii functional

$$\begin{aligned} V(k) = \sum \limits _{i = 1}^{3} {{V_i}(k)} \end{aligned}$$
(38)

where

$$\begin{aligned} {V_1}(k)&= {\varvec{x}^T}(k){\varvec{P}_1}(k)\varvec{x}(k),\\ {V_2}(k)&= \sum _{l = k - {d_1}}^{k - 1} {{\varvec{x}^T}(l){\varvec{R}_1}\varvec{x}(l)} + \sum \limits _{l = k - {d_2}}^{k - {d_1} - 1} {{\varvec{x}^T}(l){\varvec{R}_2}\varvec{x}(l)} \\&\quad + \sum _{l = k - {\tau _1}}^{k - 1} {{\varvec{x}^T}(l){\varvec{R}_3}\varvec{x}(l)} + \sum \limits _{l = k - {\tau _2}}^{k - {\tau _1} - 1} {{\varvec{x}^T}(l){\varvec{R}_4}\varvec{x}(l)},\\ {V_{3}}(k)&= {d_1}\sum _{s = - {d_1}}^{ - 1} {\sum _{l = k + s}^{k - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_1}\Delta \varvec{x}(l)} } \\&\quad + {d_{12}}\sum _{s = - {d_2}}^{ - {d_1} - 1} {\sum _{l = k + s}^{k - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_2}\Delta \varvec{x}(l)} }\\&\quad + {\tau _1}\sum _{s = - {\tau _1}}^{ - 1} {\sum _{l = k + s}^{k - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_{3}}\Delta \varvec{x}(l)} } \\&\quad + {\tau _{12}}\sum _{s = - {\tau _2}}^{ - {\tau _1} - 1} {\sum _{l = k + s}^{k - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_{4}}\Delta \varvec{x}(l)} } \end{aligned}$$

with \({\varvec{P}_1}(k) = \sum _{i = 1}^p {{\omega _i}(\varvec{{\tilde{\theta }}} (k))} {\varvec{P}_{1i}}\) and \(\Delta \varvec{x}(k) = \varvec{x}(k + 1) - \varvec{x}(k)\).

For the convenience of representation, the following auxiliary variable is defined:

$$\begin{aligned}&{\varvec{\xi } ^T}(k) = \bigg [\begin{array}{ll} {\begin{array}{ll} {{\varvec{x}^T}(k)}&{{\varvec{x}^T}(k - {\tau _1})} \end{array}}&{\begin{array}{ll} {{\varvec{x}^T}(k - {\tau _{2}})}&\ldots \end{array}} \end{array}\nonumber \\&\begin{array}{ll} {\begin{array}{ll} {{\varvec{x}^T}(k - {d_{1}})}&{{\varvec{x}^T}(k - {d_2})} \end{array}}&{\begin{array}{ll} {{\varvec{g}^T}(k - \tau (k))}&\ldots \end{array}} \end{array}\nonumber \\&\begin{array}{ll} {\begin{array}{ll} {{\varvec{f}^T}(k - d(k))}&{{\varvec{x}^T}(k - \tau (k))} \end{array}}&{\begin{array}{ll} {{\varvec{x}^T}(k - d(k))}&\ldots \end{array}} \end{array}\nonumber \\&\begin{array}{lll} {\frac{1}{{{\tau _1} + 1}}\sum \limits _{j = k - {\tau _1}}^k {{\varvec{x}^T}(j)} }&{\frac{1}{{\tau (k) - {\tau _1} + 1}}\sum \limits _{j = k - \tau (k)}^{k - {\tau _1}} {{\varvec{x}^T}(j)} }&\ldots \end{array}\nonumber \\&\begin{array}{lll} {\frac{1}{{{\tau _{2}} - \tau (k) + 1}}\sum \limits _{j = k - {\tau _{2}}}^{k - \tau (k)} {{\varvec{x}^T}(j)} }&{\frac{1}{{{d_1} + 1}}\sum \limits _{j = k - {d_1}}^k {{\varvec{x}^T}(j)} }&\ldots \end{array}\nonumber \\&\begin{array}{lll} {\frac{1}{{d(k) - {d_1} + 1}}\sum \limits _{j = k - d(k)}^{k - {d_1}} {{\varvec{x}^T}(j)} }&{\frac{1}{{{d_{2}} - d(k) + 1}}\sum \limits _{j = k - {d_{2}}}^{k - d(k)} {{\varvec{x}^T}(j)} } \end{array}\bigg ] \end{aligned}$$
(39)

