Skip to main content
Log in

Nonlinear model of the firefly flash

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A low dimensional nonlinear model based on the basic lighting mechanism of a firefly is proposed (Saikia and Bora in Nonlinear model of the firefly flash. http://export.arxiv.org/pdf/2002.01183). The basic assumption is that the firefly lighting cycle can be thought to be a nonlinear oscillator with a robust periodic cycle. We base our hypothesis on the well-known light producing reactions involving enzymes, common to many insect species, including the fireflies. We compare our numerical findings with the available experimental results which correctly predicts the reaction rates of the underlying chemical reactions. Toward the end, a time-delay effect is introduced for possible explanation of appearance of multiple-peak light pulses, especially when the ambient temperature becomes low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agah, A., et al.: A multi-enzyme model for pyrosequencing. Nucleic Acids Res. 32(21), e166 (2004)

    Google Scholar 

  2. Airth, R.L., Foerster, G.E.: The isolation of catalytic components required for cell-free fungal bioluminescence. Arch. Biochem. Biophys. 97(3), 567–573 (1962)

    Google Scholar 

  3. an der Heiden, U.: Delays in physiological systems. J. Math. Biol. 8, 345–364 (1979)

    MathSciNet  MATH  Google Scholar 

  4. Ando, Y., et al.: Firefly bioluminescence quantum yield and colour change by pH-sensitive green emission. Nat. Photon. 2, 44–47 (2008)

    Google Scholar 

  5. Aprille, J.R., et al.: Role of nitric oxide and mitochondria in control of firefly flash. Integr. Comput. Biol. 44(3), 213–219 (2004)

    Google Scholar 

  6. Bi, W.X., He, J.W., Chen, C.C., Kundrata, R., Li, X.Y.: Sinopyrophorinae, a new subfamily of elateridae (coleoptera, elateroidea) with the first record of a luminous click beetle in asia and evidence for multiple origins of bioluminescence in elateridae. ZooKeys 864, 79–97 (2019)

    Google Scholar 

  7. Branchini, B.R., Magyar, R.A., Murtiashaw, M.H., Portier, N.C.: The role of active site residue arginine 218 in firefly luciferase bioluminescence. Biochemistry 40, 2410–2418 (2001)

    Google Scholar 

  8. Branchini, B.R., Murtiashaw, M.H., Magyar, R.A., Portier, N.C., Ruggiero, M.C., Stroh, J.G.: Yellow-green and red firefly bioluminescence from 5,5-dimethyloxyluciferin. J. Am. Chem. Soc. 124, 2112–2113 (2002)

    Google Scholar 

  9. Branchini, B.R., Southworth, T.L., Khattak, N.F., Michelini, E., Roda, A.: Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal. Biochem. 345, 140–148 (2005)

    Google Scholar 

  10. Buck, J., Buck, E.: Synchronous fireflies. Sci. Am. 234(5), 74–85 (1976)

    Google Scholar 

  11. Capinera, J.L.: Encyclopedia of entomology. Springer, Berlin (2008)

    Google Scholar 

  12. Davis, M.P., Sparks, J.S., Smith, W.L.: Repeated and widespread evolution of bioluminescence in marine fishes. PLoS ONE 11(6), e0155154 (2016)

    Google Scholar 

  13. Day, J.C., Tisi, L.C., Bailey, M.J.: Evolution of beetle bioluminescence: the origin of beetle luciferin. Luminescence 19(1), 8–20 (2004)

    Google Scholar 

  14. Ermentrout, B.: An adaptive model for synchrony in the firefly Pteroptyx malaccae. J. Math. Biol. 29, 571–585 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Fallon, T.R., et al.: Firefly genomes illuminate parallel origins of bioluminescence in beetles. Elife 7, e36495 (2018)

    Google Scholar 

  16. Fan, F., Binkowski, B.F., Butler, B.L., Stecha, P.F., Lewis, M.K., Wood, K.V.: Novel genetically encoded biosensors using firefly luciferase. ACS Chem. Biol. 3(6), 346–351 (2008)

    Google Scholar 

  17. Fraga, H.: Firefly luminescence: a historical perspective and recent developments. Photochem. Photobiol. Sci. 7(2), 146–158 (2008)

    Google Scholar 

  18. Goswami, A., Phukan, P., Barua, A.G.: Manifestation of peaks in a live firefly flash. J. Fluoresc. 29, 505–513 (2019)

    Google Scholar 

  19. Gould, S.J., Subramani, S.: Firefly luciferase as a tool in molecular and cell biology. Anal. Biochem. 175(1), 5–13 (1988)

    Google Scholar 

  20. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)

    MATH  Google Scholar 

  21. Hastings, J.W., McElroy, W.D., Coulombre, J.: The effect of oxygen upon the immobilization reaction in firefly luminescence. J. Cell. Physiol. 42(1), 137–150 (1953)

