Skip to main content
Log in

Chaos in a tethered satellite system induced by atmospheric drag and Earth’s oblateness

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper describes the chaos behavior of an in-plane tethered satellite system induced by atmospheric drag and the Earth’s oblateness. A commonly used model, the dumbbell model, for tethered satellite systems is employed in this study. After taking the atmospheric drag and the Earth’s oblateness into account, the complicated dynamics of chaotic features are observed in the pitch motion of the dumbbell model. Afterward, the existence of the chaos is computed by transversal heteroclinic orbits, and accordingly, the parameter domain for the occurrence of chaos is obtained by the Melnikov function. Furthermore, a tether length control based on a sliding-mode controller is proposed to suppress the chaotic motion. Finally, the numerical simulations in this paper demonstrate the occurrence of the chaotic phenomenon and its control performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Modi, V.J., Lakshmanan, P.K., Misra, A.K.: Dynamics and control of tethered spacecraft: a brief overview. In: AIAA Dynamics Specialist Conference, Long Beach (1990)

  2. Kumar, K.D.: Review of dynamics and control of nonelectrodynamic tethered satellite systems. J. Spacecr. Rockets 43(4), 705–720 (2006)

    Article  Google Scholar 

  3. Sanmartín, J.R., Lorenzini, E.C., Martinez-Sanchez, M.: Electrodynamic tether applications and constraints. J. Spacecr. Rockets 47(3), 442–456 (2010)

    Article  Google Scholar 

  4. Huang, P.F., Zhang, F., Chen, L., Meng, Z.J., Zhang, Y.Z., Liu, Z.X., Hu, Y.X.: A review of space tether in new applications. Nonlinear Dyn. 94(1), 1–19 (2018)

    Article  Google Scholar 

  5. Misra, A.K., Nixon, M.S., Modi, V.J.: Nonlinear dynamics of two-body tethered satellite systems: constant length case. J. Astronaut. Sci. 49(2), 219–236 (2001)

    Article  MathSciNet  Google Scholar 

  6. Peláez, J., Andrés, Y.N.: Dynamic stability of electrodynamic tethers in inclined elliptical orbits. J. Guid. Control Dyn. 28(4), 611–622 (2005)

    Article  Google Scholar 

  7. Kojima, H., Sugimoto, T.: Stability analysis of in-plane and out-of-plane periodic motions of electrodynamic tether system in inclined elliptic orbit. Acta Astronaut. 65(3–4), 477–488 (2009)

    Article  Google Scholar 

  8. Jin, D.P., Wen, H., Chen, H.: Nonlinear resonance of a subsatellite on a short constant tether. Nonlinear Dyn. 71(3), 479–488 (2013)

    Article  MathSciNet  Google Scholar 

  9. Steindl, A.: Optimal control of the deployment (and retrieval) of a tethered satellite under small initial disturbances. Meccanica 49(8), 1879–1885 (2014)

    Article  MathSciNet  Google Scholar 

  10. Aslanov, V.S., Yudintsev, V.V.: Chaos in tethered tug-debris system induced by attitude oscillations of debris. J. Guid. Control Dyn. 42(7), 1630–1637 (2019)

    Article  Google Scholar 

  11. Steiner, W.: Transient chaotic oscillations of a tethered satellite system. Acta Mech. 127(1–4), 155–163 (1998)

    Article  Google Scholar 

  12. Peláez, J., Lara, M.: Periodic solutions in electrodynamic tethers on inclined orbits. J. Guid. Control Dyn. 26(3), 395–406 (2003)

    Article  Google Scholar 

  13. Nakanishi, K., Fujii, H.A.: Periodic motion of multi-compound-tether satellite system. In: Proceedings of 56th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Fukuoka (2005)

  14. Yu, B.S., Jin, D.P., Wen, H.: Nonlinear dynamics of flexible tethered satellite system subject to space environment. Appl. Math. Mech. (Engl. Ed.) 37(4), 485–500 (2016)

    Article  MathSciNet  Google Scholar 

  15. Aslanov, V.S.: Chaos behavior of space debris during tethered tow. J. Guid. Control Dyn. 39(10), 1–7 (2016)

    Article  MathSciNet  Google Scholar 

  16. Aslanov, V.S., Misra, A.K., Yudintsev, V.V.: Chaotic attitude motion of a low-thrust tug-debris tethered system in a Keplerian orbit. Acta Astronaut. 139(1), 419–427 (2017)

    Article  Google Scholar 

  17. Lian, X.B., Liu, J.F., Zhang, J.X., Wang, C.: Chaotic motion and control of a tethered-sailcraft system orbiting an asteroid. Commun. Nonlinear Sci. Numer. Simul. 77(1), 203–224 (2019)