From (38), we have

$$\begin{aligned} \Delta {V_1}(k)&= \varvec{E}\left\{ {{V_1}(k + 1) - {V_1}(k)} \right\} \nonumber \\&= \varvec{E}\left\{ {{\varvec{x}^T}(k + 1){\varvec{P}_1}(k + 1)\varvec{x}(k + 1)} \right. \nonumber \\&\quad \left. { - {\varvec{x}^T}(k){\varvec{P}_1}(k)\varvec{x}(k)} \right\} \nonumber \\&= {\varvec{x}^T}(k)\left[ {{{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k)){\varvec{P}_1}(k + 1){\mathbf {A}}(\varvec{{\tilde{\theta }}} (k)) - {\varvec{P}_1}(k)} \right. \nonumber \\&\quad + \left( {1 - \bar{\alpha } } \right) \left( {1 - {\bar{\beta }} } \right) {\varvec{K}^T}(\varvec{{\hat{\theta }}} (k)){{\mathbf {B}}^T}(\varvec{{\tilde{\theta }}} (k)){\varvec{P}_1}(k + 1)\nonumber \\&\quad \times {\mathbf {B}}(\varvec{{\tilde{\theta }}} (k))\varvec{K}(\varvec{{\hat{\theta }}} (k))\nonumber \\&\quad + {\textit{sym}}{\left\{ {\left( {1 - \bar{\alpha } } \right) \left( {1 - {\bar{\beta }} } \right) {{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k)){\varvec{P}_1}(k + 1)} \right. }\nonumber \\&\quad \times \left. {\left. {{\mathbf {{B}}}(\varvec{{\tilde{\theta }}} (k))\varvec{K}(\varvec{{\hat{\theta }}} (k))} \right\} } \right] x(k)\nonumber \\&\quad + \textit{sym}\left\{ {{\varvec{x}^T}(k)\left[ {\left. {{\bar{\beta }} {{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k)){\varvec{P}_1}(k + 1){\mathbf {B}}(\varvec{{\tilde{\theta }}} (k))} \right] } \right. } \right. \nonumber \\&\quad \times \left. {\varvec{g}(k - \tau (k))} \right\} \nonumber \\&\quad + \textit{sym}\left\{ {{\varvec{x}^T}(k)\left[ {\bar{\alpha } \left( {1 - {\bar{\beta }} } \right) {{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k)){\varvec{P}_1}(k + 1)} \right. } \right. \nonumber \\&\quad \left. {\left. { \times {\mathbf {B}}(\varvec{{\tilde{\theta }}} (k))\varvec{K}(\varvec{{\hat{\theta }}} (k))} \right] \varvec{f}(k - d(k))} \right\} \nonumber \\&\quad + {\varvec{g}^T}(k - \tau (k))\left[ {\left. {{\bar{\beta }} {{\mathbf {B}}^T}(\varvec{{\tilde{\theta }}} (k)){\varvec{P}_1}(k + 1){\mathbf {B}}(\varvec{{\tilde{\theta }}} (k))} \right] } \right. \nonumber \\&\quad \times \varvec{g}(k - \tau (k))\nonumber \\&\quad + {\varvec{f}^T}(k - d(k)){\left[ {\bar{\alpha } \left( {1 - {\bar{\beta }} } \right) {\varvec{K}^T}(\varvec{{\hat{\theta }}} (k)){{\mathbf {B}}^T}(\varvec{{\tilde{\theta }}} (k))} \right. }\nonumber \\&\quad \times {\left. {{\varvec{P}_1}(k + 1){\mathbf {B}}(\varvec{{\tilde{\theta }}} (k))\varvec{K}(\varvec{{\hat{\theta }}} (k))} \right] }\varvec{f}(k - d(k)) \end{aligned}$$
(40)
$$\begin{aligned} \Delta {V_2}(k)&= \varvec{E}\left\{ {{V_2}(k + 1) - {V_2}(k)} \right\} \nonumber \\&= {\varvec{x}^T}(k){\varvec{R}_1}\varvec{x}(k) - {\varvec{x}^T}(k - {d_1})\nonumber \\&\quad \left( {{\varvec{R}_1} - {\varvec{R}_2}} \right) \varvec{x}(k - {d_1})\nonumber \\&\quad - {\varvec{x}^T}(k - {d_2}){\varvec{R}_2}\varvec{x}(k - {d_2})\nonumber \\&\quad + {\varvec{x}^T}(k){\varvec{R}_3}\varvec{x}(k) - {\varvec{x}^T}(k - {\tau _1})\nonumber \\&\quad \left( {{\varvec{R}_3} - {\varvec{R}_4}} \right) \varvec{x}(k - {\tau _1})\nonumber \\&\quad - {\varvec{x}^T}(k - {\tau _2}){\varvec{R}_{4}}\varvec{x}(k - {\tau _2}) \end{aligned}$$
(41)
$$\begin{aligned}&\Delta {V_3}(k) = \varvec{E}\left\{ {{V_3}(k + 1) - {V_3}(k)} \right\} \nonumber \\&\quad = \varvec{E}\left\{ {{d_1}^2\Delta {\varvec{x}^T}(k){\varvec{S}_1}\Delta \varvec{x}(k)} \right\} \nonumber \\&\qquad - {d_1}\sum \limits _{l = k - {d_1}}^{k - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_1}\Delta \varvec{x}(l)}\nonumber \\&\qquad + \varvec{E}\left\{ {{d_{12}}^2\Delta {\varvec{x}^T}(k){\varvec{S}_2}\Delta \varvec{x}(k)} \right\} \nonumber \\&\qquad - {d_{12}}\sum \limits _{l = k - {d_2}}^{k - {d_1} - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_2}\Delta \varvec{x}(l)}\nonumber \\&\qquad + \varvec{E}\left\{ {{\tau _1}^2\Delta {\varvec{x}^T}(k){\varvec{S}_3}\Delta \varvec{x}(k)} \right\} \nonumber \\&\qquad - {\tau _1}\sum \limits _{l = k - {\tau _1}}^{k - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_3}\Delta \varvec{x}(l)} \nonumber \\&\qquad + \varvec{E}\left\{ {{\tau _{12}}^2\Delta {\varvec{x}^T}(k){\varvec{S}_4}\Delta \varvec{x}(k)} \right\} \nonumber \\&\qquad - {\tau _{12}}\sum \limits _{l = k - {\tau _2}}^{k - {\tau _1} - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_4}\Delta \varvec{x}(l)} \nonumber \\&\quad = {\varvec{x}^T}(k)\left[ {{{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k))\varvec{\bar{S}}{\mathbf {A}}(\varvec{{\tilde{\theta }}} (k)) + \varvec{\bar{S}}} \right. \nonumber \\&\qquad + \left( {1 - \bar{\alpha } } \right) \left( {1 - {\bar{\beta }} } \right) {\varvec{K}^T}(\varvec{{\hat{\theta }}} (k)){{\mathbf {B}}^T}(\varvec{{\tilde{\theta }}} (k))\varvec{\bar{S}}{\mathbf {B}}(\varvec{{\tilde{\theta }}} (k))\varvec{K}(\varvec{{\hat{\theta }}} (k))\nonumber \\&\qquad + \textit{sym}\left\{ {\left( {1 - \bar{\alpha } } \right) \left( {1 - {\bar{\beta }} } \right) {{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k))\varvec{\bar{S}}{\mathbf {B}}(\varvec{{\tilde{\theta }}} (k))\varvec{K}(\varvec{{\hat{\theta }}} (k))} \right\} \nonumber \\&\qquad - \textit{sym}\left\{ {\left( {1 - \bar{\alpha } } \right) \left( {1 - {\bar{\beta }} } \right) {\varvec{K}^T}(\varvec{{\hat{\theta }}} (k)){{\mathbf {B}}^T}(\varvec{{\tilde{\theta }}} (k))\varvec{\bar{S}}} \right\} \nonumber \\&\qquad \left. { - \textit{sym}\left\{ {{{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k))\varvec{\bar{S}}} \right\} } \right] \varvec{x}(k)\nonumber \\&\qquad + \textit{sym}\left\{ {{\varvec{x}^T}(k)\left[ {\left. {{\bar{\beta }} \left( {{{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k)) - \varvec{I}} \right) \varvec{\bar{S}}{\mathbf {B}}(\varvec{{\tilde{\theta }}} (k))} \right] } \right. \varvec{g}(k - \tau (k))} \right\} \nonumber \\&\qquad + \textit{sym}\left\{ {{\varvec{x}^T}(k)\left[ {\bar{\alpha } \left( {1 - {\bar{\beta }} } \right) \left( {{{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k)) - \varvec{I}} \right) \varvec{\bar{S}}{\mathbf {B}}(\varvec{{\tilde{\theta }}} (k)) } \right. } \right. \nonumber \\&\qquad \times \left. {\left. {\varvec{K}(\varvec{{\hat{\theta }}} (k))} \right] \varvec{f}(k - d(k))} \right\} \nonumber \\&\qquad + {\varvec{f}^T}(k - d(k))\left[ {\bar{\alpha } \left( {1 - {\bar{\beta }} } \right) {\varvec{K}^T}(\varvec{{\hat{\theta }}} (k)){{\mathbf {B}}^T}(\varvec{{\tilde{\theta }}} (k))\varvec{\bar{S}} } \right. \nonumber \\&\qquad \times \left. {{\mathbf {B}}(\varvec{{\tilde{\theta }}} (k))\varvec{K}(\varvec{{\hat{\theta }}} (k))} \right] \varvec{f}(k - d(k))\nonumber \\&\qquad - {d_1}\sum \limits _{l = k - {d_1}}^{k - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_1}\Delta \varvec{x}(l)}\nonumber \\&\qquad - {d_{12}}\sum \limits _{l = k - {d_2}}^{k - {d_1} - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_2}\Delta \varvec{x}(l)} \nonumber \\&\qquad - {\tau _1}\sum \limits _{l = k - {\tau _1}}^{k - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_3}\Delta \varvec{x}(l)}\nonumber \\&\qquad - {\tau _{12}}\sum \limits _{l = k - {\tau _2}}^{k - {\tau _1} - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_4}\Delta \varvec{x}(l)} \end{aligned}$$
(42)

where \(\varvec{\bar{S}} = {d_1}^2{\varvec{S}_1} + {d_{12}}^2{\varvec{S}_2} + {\tau _1}^2{\varvec{S}_3} + {\tau _{12}}^2{\varvec{S}_4}\).

Based on the assumptions of network attacks in (18), we have

$$\begin{aligned}&\bar{\alpha } {\varvec{x}^T}(k - d(k)){\varvec{U}_1}^T{\varvec{U}_1}\varvec{x}(k - d(k))\nonumber \\&\quad - \bar{\alpha } {\varvec{f}^T}(\varvec{x}(k - d(k)))\varvec{f}(\varvec{x}(k - d(k))) \ge 0 \end{aligned}$$
(43)
$$\begin{aligned}&{\bar{\beta }} {\varvec{x}^T}(k - \tau (k)){\varvec{U}_2}^T{\varvec{U}_2}\varvec{x}(k - \tau (k))\nonumber \\&\quad - {\bar{\beta }} {\varvec{g}^T}(\varvec{x}(k - \tau (k)))\varvec{g}(\varvec{x}(k - \tau (k))) \ge 0 \end{aligned}$$
(44)

