Skip to main content
Log in

Prescribed performance control for automatic carrier landing with disturbance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a novel automatic carrier landing controller which holds a constant angle of attack during final approach with prescribed performance in the presence of external disturbances and carrier deck motion. Based on the nonlinear model of the aircraft, backstepping technique is adopted as the main control frame. To improve the stability during final approach, a novel control structure which maintains a constant angle of attack is proposed. By using performance constrained guidance law, the proposed controller is capable of guaranteeing trajectory tracking errors within prescribed performance, which means that the tracking errors are confined within prescribed convergence rates and maximum overshoots. Moreover, considering the deck motion of the carrier and inherent phase lag of the aircraft, deck motion compensation is included. Furthermore, nonlinear disturbance observers are introduced to eliminate the affects of unknown disturbances, while command filters are employed as well, avoiding complicated computations for time derivatives of virtual controls. Finally, simulation results clarify and verify the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhen, Z., Wang, X., Jiang, J., Yang, Y.: Research progress in guidance and control of automatic carrier landing of carrier-based aircraft. Acta Aeronautica Et Astronautica Sinica 38(2), 122–143 (2017)

    Google Scholar 

  2. Urnes, J., Hess, R., Moomaw, R., Huff, R.: Development of the Navy H-Dot Automatic Carrier Landing System Designed to Give Improved Approach Control in Air Turbulence. Fondo de Cultura Economica, Buenos Aires (2013)

    Google Scholar 

  3. Lungu, R.: Lungu, Mihai: Design of automatic landing systems using the H-inf control and the dynamic inversion. J. Dyn. Syst. Meas. Control 138(2), 024501 (2015)

    Article  Google Scholar 

  4. Lungu, R., Lungu, M.: Application of H2/H\(\infty \) and dynamic inversion techniques to aircraft landing control. Aerosp. Sci. Technol. 46, 146–158 (2015)

    Article  Google Scholar 

  5. Lungu, M., Lungu, R.: Application of H2/H\(\infty \) technique to aircraft landing control. Asian J. Control 17(6), 2153–2164 (2015)

    Article  MathSciNet  Google Scholar 

  6. Lungu, R., Lungu, M.: Automatic landing control using H-inf control and dynamic inversion. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 228(14), 2612–2626 (2014)

    Article  Google Scholar 

  7. Lungu, M.: Lungu, Romulus: Landing autopilots for aircraft motion in longitudinal plane using adaptive control laws based on neural networks and dynamic inversion. Asian J. Control 19(1), 302–315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lungu, R., Lungu, M.: Automatic control of aircraft in lateral-directional plane during landing. Asian J. Control 18(2), 433–446 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lungu, M., Lungu, R.: Automatic control of aircraft lateral-directional motion during landing using neural networks and radio-technical subsystems. Neurocomputing 171(C), 471–481 (2016)

    Article  MATH  Google Scholar 

  10. Chen, M.Q., Zhang, G.M., Feng, J.H.: The research of aircraft landing problems based on neural network. Adv. Mater. Res. 651, 891–895 (2013)

    Article  Google Scholar 

  11. Yue, Y., Wang, H., Li, N., Zikang, S., Jianfa, W.: Automatic carrier landing system based on active disturbance rejection control with a novel parameters optimizer. Aerosp. Sci. Technol. 69, 149–160 (2017)

    Article  Google Scholar 

  12. Zheng, Z., Jin, Z., Sun, L., Zhu, M.: Adaptive sliding mode relative motion control for autonomous carrier landing of fixed-wing unmanned aerial vehicles. IEEE Access PP(5), 5556–5565 (2017)

    Article  Google Scholar 

  13. Su, Z., Wang, H., Shao, X., Huang, Y.: A robust back-stepping based trajectory tracking controller for the tanker with strict posture constraints under unknown flow perturbations. Aerosp. Sci. Technol. 56, 34–45 (2016)

    Article  Google Scholar 

  14. Su, Z., Wang, H., Yao, P., Huang, Y., Qin, Y.: Back-stepping based anti-disturbance flight controller with preview methodology for autonomous aerial refueling. Aerosp. Sci. Technol. 61, 95–108 (2016)

    Article  Google Scholar 

  15. Burlion, L., De Plinval, H.: Toward vision based landing of a fixed-wing UAV on an unknown runway under some fov constraints. In: International Conference on Unmanned Aircraft Systems, pp. 1824–1832 (2017)

  16. Li, J., Duan, H.: Simplified brain storm optimization approach to control parameter optimization in F/A-18 automatic carrier landing system. Aerosp. Sci. Technol. 42, 187–195 (2015)

