Skip to main content
Log in

Disturbance observer-based autonomous landing control of unmanned helicopters on moving shipboard

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the autonomous landing control issue on moving shipboard is investigated for unmanned helicopters subject to disturbances. The issue is studied by stabilizing the error system of the helicopter and the shipboard. The landing process is divided into two phases, i.e., homing phase, where a hierarchical double-loop control scheme is developed such that the helicopter is forced to hover synchronously at a certain altitude over the shipboard, and landing phase, where a composite landing control scheme is proposed such that the helicopter lands vertically on the shipboard in synchronization with its attitudes. The velocity and acceleration information of the shipboard as well as lump disturbances is estimated through joint state and disturbance observers. The estimates are then incorporated into the baseline feedback controller, formulating composite active anti-disturbance landing control schemes. A continuous terminal sliding mode control method is proposed for the feedback controller design, which not only effectively mitigates the chattering of the control action, but also simplifies the design process of the controller. Numerical simulations demonstrate the effectiveness and superiorities of the proposed control schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shin, H., You, D., Shim, D.H.: Autonomous shipboard landing algorithm for unmanned helicopters in crosswind. J. Intell. Robot. Syst. 74(1–2), 347–361 (2014)

    Article  Google Scholar 

  2. Jiang, J., Qi, Y., Ibrahim, M., et al.: Quadrotors’ low-cost vision-based autonomous landing architecture on a moving platform. In: 2018 15th International Conference on Control, Automation, Robotics and Vision, Singapore, pp. 448–453 (2018)

  3. Chen, X., Phang, S.K., Shan, M., et al.: System integration of a vision-guided UAV for autonomous landing on moving platform. In: 2016 12th IEEE International Conference on Control and Automation, Kathmandu, Nepal, pp. 761–766 (2016)

  4. Deng, Y., Duan, H.: Control parameter design for automatic carrier landing system via pigeon-inspired optimization. Nonlinear Dyn. 85(1), 97–106 (2016)

    Article  MathSciNet  Google Scholar 

  5. Li, J., Duan, H.: Simplified brain storm optimization approach to control parameter optimization in F/A-18 automatic carrier landing system. Aerosp. Sci. Technol. 42, 187–195 (2015)

    Article  Google Scholar 

  6. Ali, U., Shah, M.Z., Samar, R., et al.: Robust level flight control design for scaled Yak-54 unmanned aerial vehicle using single sliding surface. In: 2012 24th Chinese Control and Decision Conference, Taiyuan, China, pp. 1209–1214 (2012)

  7. Hoffmann, G.M., Huang, H., Waslander, S.L., et al.: Precision flight control for a multi-vehicle quadrotor helicopter testbed. Control Eng. Pract. 19(9), 1023–1036 (2011)

    Article  Google Scholar 

  8. Venugopalan, T.K., Taher, T., Barbastathis, G.: Autonomous landing of an unmanned aerial vehicle on an autonomous marine vehicle. In: 2012 Oceans, Yeosu, Korea, pp. 1–9 (2012)

  9. Subrahmanyam, M.B.: H-infinity design of F/A-18A automatic carrier landing system. J. Guid. Control Dyn. 17(1), 187–191 (1994)

    Article  Google Scholar 

  10. Lungu, R., Lungu, M.: Design of automatic landing systems using the H-inf control and the dynamic inversion. J. Dyn. Syst. Meas. Control 138(2), 024501 (2016)

    Article  Google Scholar 

  11. Ghommam, J., Saad, M.: Autonomous landing of a quadrotor on a moving platform. IEEE Trans. Aerosp. Electron. Syst. 53(3), 1504–1519 (2017)

    Article  Google Scholar 

  12. Guan, Z., Ma, Y., Zheng, Z., et al.: Prescribed performance control for automatic carrier landing with disturbance. Nonlinear Dyn. 94(2), 1335–1349 (2018)

    Article  Google Scholar 

  13. Zheng, Z., Jin, Z., Sun, L., et al.: Adaptive sliding mode relative motion control for autonomous carrier landing of fixed-wing unmanned aerial vehicles. IEEE Access 5, 5556–5565 (2017)

    Article  Google Scholar 

  14. Huang, Y., Zhu, M., Zheng, Z., et al.: Fixed-time autonomous shipboard landing control of a helicopter with external disturbances. Aerosp. Sci. Technol. 84, 18–30 (2019)

    Article  Google Scholar 

  15. Rao, D.V., Go, T.H.: Automatic landing system design using sliding mode control. Aerosp. Sci. Technol. 32(1), 180–187 (2014)