Based on (40), (41), (42), (43) and (44), we have

$$\begin{aligned}&\Delta V(k) = \sum \limits _{i = 1}^3 {\Delta {V_i}(k)}\nonumber \\&\quad \le {\varvec{\xi } ^T}(k)\left[ {{\varvec{\eta } ^T}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))\varvec{\bar{P}}(k + 1)\varvec{\eta } (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))} \right. \nonumber \\&\qquad + {\varvec{\eta } ^T}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))\varvec{\bar{\bar{S}}}\varvec{\eta } (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))\nonumber \\&\qquad - {\varvec{e}_1}^T{\varvec{P}_1}(k){\varvec{e}_1}- d(k){\varvec{e}_1}^T{\varvec{P}_{2}}(k){\varvec{e}_1}^T\nonumber \\&\qquad - \tau (k){\varvec{e}_1}^T{\varvec{P}_{3}}(k){\varvec{e}_1}^T\nonumber \\&\qquad + {\varvec{e}_1}^T\varvec{\bar{S}}{\varvec{e}_1}\nonumber \\&\qquad - \textit{sym}\bigg \{ ({1 - \bar{\alpha }})( {1 - {\bar{\beta }}}){\varvec{e}_1}^T{\varvec{K}^T}(\varvec{{\hat{\theta }}} (k))\nonumber \\&\qquad \qquad \quad \qquad {{\mathbf {B}}^T}(\varvec{{\tilde{\theta }}} (k))\varvec{\bar{S}}{\varvec{e}_1} \bigg \}\nonumber \\&\qquad - \textit{sym}\left\{ {{\varvec{e}_1}^T{{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k))\varvec{\bar{S}}{\varvec{e}_1}} \right\} \nonumber \\&\qquad - \textit{sym}\left\{ {\left. {{\bar{\beta }} {\varvec{e}_1}^T\varvec{\bar{S}}{\mathbf {B}}(\varvec{{\tilde{\theta }}} (k)){\varvec{e}_6}} \right] } \right\} \nonumber \\&\qquad - \textit{sym}\left\{ {{\varvec{e}_1}^T\bar{\alpha } \left( {1 - {\bar{\beta }} } \right) \varvec{\bar{S}}{\mathbf {B}}(\varvec{{\tilde{\theta }}} (k))\varvec{K}(\varvec{{\hat{\theta }}} (k)){\varvec{e}_7}} \right\} \nonumber \\&\qquad + {\varvec{e}_1}^T\left( {{\varvec{R}_1} + {\varvec{R}_3}} \right) {\varvec{e}_1} - {\varvec{e}_4}^T\left( {{\varvec{R}_1} - {\varvec{R}_2}} \right) {\varvec{e}_4}\nonumber \\&\qquad - {\varvec{e}_{5}}^T{\varvec{R}_2}{\varvec{e}_{5}}\nonumber \\&\qquad - {\varvec{e}_{2}}^T\left( {{\varvec{R}_3} - {\varvec{R}_4}} \right) {\varvec{e}_{2}}+ \bar{\alpha } {\varvec{e}_9}^T{\varvec{U}_1}^T{\varvec{U}_1}{\varvec{e}_9}- \bar{\alpha } {\varvec{e}_7}^T{\varvec{e}_7}\nonumber \\&\qquad + {\bar{\beta }} {\varvec{e}_8}^T{\varvec{U}_2}^T{\varvec{U}_2}{\varvec{e}_8}- {\bar{\beta }} {\varvec{e}_6}^T{\varvec{e}_6}\left. { - {\varvec{e}_{3}}^T{\varvec{R}_{4}}{\varvec{e}_{3}}} \right] \varvec{\xi } (k)\nonumber \\&\qquad - {d_1}\sum \limits _{l = k - {d_1}}^{k - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_1}\Delta \varvec{x}(l)} \nonumber \\&\qquad - {d_{12}}\sum \limits _{l = k - {d_2}}^{k - {d_1} - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_2}\Delta \varvec{x}(l)} \nonumber \\&\qquad - {\tau _1}\sum \limits _{l = k - {\tau _1}}^{k - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_3}\Delta \varvec{x}(l)}\nonumber \\&\qquad - {\tau _{12}}\sum \limits _{l = k - {\tau _2}}^{k - {\tau _1} - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_4}\Delta \varvec{x}(l)} \end{aligned}$$
(45)

where

$$\begin{aligned}&\varvec{\bar{P}}(k + 1) = \textit{diag}\left\{ {{\bar{\beta }} {\varvec{P}_1}(k + 1),(1 - {\bar{\beta }} )\bar{\alpha } {\varvec{P}_1}(k + 1),} \right. \\&\qquad \qquad \qquad \qquad \qquad \left. {(1 - {\bar{\beta }} )(1 - \bar{\alpha } ){\varvec{P}_1}(k + 1)} \right\} ,\\&\varvec{\bar{\bar{S}}} = \textit{diag}\left\{ {{\bar{\beta }} \varvec{\bar{S}},(1 - {\bar{\beta }} )\bar{\alpha } \varvec{\bar{S}},(1 - {\bar{\beta }} )(1 - \bar{\alpha } )\varvec{\bar{S}}} \right\} ,\\&\varvec{\eta } (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k)) = \left[ {\begin{array}{ll} {{\varvec{e}_1}^T{{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k)) + {\varvec{e}_6}^T{{\mathbf {B}}^T}(\varvec{{\tilde{\theta }}} (k))}&\ldots \end{array}} \right. \\&\qquad \qquad {\begin{array}{ll} {{\varvec{e}_1}^T{{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k)) + {\varvec{e}_7}^T{\varvec{K}^T}(\varvec{{\hat{\theta }}} (k)){{\mathbf {B}}^T}(\varvec{{\tilde{\theta }}} (k))}&\ldots \end{array}}\\&\qquad \qquad {\left. {{\varvec{e}_1}^T{{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k)) + {\varvec{e}_1}^T{\varvec{K}^T}(\varvec{{\hat{\theta }}} (k)){{\mathbf {B}}^T}(\varvec{{\tilde{\theta }}} (k))} \right] ^T}. \end{aligned}$$