    Article  MathSciNet  Google Scholar 

  18. Kojima, H., Furukawa, Y., Trivailo, P.M.: Experimental verification of periodic libration of tethered satellite system in elliptic orbit. J. Guid. Control Dyn. 34(2), 614–618 (2011)

    Article  Google Scholar 

  19. Pang, Z.J., Yu, B.S., Jin, D.P.: Chaotic motion analysis of a rigid spacecraft dragging a satellite by elastic tether. Acta Mech. 226(8), 2761–2771 (2015)

    Article  MathSciNet  Google Scholar 

  20. Williams, P.: Deployment/retrieval optimization for flexible tethered satellite systems. Nonlinear Dyn. 52(1–2), 159–179 (2008)

    Article  Google Scholar 

  21. Nakanishi, K., Kojima, H., Watanabe, T.: Trajectories of in-plane periodic solutions of tethered satellite system projected on van der Pol planes. Acta Astronaut. 68(7–8), 1024–1030 (2011)

    Article  Google Scholar 

  22. Steindl, A.: Optimal deployment of a tethered satellite using tension control. Int. Fed. Autom. Control Papersonline 48(1), 53–54 (2015)

    Google Scholar 

  23. Ma, Z.Q., Sun, G.H.: Adaptive sliding mode control of tethered satellite deployment with input limitation. Acta Astronaut. 127(1), 67–75 (2016)

    Article  Google Scholar 

  24. Ma, Z.Q., Zhu, Z.H., Sun, G.H.: Fractional-order sliding mode control for deployment of tethered spacecraft system. Proc. Inst. Mech. Engineers Part G J. Aerosp. Eng. 233(13), 4721–4734 (2019)

    Article  Google Scholar 

  25. Wang, C.Q., Wang, P.B., Li, A.J., Guo, Y.: Deployment of tethered satellites in low-eccentricity orbits using adaptive sliding mode control. J. Aerosp. Eng. 30(6), 04017077 (2017)

    Article  Google Scholar 

  26. Zhong, R., Wang, Y.: Dynamics and control of a probe tethered to an asteroid. J. Guid. Control Dyn. 41(7), 1583–1588 (2018)

    Article  Google Scholar 

  27. Razzaghi, P., Al, Khatib E., Bakhtiari, S.: Sliding mode and SDRE control laws on a tethered satellite system to de-orbit space debris. Adv. Space Res. 64(1), 18–27 (2019)

    Article  Google Scholar 

  28. COESA: U.S. standard atmosphere, 1976. USA Government Printing Office, Washington DC (1976)

  29. Zhong, R., Zhu, Z.H.: Libration dynamics and stability of electrodynamic tethers in satellite deorbit. Celest. Mech. Dyn. Astron. 116(3), 279–298 (2013)

    Article  MathSciNet  Google Scholar 

  30. Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Mosc. Math. Soc. 12(1), 1–57 (1963). (in Russian)

    MathSciNet  Google Scholar 

  31. Aslanov, V.S.: Chaotic behavior of the biharmonic dynamics system. Int. J. Math. Math. Sci. (2009). https://doi.org/10.1155/2009/319179

    Article  MathSciNet  MATH  Google Scholar 

  32. Aslanov, V.S.: Chaotic behavior of a body in a resistant medium. Int. J. Non-Linear Mech. 73(1), 85–93 (2015)

    Article  Google Scholar 

  33. Iñarrea, M., Lanchares, V.: Chaotic pitch motion of an asymmetric non-rigid spacecraft with viscous drag in circular orbit. Int. J. Non-Linear Mech. 41(1), 86–100 (2006)

    Article  Google Scholar 

  34. Arnold, V.I.: Instability of dynamical systems with several degrees of freedom. Soviet Math Doklady 5(1), 581–585 (1964)

    Google Scholar 

  35. Storch, J.A.: Aerodynamic disturbances on spacecraft in free-molecular flow. The Aerospace Corporation. 2002, El Segundo, Report No.TR-2003(3397)-1

  36. Beletsky, V.V., Levin, E.M.: Dynamics of Space Tether Systems. Advances in the Astronautical Sciences. American Astronautical Society, San Diego (1998)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (11672125, 11902145 and 11732006), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (NUAA, MCMS-I-0120G03), the Research Fund of State Key Laboratory of Structural Analysis for Industrial Equipment (DUT, GZ18115), and the Manned Space Flight Pre-research Project (060101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B.S., Xu, S.D. & Jin, D.P. Chaos in a tethered satellite system induced by atmospheric drag and Earth’s oblateness. Nonlinear Dyn 101, 1233–1244 (2020). https://doi.org/10.1007/s11071-020-05844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05844-8

Keywords

Navigation