    Google Scholar 

  22. Hirano, T., Hasumi, Y., Ohtsuka, K., Maki, S., Niwa, H., Yamaji, M., Hashizume, D.: Spectroscopic studies of the light-color modulation mechanism of firefly (beetle) bioluminescence. J. Am. Chem. Soc. 131, 2385–2396 (2009)

    Google Scholar 

  23. House, J.E.: Principles of Chemical Kinetics. Academic Press, New York (2007)

    Google Scholar 

  24. Kashova, Z.M., et al.: Mechanism and color modulation of fungal bioluminescence. Sci. Adv. 3, e1602847 (2017)

    Google Scholar 

  25. Kricka, L.J.: Chemiluminescent and bioluminescent techniques. Clin. Chem. 37(9), 1472–1481 (1991)

    Google Scholar 

  26. Lakshmanan, M., Senthilkumar, D.V.: Dynamics of Nonlinear Time-Delay Systems. Springer, Berlin (2011)

    MATH  Google Scholar 

  27. McCapra, F.: Chemical mechanisms in bioluminescence. Acc. Chem. Res. 9(6), 201–208 (1976)

    Google Scholar 

  28. McElroy, W.D., Seliger, H.H., White, E.H.: Mechanism of bioluminescence, chemiluminescence and enzyme function in the oxidation of firefly luciferin. Photochem. Photobiol. 10, 153–170 (1969)

    Google Scholar 

  29. Meighen, E.A.: Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55(1), 123–142 (1991)

    Google Scholar 

  30. Mezzanotte, L., van ‘t Root, M., Karatas, H., Goun, E.A., Löwik, C.W.G.M.: In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol. 35(7), 640–652 (2017)

    Google Scholar 

  31. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)

    MathSciNet  MATH  Google Scholar 

  32. Moiseff, A., Copeland, J.: A new type of synchronized flashing in a north american firefly. J. Insect Behav. 13(4), 597–612 (2000)

    Google Scholar 

  33. Okada, K., et al.: Firefly bioluminescence III. Conversion of oxyluciferin to luciferin in firefly. Tetrahedron Lett. 15(32), 2771–2774 (1974)

    Google Scholar 

  34. Oliveira, A.G., Stevani, C.V.: The enzymatic nature of fungal bioluminescence. Photochem. Photobiol. Sci. 8(10), 1416–1421 (2009)

    Google Scholar 

  35. Orosz, G., Moehlis, J., Murray, R.M.: Controlling biological networks by time-delayed signals. Philos. Trans. R. Soc. A 368, 439–454 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Ow, D.W., et al.: Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234(4778), 856–859 (1986)

    Google Scholar 

  37. Rabha, M.M., et al.: Bioluminescence emissions of female fireflies of the species luciola praeusta. J. Photochem. Photobiol. B 170, 134–139 (2017)

    Google Scholar 

  38. Rand, R.: Complex Systems : Fractionality, Time-Delay and Synchronization, Chapter 3, pp. 83–117. Springer, Berlin (2012)

    Google Scholar 

  39. Roussel, M.R.: Nonlinear Dynamics : A Hands-on Introductory Survey. IOP, Bristol (2019)

    MATH  Google Scholar 

  40. Saikia, D., Bora, M.P.: Nonlinear model of the firefly flash. http://export.arxiv.org/pdf/2002.01183

  41. Seliger, H.H., McElroy, W.D.: The colors of firefly bioluminescence: enzyme configuration and species specificity. Proc. Natl. Acad. Sci. USA 52(1), 75–81 (1964)

    Google Scholar 

  42. Sharma, U., et al.: Temperature dependence of the flash duration of the firefly luciola praeusta. Photochem. Photobiol. Sci. 13(12), 1788–1792 (2014)

    Google Scholar 

  43. Shimomura, O., Johnson, F.H., Kohama, Y.: Reactions involved in bioluminescence systems of limpet (Latia neritoides) and luminous bacteria. Proc. Natl. Acad. Sci. USA 69(8), 2086–2089 (1972)

    Google Scholar 

  44. Side, D.D., Nassisi, V., Pennetta, C., Alifano, P., Salvo, M.D., Talà, A., Chechkin, A., Seno, F., Trovato, A.: Bacterial bioluminescence onset and quenching: a dynamical model for a quorum sensing-mediated property. R. Soc. Open Sci. 4, 171586 (2017)

    Google Scholar 

  45. Smith, H.M.: Synchronous flashing of fireflies. Science 82(2120), 151–152 (1935)

    Google Scholar 

  46. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, Boca Raton (2018)

    MATH  Google Scholar 

  47. Trimmer, B.A., et al.: Nitric oxide and the control of firefly flashing. Science 292(5526), 2486–2488 (2001)

    Google Scholar 

  48. Tsai, Y.L., et al.: Firefly light flashing: oxygen supply mechanism. Phys. Rev. Lett. 113(25), 258103 (2014)

    Google Scholar 

  49. Tyrrell, A., Auer, G., Bettstetter, C.: Fireflies as role models for synchronization in ad hoc networks (2006)

  50. Wood, K.V.: The chemical mechanism and evolutionary development of beetle bioluminescence. Photochem. Photobiol. 62(4), 662–673 (1995)