Using Lemmas 1 and 2 for the summation terms in (45), we have

$$\begin{aligned}&- {d_1}\sum \limits _{l = k - {d_1}}^{k - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_1}\Delta \varvec{x}(l)}\nonumber \\&\le - {\varvec{\xi } ^T}(k)\left[ {{\varvec{\prod } _{11}}^T{\varvec{S}_1}{\varvec{\prod } _{11}} + 3{\varvec{\prod } _{12}}^T{\varvec{S}_1}{\varvec{\prod } _{12}}} \right] \varvec{\xi } (k) \end{aligned}$$
(46)
$$\begin{aligned}&\quad - {d_{12}}\sum \limits _{l = k - {d_2}}^{k - {d_1} - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_2}\Delta \varvec{x}(l)} \nonumber \\&= - {d_{12}}\sum \limits _{l = k - {d_2}}^{k - d(k) - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_2}\Delta \varvec{x}(l)} \nonumber \\&\quad - {d_{12}}\sum \limits _{l = k - d(k)}^{k - {d_1} - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_2}\Delta \varvec{x}(l)}\nonumber \\&\le - \frac{{{d_{12}}}}{{{d_2} - d(k)}}{\varvec{\xi } ^T}(k)\left[ {{\varvec{\prod } _{{21}}}^T{\varvec{S}_{2}}{\varvec{\prod } _{{21}}} + 3{\varvec{\prod } _{{22}}}^T{\varvec{S}_{2}}{\varvec{\prod } _{{22}}}} \right] \varvec{\xi } (k)\nonumber \\&\quad - \frac{{{d_{12}}}}{{d(k) - {d_{1}}}}{\varvec{\xi } ^T}(k)\left[ {{\varvec{\prod } _{{23}}}^T{\varvec{S}_{2}}{\varvec{\prod } _{{23}}} + 3{\varvec{\prod } _{{24}}}^T{\varvec{S}_{2}}{\varvec{\prod } _{{24}}}} \right] \varvec{\xi } (k)\nonumber \\&\le - {\varvec{\xi } ^T}(k)\left[ {{\varvec{\prod } _{{21}}}^T\left( {{\varvec{S}_{2}}+\frac{{d(k) - {d_{1}}}}{{{d_{12}}}}\left( {{\varvec{S}_{2}} - {\varvec{Y}_{1}}{\varvec{S}_{2}}^{ - 1}{\varvec{Y}_{1}}^T} \right) } \right) {\varvec{\prod } _{{21}}}} \right. \nonumber \\&\quad +{\varvec{\prod } _{{23}}}^T\left( {{\varvec{S}_{2}}+\frac{{{d_2} - d(k)}}{{{d_{12}}}}\left( {{\varvec{S}_{2}} - {\varvec{Y}_{2}}{\varvec{S}_{2}}^{ - 1}{\varvec{Y}_{2}}^T} \right) } \right) {\varvec{\prod } _{{23}}}\nonumber \\&\quad +\textit{sym}\left\{ {{\varvec{\prod } _{{21}}}^T\left( {\frac{{{d_2} - d(k)}}{{{d_{12}}}}{\varvec{Y}_{1}} + \frac{{d(k) - {d_1}}}{{{d_{12}}}}{\varvec{Y}_{2}}} \right) {\varvec{\prod } _{{23}}}} \right\} \nonumber \\&\quad +{\varvec{\prod } _{{22}}}^T\left( {3{\varvec{S}_{2}}+\frac{{d(k) - {d_{1}}}}{{{d_{12}}}}\left( {3{\varvec{S}_{2}} - {\varvec{Y}_{3}}\frac{{{\varvec{S}_{2}}^{ - 1}}}{3}{\varvec{Y}_{3}}^T} \right) } \right) {\varvec{\prod } _{{22}}}\nonumber \\&\quad +{\varvec{\prod } _{{24}}}^T\left( {{3}{\varvec{S}_{2}}+\frac{{{d_2} - d(k)}}{{{d_{12}}}}\left( {{3}{\varvec{S}_{2}} - {\varvec{Y}_{4}}\frac{{{\varvec{S}_{2}}^{ - 1}}}{3}{\varvec{Y}_{4}}^T} \right) } \right) {\varvec{\prod } _{{24}}}\nonumber \\&\quad + \textit{sym}\left\{ {{\varvec{\prod } _{{22}}}^T\left( {\frac{{{d_2} - d(k)}}{{{d_{12}}}}{\varvec{Y}_{3}}} \right. } \right. \nonumber \\&\quad \qquad \qquad {\left. {\left. {\left. { + \frac{{d(k) - {d_1}}}{{{d_{12}}}}{\varvec{Y}_{4}}} \right) {\varvec{\prod } _{{24}}}} \right\} } \right] \varvec{\xi } (k)} \end{aligned}$$
(47)
$$\begin{aligned}&- {\tau _1}\sum \limits _{l = k - {\tau _1}}^{k - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_3}\Delta \varvec{x}(l)}\nonumber \\&\quad \le - {\varvec{\xi } ^T}(k)\left[ {{\varvec{\prod } _{31}}^T{\varvec{S}_3}{\varvec{\prod } _{31}} + 3{\varvec{\prod } _{32}}^T{\varvec{S}_3}{\varvec{\prod } _{32}}} \right] \varvec{\xi } (k) \end{aligned}$$
(48)
$$\begin{aligned}&\quad - {\tau _{12}}\sum \limits _{l = k - {\tau _2}}^{k - {\tau _1} - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_4}\Delta \varvec{x}(l)} \nonumber \\&= - {\tau _{12}}\sum \limits _{l = k - {\tau _2}}^{k - \tau (k) - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_2}\Delta \varvec{x}(l)} \nonumber \\&\quad - {\tau _{12}}\sum \limits _{l = k - \tau (k)}^{k - {\tau _1} - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_2}\Delta \varvec{x}(l)}\nonumber \\&\le - \frac{{{\tau _{12}}}}{{{\tau _2} - \tau (k)}}{\xi ^T}(k)\left[ {{\varvec{\prod } _{{41}}}^T{\varvec{S}_{4}}{\varvec{\prod } _{{41}}} + 3{\varvec{\prod } _{{42}}}^T{\varvec{S}_{4}}{\varvec{\prod } _{{42}}}} \right] \varvec{\xi } (k)\nonumber \\&\quad - \frac{{{\tau _{12}}}}{{\tau (k) - {\tau _{1}}}}{\varvec{\xi } ^T}(k)\left[ {{\varvec{\prod } _{{43}}}^T{\varvec{S}_{4}}{\varvec{\prod } _{{43}}} + 3{\varvec{\prod } _{{44}}}^T{\varvec{S}_{4}}{\varvec{\prod } _{{44}}}} \right] \varvec{\xi } (k)\nonumber \\&\le - {\varvec{\xi } ^T}(k)\left[ {{\varvec{\prod } _{{41}}}^T\left( {{\varvec{S}_{4}}+\frac{{\tau (k) - {\tau _{1}}}}{{{\tau _{12}}}}\left( {{\varvec{S}_{4}}} \right. } \right. } \right. \nonumber \\&\qquad \qquad \qquad \left. {\left. { - {\varvec{Y}_{5}}{\varvec{S}_{4}}^{ - 1}{\varvec{Y}_{5}}^T} \right) } \right) {\varvec{\prod } _{{41}}}\nonumber \\&\quad +{\varvec{\prod } _{{43}}}^T\left( {{\varvec{S}_{4}}+\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}\left( {{\varvec{S}_{4}} - {\varvec{Y}_{6}}{\varvec{S}_{4}}^{ - 1}{\varvec{Y}_{6}}^T} \right) } \right) {\varvec{\prod } _{{43}}}\nonumber \\&\quad + \textit{sym}\left\{ {{\varvec{\prod } _{{41}}}^T\left( {\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{\varvec{Y}_{5}} + \frac{{\tau (k) - {\tau _1}}}{{{\tau _{12}}}}{\varvec{Y}_{6}}} \right) {\varvec{\prod } _{{43}}}} \right\} \nonumber \\&\quad + {\varvec{\prod } _{{42}}}^T\left( {3{\varvec{S}_{4}}+\frac{{\tau (k) - {\tau _{1}}}}{{{\tau _{12}}}}\left( {3{\varvec{S}_{4}} - {\varvec{Y}_{7}}\frac{{{\varvec{S}_{4}}^{ - 1}}}{3}{\varvec{Y}_{7}}^T} \right) } \right) {\varvec{\prod } _{{42}}}\nonumber \\&\quad +{\varvec{\prod } _{{44}}}^T\left( {{3}{\varvec{S}_{4}}+\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}\left( {{3}{\varvec{S}_{4}} - {\varvec{Y}_{8}}\frac{{{\varvec{S}_{4}}^{ - 1}}}{3}{\varvec{Y}_{8}}^T} \right) } \right) {\varvec{\prod } _{{44}}}\nonumber \\&\quad +\textit{sym}\left\{ {{\varvec{\prod } _{{42}}}^T\left( {\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{\varvec{Y}_{7}}} \right. } \right. \nonumber \\&\qquad \qquad \qquad {\left. {\left. {\left. { + \frac{{\tau (k) - {\tau _1}}}{{{\tau _{12}}}}{\varvec{Y}_{8}}} \right) {\varvec{\prod } _{{44}}}} \right\} } \right] \varvec{\xi } (k)} \end{aligned}$$
(49)

Based on (45), (46), (47), (48) and (49), we have

$$\begin{aligned} \Delta V(k)\le {\varvec{\xi } ^T}(k)\varvec{{\hat{\vartheta }}} (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k),\varvec{{\tilde{\theta }}} (k + 1),d(k),\tau (k))\varvec{\xi } (k) \end{aligned}$$
(50)

