Skip to main content
Log in

Libration dynamics and stability of electrodynamic tethers in satellite deorbit

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper studies libration dynamics and stability of deorbiting nano-satellites by short and bare electrodynamic tethers. A critical aspect of satellite deorbit by an electrodynamic tether is to maintain the tether aligned with the local vertical and stable while subjected to external perturbations. The dynamics of electrodynamic tether system in deorbit application is divided into the orbital motion of the center of system’s mass and the tether libration motion relative to that center. Major space environmental perturbations including the current-induced electrodynamic force, atmospheric drag, oblateness effect of the Earth, irregularity of geomagnetic field, variable plasma density, solar radiation pressure, and lunisolar gravitational attractions are considered in the dynamic analysis. Quantitative analyses are provided in order to characterize the order of the perturbative torques during the deorbit process. A single index is derived from the libration energy to stabilize the libration motion by regulating the current in the tether through simple on-off switching. Numerical results show that the libration dynamics of an electrodynamic tether has significant impacts on the deorbit process and the electrodynamic tether cannot effectively deorbit satellites without libration stability control. The proposed current regulation strategy is simple and very effective in stabilizing libration motion of an electrodynamic tether.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aguero, V., Adamo, R.C.: Experimental results of testing electron field emission cathodes for spacecraft applications. In: Harris, R.A. (ed.) Spacecraft Charging Technology, Proceedings of the Seventh International Conference, ESTEC, pp. 383–388. Noordwijk. The Netherlands (2001)

  • Ahedo, E., Sanmartin, J.R.: Analysis of bare-tether systems for deorbiting low-earth-orbit satellites. J. Spacecr. Rockets 39(2), 198–205 (2002)

    Article  ADS  Google Scholar 

  • Bancelin, D., Hestroffer, D., Thuillot, W.: Numerical integration of dynamical systems with Lie series–relativistic acceleration and non-gravitational forces. Celest. Mech. Dyn. Astron. 112, 221–234 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  • Bilitza, D., Reinisch, B.W.: International reference ionosphere 2007: improvements and new parameters. Adv. Space Res 42(4), 599–609 (2008)

    Article  ADS  Google Scholar 

  • Corsi, J., Iess, L.: Stability and control of electrodynamic tethers for de-orbiting application. Acta Astronautica 48(5–12), 491–501 (2001)

    Article  ADS  Google Scholar 

  • Curtis, H.D.: Orbital Mechanics for Engineering Students. Elsevier Butterworth-Heinemann, Oxford (1988)

    Google Scholar 

  • Davis, J.: Mathematical Modeling of Earth’s Magnetic Field. Technical Note. Virginia Tech., Blacksburg (2004)

  • Hoyt, R.P., Forward, R.L.: Performance of the terminator tether for autonomous deorbit of LEO spacecraft. In: 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. AIAA, Los Angeles, pp. 99–2839 (1999)

  • Hoyt, R.P.: Stabilization of Electrodynamic Space Tethers. Tethers Unlimited, Inc., Lynnwood (2001)

    Google Scholar 

  • Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1986)

    Google Scholar 

  • Iñarrea, M., Peláez, J.: Libration control of electrodynamic tethers using the extended time-delayed autosynchronization method. J. Guid. Control Dyn. 33(3), 923–933 (2011)

    Article  Google Scholar 

  • Jablonski, A.M., Scott, R.: Deorbiting of microsatellites in low earth orbit (LEO)–an introduction. Can. Aeronaut. Space J. 55(2), 55–67 (2009)

    Article  Google Scholar 

  • James, R.W.: Spacecraft Attitude Determination and Control. D. Reidel Publishing Company, Boston (1978)

    Google Scholar 

  • Kojima, H., Iwashima, H., Trivailo, P.M.: Libration synchronization control of clustered electrodynamic tether system using kuramoto model. J. Guid. Control Dyn. 34(3), 706–718 (2011)

    Article  Google Scholar 

  • Kristiansen, K.U., Palmer, P.L., Roberts, R.M.: Numerical modelling of elastic space tethers. Celest. Mech. Dyn. Astron. 113(2), 235–254 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  • Lanoix, E.L.M., Misra, A.K., Modi, V.J., Tyc, G.: Effect of electrodynamic forces on the orbital dynamics of tethered satellites. J. Guid. Control Dyn. 28(6), 1309–1315 (2005)

    Article  Google Scholar 

  • Larsen, M.B., Blanke, M.: Passivity-based control of a rigid electrodynamic tether. J. Mech. Sci. Technol. 25(1), 97–102 (2011)