    Article  Google Scholar 

  16. Zhao, Z., Yang, J., Li, S., et al.: Continuous output feedback TSM control for uncertain systems with a DC–AC inverter example. IEEE Trans. Circuits Syst. II-Express Briefs 65(1), 71–75 (2018)

    Article  Google Scholar 

  17. Wang, L., Mishra, J., Zhu, Y., et al.: An improved sliding-mode current control of induction machine in presence of voltage constraints. IEEE Trans. Ind. Inform. 16(2), 1182–1191 (2020)

    Article  Google Scholar 

  18. Oh, S.R., Pathak, K., Agrawal, S.K., et al.: Approaches for a tether-guided landing of an autonomous helicopter. IEEE Trans. Robot. 22(3), 536–544 (2016)

    Google Scholar 

  19. Daly, J.M., Ma, Y., Waslander, S.L.: Coordinated landing of a quadrotor on a skid-steered ground vehicle in the presence of time delays. Auton. Robot. 38(2), 179–191 (2015)

    Article  Google Scholar 

  20. Wenzel, K.E., Masselli, A., Zell, A.: Automatic take off, tracking and landing of a miniature UAV on a moving carrier vehicle. J. Intell. Robot. Syst. 61(1–4), 221–238 (2011)

    Article  Google Scholar 

  21. Madonski, R., Ramirez-Neria, M., Gao Z., et al.: Attenuation of periodic disturbances via customized ADRC solution: a case of highly oscillatory 3DOF torsional plant. In: 2019 8th Data Driven Control and Learning System Conference, Dali, China, pp. 1111–1116 (2019)

  22. Wang, X., Yu, X., Li, S., et al.: Composite block backstepping trajectory tracking control for disturbed unmanned helicopters. Aerosp. Sci. Technol. 85, 386–398 (2019)

    Article  Google Scholar 

  23. Yue, Y., Wang, H., Li, N., et al.: Automatic carrier landing system based on active disturbance rejection control with a novel parameters optimizer. Aerosp. Sci. Technol. 69, 149–160 (2017)

    Article  Google Scholar 

  24. Chen, W.H.: Disturbance observer based control for nonlinear systems. IEEE-ASME Trans. Mechatron. 9(4), 706–710 (2004)

    Article  MathSciNet  Google Scholar 

  25. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  Google Scholar 

  26. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Smooth second-order sliding modes: Missile guidance application. Automatica 43(8), 1470–1476 (2007)

    Article  MathSciNet  Google Scholar 

  27. Madonski, R., Ramirez-Neria, M., Stanković, M., et al.: On vibration suppression and trajectory tracking in largely uncertain torsional system: an error-based ADRC approach. Mech. Syst. Signal Process. 134(1), 106300 (2019)

    Article  Google Scholar 

  28. Madonski, R., Stanković, M., Shao, S., et al.: Active disturbance rejection control of torsional plant with unknown frequency harmonic disturbance. Control Eng. Pract. 100, 104413 (2020)

    Article  Google Scholar 

  29. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, London (2002)

    MATH  Google Scholar 

  30. Hardy, G.H., Littlewood, J.E., Pólya, G., et al.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  31. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MathSciNet  Google Scholar 

  32. Bhat, S., Bernstein, D.: Finite-time stability of homogeneous systems. Am. Control Conf. 4(4), 2513–2514 (1997)

    Article  Google Scholar 

  33. Liu, C., Chen, W.H., Andrews, J.: Tracking control of small-scale helicopters using explicit nonlinear MPC augmented with disturbance observers. Control Eng. Pract. 20(3), 258–268 (2012)

    Article  Google Scholar 

  34. Bogdanov, A., Wan, E.A.: State-dependent Riccati equation control for small autonomous helicopters. J. Guid. Control Dyn. 30(1), 47–60 (2007)

    Article  Google Scholar 

  35. Yu, S., Yu, X., Shirinzadeh, B., et al.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  Google Scholar 

  36. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    Article  MathSciNet  Google Scholar 

  37. Fang, X., Wu, A., Shang, Y., et al.: A novel sliding mode controller for small-scale unmanned helicopters with mismatched disturbance. Nonlinear Dyn. 83(1–2), 1053–1068 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported in part by the National Natural Science Foundation of China under Grants 61973080 and 61973081 and in part by the Shenzhen Science and Technology Innovation Committee (STIC) under Grant JCYJ20190813152603594.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yang.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Yang, J. & Li, S. Disturbance observer-based autonomous landing control of unmanned helicopters on moving shipboard. Nonlinear Dyn 102, 131–150 (2020). https://doi.org/10.1007/s11071-020-05915-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05915-w

Keywords

Navigation