    Article  Google Scholar 

  17. Deng, Y., Duan, H.: Control parameter design for automatic carrier landing system via pigeon-inspired optimization. Nonlinear Dyn. 85(1), 1–10 (2016)

    Article  MathSciNet  Google Scholar 

  18. Psomopoulou, E., Theodorakopoulos, A., Doulgeri, Z., Rovithakis, G.A.: Prescribed performance tracking of a variable stiffness actuated robot. IEEE Trans. Control Syst. Technol. 23(5), 1914–1926 (2015)

    Article  Google Scholar 

  19. Wang, W., Huang, J., Wen, C.: Prescribed performance bound-based adaptive path-following control of uncertain nonholonomic mobile robots. Int. J. Adapt. Control Signal Process. 31(5), 805–822 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zheng, Z., Feroskhan, M.: Path following of a surface vessel with prescribed performance in the presence of input saturation and external disturbances. IEEE/ASME Trans. Mechatron. PP(99), 2564–2575 (2017)

    Article  Google Scholar 

  21. Gao, T., Huang, J., Zhou, Y., Song, Y.D.: Robust adaptive tracking control of an underactuated ship with guaranteed transient performance. Int. J. Syst. Sci. 48(2), 272–279 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zheng, Z., Sun, L., Xie, L.: Error-constrained los path following of a surface vessel with actuator saturation and faults. IEEE Trans. Syst. Man Cybern. Syst. PP(99), 1–12 (2017). https://doi.org/10.1109/tsmc.2017.2717850

    Article  Google Scholar 

  23. Bu, X., Wu, X., Huang, J., Wei, D.: A guaranteed transient performance-based adaptive neural control scheme with low-complexity computation for flexible air-breathing hypersonic vehicles. Nonlinear Dyn. 84(4), 1–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bu, X., Wei, D., Wu, X., Huang, J.: Guaranteeing preselected tracking quality for air-breathing hypersonic non-affine models with an unknown control direction via concise neural control. J. Franklin Inst. 353(13), 3207–3232 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bu, X., Wu, X., Huang, J., Wei, D.: Robust estimation-free prescribed performance back-stepping control of air-breathing hypersonic vehicles without affine models. Int. J. Control 89(11), 2185–2200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bu, X., Xiao, Y., Wang, K.: A prescribed performance control approach guaranteeing small overshoot for air-breathing hypersonic vehicles via neural approximation. Aerosp. Sci. Technol. 71, 485–498 (2017)

    Article  Google Scholar 

  27. Su, Z., Wang, H., Li, N., Yue, Y., Jianfa, W.: Exact docking flight controller for autonomous aerial refueling with back-stepping based high order sliding mode. Mech. Syst. Signal Process. 101, 338–360 (2018)

    Article  Google Scholar 

  28. Marino, R., Tomei, P.: Nonlinear Control Design. Springer, London (2009)

    MATH  Google Scholar 

  29. Bu, X.: Guaranteeing prescribed output tracking performance for air-breathing hypersonic vehicles via non-affine back-stepping control design. Nonlinear Dyn. 52204, 1–14 (2017)

    Google Scholar 

  30. Bu, X., He, G., Ke, W.: Tracking control of air-breathing hypersonic vehicles with non-affine dynamics via improved neural back-stepping design. ISA Trans. 75, 88–100 (2018)

    Article  Google Scholar 

  31. Zheng, Z., Huang, Y., Xie, L., Zhu, B.: Adaptive trajectory tracking control of a fully actuated surface vessel with asymmetrically constrained input and output. IEEE Trans. Control Syst. Technol. PP(99), 1–9 (2017)

    Google Scholar 

  32. An, H., Liu, J., Wang, C., Ligang, W.: Approximate back-stepping fault-tolerant control of the flexible air-breathing hypersonic vehicle. IEEE/ASME Trans. Mechatron. 21(3), 1680–1691 (2016)

    Article  Google Scholar 

  33. Bu, X., Wu, X., Zhang, R., Ma, Z., Huang, J.: Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle. J. Franklin Inst. 352(4), 1739–1765 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bu, X.W., Wu, X.Y., Chen, Y.X., Bai, R.Y.: Design of a class of new nonlinear disturbance observers based on tracking differentiators for uncertain dynamic systems. Int. J. Control Autom. Syst. 13(3), 595–602 (2015)

    Article  Google Scholar 

  35. Zhu, B., Guo, K., Xie, L.: A new distributed model predictive control for unconstrained double-integrator multi-agent systems. IEEE Trans. Autom. Control PP(99):1–7. https://doi.org/10.1109/tac.2018.2819429