    Google Scholar 

  51. Wu, X., Chen, Q., Sun, Y., Fan, X.: Bio-inspired optofluidic lasers with luciferin. Appl. Phys. Lett. 102, 203706 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was carried out with a support from the SERB-DST (India) research Grant No. CRG/2018/002971. Necessary computational facilities, in part, are provided through institutional FIST support (DST, India). It is a pleasure to thank Abhijit Sen of IPR (India) for critical comments during the course of this revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhurjya P. Bora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Approximation of a DDE system

As we know that a dynamical system with time delay is basically an infinite dimensional system, the delay system can be reduced to a set of N ordinary differential equations, where N is a large positive integer [26].

Consider our DDE with two delays \(\tau _{1,2}\),

$$\begin{aligned} \frac{\mathrm{d}x}{\mathrm{d}t}= & {} f[x(t),x(t-\tau _{1}),x(t-\tau _{2}),y(t)], \end{aligned}$$
(69)
$$\begin{aligned} \frac{\mathrm{d}y}{\mathrm{d}t}= & {} g[x(t),y(t)], \end{aligned}$$
(70)

assuming \(\tau _{1}>\tau _{2}\) numerically. We now divide the larger of the delay into N different discrete divisions, each of size \({\varDelta }t\) such that \({\varDelta }t=\tau _{1}/N\) or equivalently \(N=\tau _{1}/{\varDelta }t\). As \(N\gg 1\), \({\varDelta }t\) is very small so that we have,

$$\begin{aligned}&x(t+{\varDelta }t) \nonumber \\&\quad \simeq x(t)+{\varDelta }t \nonumber \\&\qquad f[x(t),x(t-N{\varDelta }t),x(t-M{\varDelta }t),y(t)], \end{aligned}$$
(71)

where \(M\,(<N)\) is an integer such that \(M=\tau _{2}/{\varDelta }t\) (please see explanation about M at the end of this section). Denoting now the values of x(t) at a discrete time \(t_{j}\) as \(x_{j}(t)\), we have,

$$\begin{aligned} x_{j+1}(t)=x_{j}(t-{\varDelta }t), \end{aligned}$$
(72)

which can be written as

$$\begin{aligned} x_{j+N}(t)= & {} x_{j}(t-N{\varDelta }t),\nonumber \\ \Rightarrow x_{N}(t)= & {} x_{0}(t-N{\varDelta }t), \end{aligned}$$
(73)

so that we can have now

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}x_{0}(t)=f[x_{0}(t),x_{N}(t),x_{M}(t),y(t)]. \end{aligned}$$
(74)

Following this prescription, we can now write the original DDE system as,

$$\begin{aligned} \frac{\mathrm{d}x_{0}}{\mathrm{d}t}= & {} f(x_{0},x_{N},x_{M},y), \end{aligned}$$
(75)
$$\begin{aligned} \frac{\mathrm{d}x_{j}}{\mathrm{d}t}= & {} \frac{N}{2\tau _{1}}(x_{j-1}-x_{j+1}),\quad 1\le j\le N-1, \end{aligned}$$
(76)
$$\begin{aligned} \frac{\mathrm{d}x_{N}}{\mathrm{d}t}= & {} \frac{N}{\tau _{1}}(x_{N-1}-x_{N}), \end{aligned}$$
(77)
$$\begin{aligned} \frac{\mathrm{d}y}{\mathrm{d}t}= & {} g(x_{0},y), \end{aligned}$$
(78)

for \(N\gg 1\), which can now be solved with any standard method. For \(N\rightarrow \infty \), the above system will reduce to the original DDEs.

One important point to be noted here about the value of N. While any large positive integer as a value of N will do for a single delay DDE system, for a system with double delays such as in our case, it is important that the difference between the two delays \((\tau _{1}-\tau _{2})\), assuming \(\tau _{1}>\tau _{2}\), is exactly divisible by \({\varDelta }\text {t}\) for the chosen value of N. This is required as we have now divided the entire time interval \([0,\tau _{1}]\) into discrete divisions, the smaller of the delays, which in this case is \(\tau _{2}\) falls exactly at one node, otherwise the discrete set of equations will not maintain the analytical difference between the delays for small values of N. In our chosen set of values of \(\tau _{1}=2.53\) and \(\tau _{2}=2.3\), N should be a multiple of 11. If the difference between the delays is not exactly divisible by \({\varDelta }t\), N should be large enough to make the this difference equivalent to the analytical value, otherwise even a small value of N gives quite good results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saikia, D., Bora, M.P. Nonlinear model of the firefly flash. Nonlinear Dyn 101, 1301–1315 (2020). https://doi.org/10.1007/s11071-020-05830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05830-0

Keywords

Navigation