where

$$\begin{aligned}&\varvec{{\hat{\vartheta }}} (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k),\varvec{{\tilde{\theta }}} (k + 1),d(k),\tau (k))\\&\quad = {\varvec{\eta } ^T}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))\varvec{\bar{P}}(k + 1)\varvec{\eta } (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))\\&\qquad + {\varvec{\eta } ^T}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))\varvec{\bar{\bar{S}}}\varvec{\eta } (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))\\&\qquad + {\varvec{\bar{T}}_{1}}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k),d(k),\tau (k)) + {\varvec{\bar{T}}_{2}}(d(k),\tau (k))\\&{\varvec{\bar{T}}_{1}}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k),d(k),\tau (k))\\&\quad = - {\varvec{e}_1}^T{\varvec{P}_1}(k){\varvec{e}_1} + {\varvec{e}_1}^T\varvec{\bar{S}}{\varvec{e}_1} \nonumber \\&\qquad - \textit{sym}\left\{ {{\varvec{e}_1}^T{{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k))\varvec{\bar{S}}{\varvec{e}_1}} \right\} \\&\qquad - \textit{sym}\left\{ {{\bar{\beta }} {\varvec{e}_1}^T\varvec{\bar{S}}{\mathbf {B}}(\varvec{{\tilde{\theta }}} (k)){\varvec{e}_6}} \right\} \\&\qquad - \textit{sym}\left\{ {\left( {1 - \bar{\alpha } } \right) \left( {1 - {\bar{\beta }} } \right) {\varvec{e}_1}^T{\varvec{K}^T}(\varvec{{\hat{\theta }}} (k)){{\mathbf {B}}^T}(\varvec{{\tilde{\theta }}} (k))\varvec{\bar{S}}{\varvec{e}_1}} \right\} \\&\qquad - \textit{sym}\left\{ {{\varvec{e}_1}^T\bar{\alpha } \left( {1 - {\bar{\beta }} } \right) \varvec{\bar{S}}{\mathbf {B}}(\varvec{{\tilde{\theta }}} (k))\varvec{K}(\varvec{{\hat{\theta }}} (k)){\varvec{e}_7}} \right\} \\&\qquad - {\varvec{e}_{3}}^T{\varvec{R}_{4}}{\varvec{e}_{3}} + {\varvec{e}_1}^T\left( {{\varvec{R}_1} + {\varvec{R}_3}} \right) {\varvec{e}_1} - {\varvec{e}_4}^T\left( {{\varvec{R}_1} - {\varvec{R}_2}} \right) {\varvec{e}_4}\\&\qquad - {\varvec{e}_{5}}^T{\varvec{R}_2}{\varvec{e}_{5}}- {\varvec{e}_{2}}^T\left( {{\varvec{R}_3} - {\varvec{R}_4}} \right) {\varvec{e}_{2}}+ \bar{\alpha } {\varvec{e}_9}^T{\varvec{U}_1}^T{\varvec{U}_1}{\varvec{e}_9}\\&\qquad - \bar{\alpha } {\varvec{e}_7}^T{\varvec{e}_7}+ {\bar{\beta }} {\varvec{e}_8}^T{\varvec{U}_2}^T{\varvec{U}_2}{\varvec{e}_8}- {\bar{\beta }} {\varvec{e}_6}^T{\varvec{e}_6} - {\varvec{\prod } _{11}}^T{\varvec{S}_1}{\varvec{\prod } _{11}}\\&\qquad - 3{\varvec{\prod } _{12}}^T{\varvec{S}_1}{\varvec{\prod } _{12}} - {\varvec{\prod } _{{21}}}^T\left( {{\varvec{S}_{2}}+\frac{{d(k) - {d_{1}}}}{{{d_{12}}}}{\varvec{S}_{2}}} \right) {\varvec{\prod } _{{21}}}\\&\qquad - {\varvec{\prod } _{{23}}}^T\left( {{\varvec{S}_{2}}+\frac{{{d_2} - d(k)}}{{{d_{12}}}}{\varvec{S}_{2}}} \right) {\varvec{\prod } _{{23}}}\\&\qquad - \textit{sym}\left\{ {{\varvec{\prod } _{{21}}}^T\left( {\frac{{{d_2} - d(k)}}{{{d_{12}}}}{\varvec{Y}_{1}} + \frac{{d(k) - {d_1}}}{{{d_{12}}}}{\varvec{Y}_{2}}} \right) {\varvec{\prod } _{{23}}}} \right\} \\&\qquad - {\varvec{\prod } _{{22}}}^T\left( {3{\varvec{S}_{2}}\mathrm{{ + 3}}\frac{{d(k) - {d_{1}}}}{{{d_{12}}}}{\varvec{S}_{2}}} \right) {\varvec{\prod } _{{22}}}\\&\qquad - {\varvec{\prod } _{{24}}}^T\left( {{3}{\varvec{S}_{2}}\mathrm{{ + 3}}\frac{{{d_2} - d(k)}}{{{d_{12}}}}{\varvec{S}_{2}}} \right) {\varvec{\prod } _{{24}}}\\&\qquad - \textit{sym}\left\{ {{\varvec{\prod } _{{22}}}^T\left( {\frac{{{d_2} - d(k)}}{{{d_{12}}}}{\varvec{Y}_{3}} + \frac{{d(k) - {d_1}}}{{{d_{12}}}}{\varvec{Y}_{4}}} \right) {\varvec{\prod } _{{24}}}} \right\} \\&\qquad - {\varvec{\prod } _{31}}^T{\varvec{S}_3}{\varvec{\prod } _{31}} - 3{\varvec{\prod } _{32}}^T{\varvec{S}_3}{\varvec{\prod } _{32}}\\&\qquad - {\varvec{\prod } _{{41}}}^T\left( {{\varvec{S}_{4}}+\frac{{\tau (k) - {\tau _{1}}}}{{{\tau _{12}}}}{\varvec{S}_{4}}} \right) {\varvec{\prod } _{{41}}}\\&\qquad - {\varvec{\prod } _{{43}}}^T\left( {{\varvec{S}_{4}}+\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{\varvec{S}_{4}}} \right) {\varvec{\prod } _{{43}}}\\&\qquad - \textit{sym}\left\{ {{\varvec{\prod } _{{41}}}^T\left( {\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{\varvec{Y}_{5}} + \frac{{\tau (k) - {\tau _1}}}{{{\tau _{12}}}}{\varvec{Y}_{6}}} \right) {\varvec{\prod } _{{43}}}} \right\} \\&\qquad - {\varvec{\prod } _{{42}}}^T\left( {3{\varvec{S}_{4}}\mathrm{{ + 3}}\frac{{\tau (k) - {\tau _{1}}}}{{{\tau _{12}}}}{\varvec{S}_{4}}} \right) {\varvec{\prod } _{{42}}}\\&\qquad - {\varvec{\prod } _{{44}}}^T\left( {{3}{\varvec{S}_{4}}\mathrm{{ + 3}}\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{\varvec{S}_{4}}} \right) {\varvec{\prod } _{{44}}}\\&\qquad - \textit{sym}\left\{ {{\varvec{\prod } _{{42}}}^T\left( {\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{\varvec{Y}_{7}} + \frac{{\tau (k) - {\tau _1}}}{{{\tau _{12}}}}{\varvec{Y}_{8}}} \right) {\varvec{\prod } _{{44}}}} \right\} ,\\&{\varvec{\bar{T}}_{2}}(d(k),\tau (k))\\&\quad ={\varvec{\prod } _{{21}}}^T\left( {\frac{{d(k) - {d_{1}}}}{{{d_{12}}}}{\varvec{Y}_{1}}{\varvec{S}_{2}}^{ - 1}{\varvec{Y}_{1}}^T} \right) {\varvec{\prod } _{{21}}}\\&\qquad + {\varvec{\prod } _{{23}}}^T\left( {\frac{{{d_2} - d(k)}}{{{d_{12}}}}{\varvec{Y}_{2}}{\varvec{S}_{2}}^{ - 1}{\varvec{Y}_{2}}^T} \right) {\varvec{\prod } _{{23}}}\\&\qquad +{\varvec{\prod } _{{22}}}^T\left( {\frac{{d(k) - {d_{1}}}}{{{d_{12}}}}{\varvec{Y}_{3}}\frac{{{\varvec{S}_{2}}^{ - 1}}}{3}{\varvec{Y}_{3}}^T} \right) {\varvec{\prod } _{{22}}}\\&\qquad +{\varvec{\prod } _{{24}}}^T\left( {\frac{{{d_2} - d(k)}}{{{d_{12}}}}{\varvec{Y}_{4}}\frac{{{\varvec{S}_{2}}^{ - 1}}}{3}{\varvec{Y}_{4}}^T} \right) {\varvec{\prod } _{{24}}}\\&\qquad + {\varvec{\prod } _{{41}}}^T\left( {\frac{{\tau (k) - {\tau _{1}}}}{{{\tau _{12}}}}{\varvec{Y}_{5}}{\varvec{S}_{4}}^{ - 1}{\varvec{Y}_{5}}^T} \right) {\varvec{\prod } _{{41}}}\\&\qquad +{\varvec{\prod } _{{43}}}^T\left( {\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{\varvec{Y}_{6}}{\varvec{S}_{4}}^{ - 1}{\varvec{Y}_{6}}^T} \right) {\varvec{\prod } _{{43}}}\\&\qquad + {\varvec{\prod } _{{42}}}^T\left( {\frac{{\tau (k) - {\tau _{1}}}}{{{\tau _{12}}}}{\varvec{Y}_{7}}\frac{{{\varvec{S}_{4}}^{ - 1}}}{3}{\varvec{Y}_{7}}^T} \right) {\varvec{\prod } _{{42}}}\\&\qquad + {\varvec{\prod } _{{44}}}^T\left( {\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{\varvec{Y}_{8}}\frac{{{\varvec{S}_{4}}^{ - 1}}}{3}{\varvec{Y}_{8}}^T} \right) {\varvec{\prod } _{{44}}}. \end{aligned}$$