  36. Adams, R.J., Buffington, J.M., Banda, S.S.: Design of nonlinear control laws for high-angle-of-attack flight. J. Guid. Control Dyn. 17(4), 737–746 (2012)

    Article  MATH  Google Scholar 

  37. Etkin, B.: Dynamics of atmospheric flight. Wiley, New York (1972)

    Google Scholar 

  38. Chakraborty, A., Seiler, P., Balas, G.J.: Susceptibility of F/A-18 flight controllers to the falling-leaf mode: linear analysis. J. Guid. Control Dyn. 34(1), 73–85 (2010)

    Article  Google Scholar 

  39. Zhang, Y.J., Yang, Y.D.: Analysis of the approach power compensator system with constant angle of attack. Flight Dyn. 24(4), 30–33 (2006)

    Google Scholar 

  40. Wang, J., Wu, W., Zhang, Y., Gao, L.: Study on control strategy characteristics and physical mechanism of the aircraft in backside area. Flight Dyn. 35(5), 44–47 (2017)

    Google Scholar 

  41. Fitzgerald, P.: Flight Control System Design for Autonomous UAV Carrier Landing. Cranfield University, Bedford (2004)

    Google Scholar 

  42. Xia, G., Dong, R., Jiangtao, X., Zhu, Q.: Linearized model of carrier-based aircraft dynamics in final-approach air condition. J. Aircr. 53(1), 1–15 (2015)

    Google Scholar 

  43. Military Specification: Flying Qualities of Piloted Airplanes. United States Department of Defense, Washington (1980)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61503010, in part by the Aeronautical Science Foundation of China under Grant 2016ZA51001, and in part by the Fundamental Research Funds for the Central Universities under Grant YWF-17-BJ-Y-143 and YWF-18-BJ-Y-108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zewei Zheng.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Appendices

Appendix A

$$\begin{aligned}&T = T_{\mathrm {max}} \delta _p,\rho = 1.225\hbox { kg/m}^3, Q = \frac{1}{2} \rho V^2 \\&\begin{bmatrix} Y\\ D\\ C \end{bmatrix} = \text {QS}\begin{bmatrix} C_Y\\ C_D\\ C_C \end{bmatrix} = \text {QS}\begin{bmatrix} C_Y^0 + C_Y^\alpha \alpha \\ C_D^0 + C_D^\alpha \alpha + C_D^{\alpha ^2} \alpha ^2\\ C_C^\beta \beta \end{bmatrix} \\&\begin{bmatrix} L\\ M\\ N \end{bmatrix} = \text {QS}\begin{bmatrix} l C_L\\ c C_M\\ l C_N \end{bmatrix} \\&\quad = \text {QS}\begin{bmatrix} l ( C_L^\beta \beta + C_L^{\delta _\alpha } \delta _\alpha + C_L^{\delta _r} \delta _r + C_L^p p + C_L^r r )\\ c (C_M^0 + C_M^{\delta _e} \delta _e + C_M^q q )\\ l ( C_N^\beta \beta + C_N^{\delta _\alpha } \delta _\alpha + C_N^{\delta _r} \delta _r + C_N^p p + C_N^r r ) \\ \end{bmatrix} \end{aligned}$$

where \(C_Y,C_D,C_C\) are the lift, drag, lateral forces coefficients, respectively, \(C_L,C_M,C_N\) are rolling, pitching, yawing moments coefficients, respectively. l denotes wing span, c denotes mean aerodynamic chord, \(\delta _a,\delta _e,\delta _r\) are the deflection angles of aileron, elevator, rudder; \(\delta _p\) is the degree of throttle (%). \(T_{\mathrm {max}}\) is the maximum thrust of the engine, T is the current thrust.