    Article  Google Scholar 

  • Levin, E., Pearson, J., Carroll, J.: Wholesale debris removal from LEO. Acta Astronautica 70, 100–108 (2012)

    Article  ADS  Google Scholar 

  • Mankala, K.K., Agrawal, S.K.: Equilibrium to equilibrium maneuvers of flexible electrodynamic tethers in equatorial orbits. J. Spacecr. Rockets 43(3), 651–658 (2006)

    Article  ADS  Google Scholar 

  • NASA: Earth Fact Sheet, http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html. (visited, 7 Aug 2012)

  • NOAA, NASA, USAF: The U.S. Standard Atmosphere, U.S. Printing Office, Washington DC (1976)

  • Pardini, C., et al.: Are de-orbiting missions possible using electrodynamic tethers? Task review from the space debris perspective. Acta Astronautica 60(10–11), 916–929 (2007)

    Article  ADS  Google Scholar 

  • Pelaez, J., Lopez-Rebollal, O., Ruiz, M., et al.: On the radial oscillation of an electrodynamic tether. In: 9th Annual Space Flight Mechanics Meeting. Breckenridge, CO (1999)

  • Pelaez, J., et al.: A new kind of dynamic instability in electrodynamic tethers. J. Astronaut. Sci. 48(4), 449–476 (2000)

    Google Scholar 

  • Pelaez, J., Lorenzini, E.: Libration control of electrodynamic tethers in inclined orbit. J. Guid. Control Dyn. 28(2), 269–279 (2005)

    Article  Google Scholar 

  • Sanmartin, J.R., Martinez-Sanchez, M., Ahedo, E.: Bare wire anodes for electrodynamic tethers. J. Propuls. Power 9(3), 353–360 (1993)

    Article  ADS  Google Scholar 

  • Sidorenko, V.V., Celletti, A.: A “Spring-mass” model of tethered satellite systems: properties of planar periodic motions. Celest. Mech. Dyn. Astron. 107(1–2), 209–231 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Somenzi, L., Iess, L., Pelaez, J.: Linear stability analysis of electrodynamic tethers. J. Guid. Control Dyn. 28(5), 843–849 (2005)

    Article  Google Scholar 

  • Storch, J. A.: Aerodynamic Disturbances on Spacecraft in Free-Molecular Flow. The Aerospace Corporation. El Segundo, CA, Report NO. TR-2003(3397)-1 (2002)

  • Takeichi, N.: Practical operation strategy for deorbit of an electrodynamic tethered system. J. Spacecr. Rockets 43(6), 1283–1288 (2006)

    Article  ADS  Google Scholar 

  • Uphoff, C., Forward, R.L., Hoyt, R.P.: The ‘Terminator Tether’: an efficient mechanism for end-of-life deorbit of constellation spacecraft. In: VanDerHa, J.C. (ed.) Mission Design & Implementation of Satellite Constellations, vol. 1, pp. 347–365. Toulouse, France, Netherlands (1998)

  • U.S. Nautical Almanac Office: The Astronomical Almanac. Washington, DC (1996)

  • Williams, P.: Energy rate feedback for libration control of electrodynamic tethers. J. Guid. Control Dyn. 29(1), 221–223 (2006)

    Article  Google Scholar 

  • Williams, P.: Electrodynamic tethers under forced-current variations part 1: periodic solutions for tether librations. J. Spacecr. Rockets 47(2), 308–319 (2010)

    Article  ADS  Google Scholar 

  • Xu, D., Kong, X., Liao, J., et al.: Dynamic modeling and simulation of electrodynamic tether system in stationkeeping phase. J. Mech. Sci. Technol. 25(1), 97–102 (2011)

    Article  Google Scholar 

  • Zhong, R., Zhu, Z.H.: Dynamics of nano-satellite deorbit by bare electrodynamic tether in low earth orbit. J. Spacecr. Rockets, doi:10.2514/1.A32336 (To be published) (2013)

  • Zhu, Z.H., Meguid, S.A.: Vibration analysis of a new curved beam element. J. Sound Vib. 309(1–2), 86–95 (2008)

    Article  ADS  Google Scholar 

  • Zhu, Z.H., Zhong, R.: Deorbiting dynamics of electrodynamic tether. Int. J. Aerosp. Lightweight Struct. 1(1), 47–66 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Discovery Grant of Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, R., Zhu, Z.H. Libration dynamics and stability of electrodynamic tethers in satellite deorbit. Celest Mech Dyn Astr 116, 279–298 (2013). https://doi.org/10.1007/s10569-013-9489-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-013-9489-4

Keywords

Navigation