Define \(\varvec{\hat{G}} = {\varvec{\bar{S}}^{ - 1}}\); \({\varvec{\hat{P}}_1}(k) = \varvec{\hat{G}}{\varvec{P}_1}(k){\varvec{\hat{G}}^T}\); \({\varvec{\hat{R}}_i} = \varvec{\hat{G}}{\varvec{R}_i}{\varvec{\hat{G}}^T}\), \(i = 1,2,3,4\); \({\varvec{\hat{S}}_i} = \varvec{\varvec{\varvec{\hat{G}}}}{\varvec{S}_i}{\varvec{\hat{G}}^T}\), \(i = 1,2,3,4\); \({\varvec{\hat{Y}}_i} \in {\mathbb {R}^{n \times n}}\), \(i = 1,\ldots ,8\); \(\varvec{\bar{G}} = \left[ {\begin{array}{lllllll} {{\varvec{e}_1}^T\varvec{\hat{G}}}&\cdots&{{\varvec{e}_5}^T\varvec{\hat{G}}}&I&{{\varvec{e}_7}^T\varvec{\hat{G}}}&\cdots&{{\varvec{e}_{15}}^T\varvec{\hat{G}}} \end{array}} \right] \). Obviously, we have \(\varvec{\hat{G}} = {d_1}^2{\varvec{\hat{S}}_1} + {d_{12}}^2{\varvec{\hat{S}}_2} + {\tau _1}^2{\varvec{\hat{S}}_3} + {\tau _{12}}^2{\varvec{\hat{S}}_4}\). From the facts of \( - \varvec{\hat{G}}{\varvec{\hat{P}}_1}^{ - 1}(k + 1)\varvec{\hat{G}} \le - \varvec{\hat{G}} - \varvec{\hat{G}} + {\varvec{\hat{P}}_1}(k + 1)\) and using Schur complement to (27)–(30), we have

$$\begin{aligned} \left[ {\begin{array}{lll} {{{\varvec{\hat{\bar{T}}}}_{1}} + {{\varvec{\hat{\bar{T}}}}_{2}}}&{}{}&{} * \\ {\varvec{\hat{\Xi }} (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))}&{}{ - \varvec{\Theta } (\varvec{{\tilde{\theta }}} (k + 1))}&{}{}\\ {\varvec{\hat{\Xi }} (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))}&{}\varvec{0}&{}{ - \varvec{\hat{\bar{S}}}} \end{array}} \right] < \varvec{0} \end{aligned}$$
(51)

where

$$\begin{aligned}&{{{\varvec{\hat{\bar{T}}}}_{1}} + {{\varvec{\hat{\bar{T}}}}_{2}}}\\&\quad ={{{\varvec{\hat{\bar{T}}}}_{1}}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k),d(k),\tau (k)) + {{\varvec{\hat{\bar{T}}}}_{2}}(d(k),\tau (k))}\\&\varvec{\Theta } (\varvec{{\tilde{\theta }}} (k + 1))\\&\quad = \textit{diag}\left\{ {\frac{1}{{{\bar{\beta }} }}\varvec{\hat{G}}{{\varvec{\hat{P}}}_1}^{ - 1}(k + 1)\varvec{\hat{G}},\frac{1}{{(1 - {\bar{\beta }} )\bar{\alpha } }}\varvec{\hat{G}}{{\varvec{\hat{P}}}_1}^{ - 1}(k + 1)\varvec{\hat{G}},} \right. \\&\qquad \qquad \qquad \left. {\frac{1}{{(1 - {\bar{\beta }} )(1 - \bar{\alpha } )}}\varvec{\hat{G}}{{\varvec{\hat{P}}}_1}^{ - 1}(k + 1)\varvec{\hat{G}}} \right\} \\&{\varvec{\hat{\bar{T}}}_{1}}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k),d(k),\tau (k))\\&\quad = - {\varvec{e}_1}^T{\varvec{\hat{P}}_1}(k){\varvec{e}_1} + {\varvec{e}_1}^T\varvec{\hat{G}}{\varvec{e}_1}\\&\qquad - \textit{sym}\left\{ {{\varvec{e}_1}^T\varvec{\hat{G}}{{\mathbf {A}}^T}(\varvec{{\tilde{\theta }}} (k)){\varvec{e}_1}} \right\} - \textit{sym}\left\{ {{\bar{\beta }} {\varvec{e}_1}^T{\mathbf {B}}(\varvec{{\tilde{\theta }}} (k)){\varvec{e}_6}} \right\} \\&\qquad - \textit{sym}\left\{ {\left( {1 - \bar{\alpha } } \right) \left( {1 - {\bar{\beta }} } \right) {\varvec{e}_1}^T{{\varvec{\hat{K}}}^T}(\varvec{{\hat{\theta }}} (k)){{\mathbf {B}}^T}(\varvec{{\tilde{\theta }}} (k)){\varvec{e}_1}} \right\} \\&\qquad - \textit{sym}\left\{ {{\varvec{e}_1}^T\bar{\alpha } \left( {1 - {\bar{\beta }} } \right) {\mathbf {B}}(\varvec{{\tilde{\theta }}} (k))\varvec{\hat{K}}(\varvec{{\hat{\theta }}} (k)){\varvec{e}_7}} \right\} \\&\qquad - {\varvec{e}_{3}}^T{\varvec{\hat{R}}_{4}}{\varvec{e}_{3}} + {\varvec{e}_1}^T\left( {{{\varvec{\hat{R}}}_1} + {{\varvec{\hat{R}}}_3}} \right) {\varvec{e}_1} - {\varvec{e}_4}^T\left( {{{\varvec{\hat{R}}}_1} - {{\varvec{\hat{R}}}_2}} \right) {\varvec{e}_4}\\&\qquad - {\varvec{e}_{5}}^T{\varvec{\hat{R}}_2}{\varvec{e}_{5}} - {\varvec{e}_{2}}^T\left( {{{\varvec{\hat{R}}}_3} - {{\varvec{\hat{R}}}_4}} \right) {\varvec{e}_{2}} + \bar{\alpha } {\varvec{e}_9}^T\varvec{\hat{G}}{\varvec{U}_1}^T{\varvec{U}_1}\varvec{\hat{G}}{\varvec{e}_9}\\&\qquad - \bar{\alpha } {\varvec{e}_7}^T\varvec{\hat{G}}\varvec{\hat{G}}{\varvec{e}_7} + {\bar{\beta }} {\varvec{e}_8}^T\varvec{\hat{G}}{\varvec{U}_2}^T{\varvec{U}_2}\varvec{\hat{G}}{\varvec{e}_8} - {\bar{\beta }} {\varvec{e}_6}^T{\varvec{e}_6}\\&\qquad - {\varvec{\prod } _{11}}^T{\varvec{\hat{S}}_1}{\varvec{\prod } _{11}} - 3{\varvec{\prod } _{12}}^T{\varvec{\hat{S}}_1}{\varvec{\prod } _{12}}\\&\qquad - {\varvec{\prod } _{{21}}}^T\left( {{{\varvec{\hat{S}}}_{2}}+\frac{{d(k) - {d_{1}}}}{{{d_{12}}}}{{\varvec{\hat{S}}}_{2}}} \right) {\varvec{\prod } _{{21}}}\\&\qquad - {\varvec{\prod } _{{23}}}^T\left( {{{\varvec{\hat{S}}}_{2}}+\frac{{{d_2} - d(k)}}{{{d_{12}}}}{{\varvec{\hat{S}}}_{2}}} \right) {\varvec{\prod } _{{23}}}\\&\qquad - \textit{sym}\left\{ {{\varvec{\prod } _{{21}}}^T\left( {\frac{{{d_2} - d(k)}}{{{d_{12}}}}{{\varvec{\hat{Y}}}_{1}} + \frac{{d(k) - {d_1}}}{{{d_{12}}}}{{\varvec{\hat{Y}}}_{2}}} \right) {\varvec{\prod } _{{23}}}} \right\} \\&\qquad - {\varvec{\prod } _{{22}}}^T\left( {3{{\varvec{\hat{S}}}_{2}}\mathrm{{ + 3}}\frac{{d(k) - {d_{1}}}}{{{d_{12}}}}{{\varvec{\hat{S}}}_{2}}} \right) {\varvec{\prod } _{{22}}}\\ \end{aligned}$$
$$\begin{aligned}&\qquad - {\varvec{\prod } _{{24}}}^T\left( {{3}{{\varvec{\hat{S}}}_{2}}\mathrm{{ + 3}}\frac{{{d_2} - d(k)}}{{{d_{12}}}}{{\varvec{\hat{S}}}_{2}}} \right) {\varvec{\prod } _{{24}}}\\&\qquad - \textit{sym}\left\{ {{\varvec{\prod } _{{22}}}^T\left( {\frac{{{d_2} - d(k)}}{{{d_{12}}}}{{\varvec{\hat{Y}}}_{3}} + \frac{{d(k) - {d_1}}}{{{d_{12}}}}{{\varvec{\hat{Y}}}_{4}}} \right) {\varvec{\prod } _{{24}}}} \right\} \\&\qquad - {\varvec{\prod } _{31}}^T{\varvec{\hat{S}}_3}{\varvec{\prod } _{31}} - 3{\varvec{\prod } _{32}}^T{\varvec{\hat{S}}_3}{\varvec{\prod } _{32}}\\&\qquad - {\varvec{\prod } _{{41}}}^T\left( {{{\varvec{\hat{S}}}_{4}}+\frac{{\tau (k) - {\tau _{1}}}}{{{\tau _{12}}}}{{\varvec{\hat{S}}}_{4}}} \right) {\varvec{\prod } _{{41}}}\\&\qquad - {\varvec{\prod } _{{43}}}^T\left( {{{\varvec{\hat{S}}}_{4}}+\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{{\varvec{\hat{S}}}_{4}}} \right) {\varvec{\prod } _{{43}}}\\&\qquad - \textit{sym}\left\{ {{\varvec{\prod } _{{41}}}^T\left( {\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{{\varvec{\hat{Y}}}_{5}} + \frac{{\tau (k) - {\tau _1}}}{{{\tau _{12}}}}{{\varvec{\hat{Y}}}_{6}}} \right) {\varvec{\prod } _{{43}}}} \right\} \\&\qquad - {\varvec{\prod } _{{42}}}^T\left( {3{{\varvec{\hat{S}}}_{4}}\mathrm{{ + 3}}\frac{{\tau (k) - {\tau _{1}}}}{{{\tau _{12}}}}{{\varvec{\hat{S}}}_{4}}} \right) {\varvec{\prod } _{{42}}}\\&\qquad - {\varvec{\prod } _{{44}}}^T\left( {{3}{{\varvec{\hat{S}}}_{4}}\mathrm{{ + 3}}\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{{\varvec{\hat{S}}}_{4}}} \right) {\varvec{\prod } _{{44}}}\\&\qquad - \textit{sym}\left\{ {{\varvec{\prod } _{{42}}}^T\left( {\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{{\varvec{\hat{Y}}}_{7}} + \frac{{\tau (k) - {\tau _1}}}{{{\tau _{12}}}}{{\varvec{\hat{Y}}}_{8}}} \right) {\varvec{\prod } _{{44}}}} \right\} ,\\&{\varvec{\hat{ \bar{T}}}_{2}}(d(k),\tau (k))\\&\quad = {\varvec{\prod } _{{21}}}^T\left( {\frac{{d(k) - {d_{1}}}}{{{d_{12}}}}{{\varvec{\hat{Y}}}_{1}}{{\varvec{\hat{S}}}_{2}}^{ - 1}{{\varvec{\hat{Y}}}_{1}}^T} \right) {\varvec{\prod } _{{21}}}\\&\qquad +{\varvec{\prod } _{{23}}}^T\left( {\frac{{{d_2} - d(k)}}{{{d_{12}}}}{{\varvec{\hat{Y}}}_{2}}{{\varvec{\hat{S}}}_{2}}^{ - 1}{{\varvec{\hat{Y}}}_{2}}^T} \right) {\varvec{\prod } _{{23}}}\\&\qquad + {\varvec{\prod } _{{22}}}^T\left( {\frac{{d(k) - {d_{1}}}}{{{d_{12}}}}{{\varvec{\hat{Y}}}_{3}}\frac{{{{\varvec{\hat{S}}}_{2}}^{ - 1}}}{3}{{\varvec{\hat{Y}}}_{3}}^T} \right) {\varvec{\prod } _{{22}}}\\&\qquad +{\varvec{\prod } _{{24}}}^T\left( {\frac{{{d_2} - d(k)}}{{{d_{12}}}}{{\varvec{\hat{Y}}}_{4}}\frac{{{{\varvec{\hat{S}}}_{2}}^{ - 1}}}{3}{{\varvec{\hat{Y}}}_{4}}^T} \right) {\varvec{\prod } _{{24}}}\\&\qquad + {\varvec{\prod } _{{41}}}^T\left( {\frac{{\tau (k) - {\tau _{1}}}}{{{\tau _{12}}}}{{\varvec{\hat{Y}}}_{5}}{{\varvec{\hat{S}}}_{4}}^{ - 1}{{\varvec{\hat{Y}}}_{5}}^T} \right) {\varvec{\prod } _{{41}}}\\&\qquad + {\varvec{\prod } _{{43}}}^T\left( {\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{{\varvec{\hat{Y}}}_{6}}{{\varvec{\hat{S}}}_{4}}^{ - 1}{{\varvec{\hat{Y}}}_{6}}^T} \right) {\varvec{\prod } _{{43}}}\\&\qquad +{\varvec{\prod } _{{42}}}^T\left( {\frac{{\tau (k) - {\tau _{1}}}}{{{\tau _{12}}}}{{\varvec{\hat{Y}}}_{7}}\frac{{{{\varvec{\hat{S}}}_{4}}^{ - 1}}}{3}{{\varvec{\hat{Y}}}_{7}}^T} \right) {\varvec{\prod } _{{42}}}\\&\qquad +{\varvec{\prod } _{{44}}}^T\left( {\frac{{{\tau _2} - \tau (k)}}{{{\tau _{12}}}}{{\varvec{\hat{Y}}}_{8}}\frac{{{{\varvec{\hat{S}}}_{4}}^{ - 1}}}{3}{{\varvec{\hat{Y}}}_{8}}^T} \right) {\varvec{\prod } _{{44}}} \end{aligned}$$