Appendix B

$$\begin{aligned}&\varvec{f}_1 = \varvec{f}_1(\varvec{x}_2 \mathrm {,} V_k) = \begin{bmatrix} V_k(\cos \gamma \sin \chi - \chi ) \\ -V_k(\sin \gamma - \gamma ) \end{bmatrix} \\ \\&\varvec{b}_1 = \varvec{b}_1(V_k) = \begin{bmatrix} V_k&0\\ 0&-V_k \end{bmatrix} \\ \\&\varvec{f}_2 = \varvec{f}_2(\varvec{x}_2 \mathrm {,} \varvec{x}_3 \mathrm {,} V_k) \\&\quad = \begin{bmatrix} \frac{1}{m V_k \cos \gamma } (T(-\cos (\alpha +\sigma )\sin \beta \cos \mu ) \\ + \text {QSC}_C^\beta \beta \cos \mu )\\ -\frac{1}{m V_k}(T(-\sin (\alpha + \sigma )\cos \mu \\ - \cos (\alpha + \sigma )\sin \beta \sin \mu )+\text {QSC}_c^\beta \beta \sin \mu \\ -\text {QSC}_Y^0 \cos \mu +mg\cos \gamma ) \end{bmatrix} \\ \\&\varvec{b}_2 = \varvec{b}_2(\varvec{x}_2 \mathrm {,} V_k \mathrm {,} Q) \\&\quad = \frac{1}{mV_k}\begin{bmatrix} \frac{T\sin (\alpha + \sigma ) + QS(C_Y^0 + C_Y^\alpha \alpha )}{\cos \gamma }&0\\ 0&\text {QSC}_Y^\alpha \\ \end{bmatrix} \\ \\&\varvec{f}_3 = \varvec{f}_3(\varvec{\dot{x}}_2 \mathrm {,} \varvec{x}_2 \mathrm {,} \varvec{x}_3) \\&\quad = \begin{bmatrix} \dot{\gamma } + \frac{-\dot{\gamma } \cos \mu - \dot{\chi }\sin \mu \cos \gamma }{\cos \beta } \\ -\dot{\gamma } \sin \mu + \dot{\chi } \cos \mu \cos \gamma \\ \frac{\dot{\gamma } \sin \beta \cos \mu + \dot{\chi }(\sin \gamma \cos \beta + \sin \beta \sin \mu \cos \gamma )}{\cos \beta } \end{bmatrix} \\&\varvec{b}_3= \varvec{b}_3(\varvec{x}_2 \mathrm {,} \varvec{x}_3) \\&\quad = \begin{bmatrix} -\cos \alpha \tan \beta&\frac{1}{\cos \beta }&-\sin \alpha \tan \beta \\ \sin \alpha&0&-\cos \alpha \\ \frac{\cos \alpha }{\cos \beta }&0&\frac{\sin \alpha }{\cos \beta } \end{bmatrix} \\ \\&\varvec{f}_4 = \varvec{f}_4(\varvec{x}_3 \mathrm {,} \varvec{x}_4 \mathrm {,} Q) \\&\varvec{f}_4(1) =\frac{1}{I_x I_z - I_{xz}^2}((I_y I_z - I_z^2 -I{xz}^2)rq \\&\qquad +\, (I_x I_{xz} - I_y I_{xz} - I_z I_{xz})pq + I_z \text {QSl}(C_L^\beta \beta \\&\qquad +\, C_L^p p + C_L^r r) + I_{xz}\text {QSl}(C_N^\beta \beta + C_N^p p + C_N^r r)) \\&\varvec{f}_4(2) = \frac{1}{I_y}((I_z - I_x)pr -I_{xz}p^2 + I_{xz}r^2 \\&\qquad ~~~~~+\, \text {QSC}(C_M^0 + C_M^q q)) \\&\varvec{f}_4(3) = \frac{1}{I_x I_z - I_{xz}^2}((I_x^2 - I_x I_y + I_{xz}^2)pq \\&\qquad -\, (I_x I_{xz} - I_y I_{xz} - I_z I_{xz})rq + I_{xz} \text {QSl}(C_L^\beta \beta \\&\qquad +\, C_L^p p + C_L^r r) + I_x\text {QSl}(C_N^\beta \beta + C_N^p p + C_N^r r)) \\&\varvec{b}_4 = \varvec{b}_4(Q) \\&\quad = \text {QS}\begin{bmatrix} l\frac{I_z C_L^{\delta _a} + I_{xz}C_N^{\delta _a}}{I_xI_z - I^2_{xz}}&0&l \frac{I_zC_L^{\delta _r} + I_{xz}C_N^{\delta _r}}{I_xI_z - I^2_{xz}} \\ 0&c\frac{C_M^{\delta _e}}{I_y}&0 \\ l\frac{I_{xz} C_L^{\delta _a} + I_{x}C_N^{\delta _a}}{I_xI_z - I^2_{xz}}&0&l\frac{I_{xz} C_L^{\delta _r} + I_{x}C_N^{\delta _r}}{I_xI_z - I^2_{xz}} \end{bmatrix} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Z., Ma, Y., Zheng, Z. et al. Prescribed performance control for automatic carrier landing with disturbance. Nonlinear Dyn 94, 1335–1349 (2018). https://doi.org/10.1007/s11071-018-4427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4427-3

Keywords

Navigation