Pre and postmultiplying both sides of (51) with \(\textit{diag}\left\{ {\begin{array}{lll} {{{\varvec{\bar{G}}}^{ - 1}},}&{\varvec{I},}&\varvec{I} \end{array}} \right\} \) and its transposition, we have

$$\begin{aligned} \left[ {\begin{array}{lll} {{{\varvec{\bar{T}}}_{1}} + {{\varvec{\bar{T}}}_{2}}}&{}{}&{} * \\ {\varvec{\eta } (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))}&{}{ - {{\varvec{\bar{P}}}^{ - 1}}(k + 1)}&{}{}\\ {\varvec{\eta } (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))}&{}\varvec{0}&{}{ - {{\varvec{\bar{\bar{S}}}}^{ - 1}}} \end{array}} \right] < \varvec{0} \end{aligned}$$
(52)

where

$$\begin{aligned} {{{\varvec{\bar{T}}}_{1}} + {{\varvec{\bar{T}}}_{2}}}={{{\varvec{\bar{T}}}_{1}}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k),d(k),\tau (k)) + {{\varvec{\bar{T}}}_{2}}(d(k),\tau (k))} \end{aligned}$$

Using Schur Complement to (52), we have

$$\begin{aligned} \varvec{{\hat{\vartheta }}} (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k),\varvec{{\tilde{\theta }}} (k + 1),d(k),\tau (k)) < 0 \end{aligned}$$
(53)

From (53), we can find \(\rho > 0\) such that

$$\begin{aligned}&\varvec{{\hat{\vartheta }}} (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k),\varvec{{\tilde{\theta }}} (k + 1),d(k),\tau (k)) \nonumber \\&\quad < \textit{diag}\left\{ {\begin{array}{llll} { - \rho {\varvec{I}_n}}&\varvec{0}&\cdots&\varvec{0} \end{array}} \right\} \end{aligned}$$
(54)

Combining (50) and (54), we have

$$\begin{aligned}&\varvec{E}\left\{ {V(k + 1) - V(k)} \right\} \nonumber \\&\quad \le {\varvec{\xi } ^T}(k)\varvec{{\hat{\vartheta }}} (\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k),\varvec{{\tilde{\theta }}} (k + 1),d(k),\nonumber \\&\qquad \Delta d(k),\tau (k),\Delta \tau (k))\varvec{\xi } (k)\nonumber \\&\quad \le {\varvec{\xi } ^T}(k)\textit{diag}\left\{ {\begin{array}{llll} { - \rho {\varvec{I}_n}}&\varvec{0}&\cdots&\varvec{0} \end{array}} \right\} \varvec{\xi } (k)\nonumber \\&\quad \le - \rho ||\varvec{x}(k)|{|^2} \end{aligned}$$
(55)

From (55), we obtain

$$\begin{aligned} \varvec{E}\left\{ {V(k + 1)} \right\} - \varvec{E}\left\{ {V(k)} \right\} \le - \rho \varvec{E}\left\{ {||\varvec{x}(k)|{|^2}} \right\} \end{aligned}$$
(56)

For \(N > 0\), the following inequality can be derived.

$$\begin{aligned} \varvec{E}\left\{ {\sum \limits _{k = 0}^N {||\varvec{x}(k)|{|^2}} } \right\}&\le \frac{1}{\rho }\left( {\varvec{E}\left\{ {V(0)} \right\} - \varvec{E}\left\{ {V(N + 1)} \right\} } \right) \nonumber \\&\le \frac{1}{\rho }\varvec{E}\left\{ {V(0)} \right\} \end{aligned}$$
(57)

Based on the definitions of Lyapunov–Krasovskii functional in (38), we have

$$\begin{aligned} {V_1}(0)&= {\varvec{x}^T}(0){\varvec{P}_1}(0)\varvec{x}(0) = \sum \limits _{i = 1}^p {{\omega _i}(\varvec{{\tilde{\theta }}} (0))} {\varvec{x}^T}(0){\varvec{P}_{1i}}(0)\varvec{x}(0)\nonumber \\&\le \mathop {\max }\limits _{i = 1,2,\ldots ,p} \left\{ {{\lambda _{\max }}({\varvec{P}_{1i}})} \right\} ||\varvec{x}(0)||_a^2\end{aligned}$$
(58)
$$\begin{aligned} {V_2}(0)&= \sum \limits _{l = - {d_1}}^{ - 1} {{\varvec{x}^T}(l){\varvec{R}_1}\varvec{x}(l)} + \sum \limits _{l = - {d_2}}^{ - {d_1} - 1} {{\varvec{x}^T}(l){\varvec{R}_2}\varvec{x}(l)} \nonumber \\&\quad + \sum \limits _{l = - {\tau _1}}^{ - 1} {{\varvec{x}^T}(l){\varvec{R}_3}\varvec{x}(l)} + \sum \limits _{l = - {\tau _2}}^{ - {\tau _1} - 1} {{\varvec{x}^T}(l){\varvec{R}_4}\varvec{x}(l)} \nonumber \\&\le {d_1}{\lambda _{\max }}({\varvec{R}_1})||\varvec{x}(0)||_a^2 + {d_{12}}{\lambda _{\max }}({\varvec{R}_2})||\varvec{x}(0)||_a^2\nonumber \\&\quad + {\tau _1}{\lambda _{\max }}({\varvec{R}_3})||\varvec{x}(0)||_a^2 + {\tau _{12}}{\lambda _{\max }}({\varvec{R}_4})||\varvec{x}(0)||_a^2\end{aligned}$$
(59)
$$\begin{aligned} {V_{3}}(0)&= {d_1}\sum \limits _{s = - {d_1}}^{ - 1} {\sum \limits _{l = s}^{ - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_1}\Delta \varvec{x}(l)} }\nonumber \\&\quad + {d_{12}}\sum \limits _{s = - {d_2}}^{ - {d_1} - 1} {\sum \limits _{l = s}^{ - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_2}\Delta \varvec{x}(l)} } \nonumber \\&\quad + {\tau _1}\sum \limits _{s = - {\tau _1}}^{ - 1} {\sum \limits _{l = s}^{ - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_{3}}\Delta \varvec{x}(l)} } \nonumber \\&\quad + {\tau _{12}}\sum \limits _{s = - {\tau _2}}^{ - {\tau _1} - 1} {\sum \limits _{l = s}^{ - 1} {\Delta {\varvec{x}^T}(l){\varvec{S}_{4}}\Delta \varvec{x}(l)} }\nonumber \\&\le \frac{{{d_1}^2({d_1} + 1)}}{2}{\lambda _{\max }}({\varvec{S}_1})||\varvec{x}(0)||_a^2\nonumber \\&\quad + \frac{{{d_{12}}^2({d_1} + {d_2} + 1)}}{2}{\lambda _{\max }}({\varvec{S}_2})||\varvec{x}(0)||_a^2\nonumber \\&\quad + \frac{{{\tau _1}^2({\tau _1} + 1)}}{2}{\lambda _{\max }}({\varvec{S}_3})||\varvec{x}(0)||_a^2\nonumber \\&\quad + \frac{{{\tau _{12}}^2({\tau _1} + {\tau _2} + 1)}}{2}{\lambda _{\max }}({\varvec{S}_4})||\varvec{x}(0)||_a^2 \end{aligned}$$
(60)

where \({\lambda _{\max }}(\cdot )\) and \({\lambda _{\min }}(\cdot )\) stand for maximum and minimum eigenvalues of a real square matrix, respectively.

Based on (58), (59) and (60), we have

$$\begin{aligned} V(0) \le \kappa ||\varvec{x}(0)||_a^2 \end{aligned}$$
(61)

where

$$\begin{aligned} \kappa&= \max \limits _{i = 1,2,\ldots ,p} \left\{ {{\lambda _{\max }}({\varvec{P}_{1i}})} \right\} + {d_1}{\lambda _{\max }}({\varvec{R}_1}) \\&\quad + {d_{12}}{\lambda _{\max }}({\varvec{R}_2})\\&\quad + {\tau _1}{\lambda _{\max }}({\varvec{R}_3})||\varvec{x}(0)||_a^2 + {\tau _{12}}{\lambda _{\max }}({\varvec{R}_4})||\varvec{x}(0)||_a^2\\&\quad + \frac{{{d_1}^2({d_1} + 1)}}{2}{\lambda _{\max }}({\varvec{S}_1}) \\&\quad + \frac{{{d_{12}}^2({d_1} + {d_2} + 1)}}{2}{\lambda _{\max }}({\varvec{S}_2})\\&\quad + \frac{{{\tau _1}^2({\tau _1} + 1)}}{2}{\lambda _{\max }}({\varvec{S}_3})\\&\quad + \frac{{{\tau _{12}}^2({\tau _1} + {\tau _2} + 1)}}{2}{\lambda _{\max }}({\varvec{S}_4}). \end{aligned}$$

From (57) and (61), we have

$$\begin{aligned} \varvec{E}\left\{ {\sum \limits _{k = 0}^\infty {||\varvec{x}(k)|{|^2}} } \right\} \le \sigma \varvec{E}\left\{ {||\varvec{x}(0)||_a^2} \right\} \end{aligned}$$
(62)

where \(\sigma = \frac{\kappa }{\rho }\). The whole proof is completed. \(\square \)

Appendix B

Proof

Inspired by literature [53], we define the following equations:

$$\begin{aligned} {\omega _i}(\varvec{{\tilde{\theta }}} (k))&= {h_i}(\varvec{{\hat{\theta }}} (k))\left( {\lambda _i^1\beta _i^{(1)}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))} \right. \nonumber \\&\quad \left. { +\, \lambda _i^2\beta _i^{(2)}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))} \right) \end{aligned}$$
(63)
$$\begin{aligned} {\omega _i}(\varvec{{\tilde{\theta }}} (k + 1))&= {h_i}(\varvec{{\hat{\theta }}} (k))\left( {\gamma _i^1\alpha _i^{(1)}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))} \right. \nonumber \\&\quad \left. { +\, \gamma _i^2\alpha _i^{(2)}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))} \right) \end{aligned}$$
(64)

where \(\alpha _i^{(1)}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))\), \(\alpha _i^{(2)}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))\), \(\beta _i^{(1)}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))\) and \(\beta _i^{(2)}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))\) are nonnegative nonlinear functions satisfying \(\sum _{s = 1}^2 {\alpha _i^{(s)}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))} =1\) and \(\sum _{s = 1}^2 {\beta _i^{(s)}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k))} =1\). For the convenience of expression, define

and

The \({\varvec{\Psi } _q}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k),\varvec{{\tilde{\theta }}} (k + 1))\) in Theorem 1 can be rewritten as:

(65)

It can be seen from (32)–(34) and (65) that \({\varvec{\Psi } _q}(\varvec{{\tilde{\theta }}} (k),\varvec{{\hat{\theta }}} (k),\varvec{{\tilde{\theta }}} (k + 1)) < 0\). The whole proof is completed.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Zhang, K. & Dian, S. Security control of interval type-2 fuzzy system with two-terminal deception attacks under premise mismatch. Nonlinear Dyn 102, 431–453 (2020). https://doi.org/10.1007/s11071-020-05933-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05933-8

Keywords

Navigation