Skip to main content
Log in

Canard-induced mixed-mode oscillations and bifurcation analysis in a reduced 3D pyramidal cell model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study entails investigation of mixed-mode oscillations (MMOs) with a conductance-based pyramidal cell (PC) model located in the entorhinal cortex layer V. This six-dimensional neuron model was reduced to three dimensions by analysis of the voltage-dependent timescales to illustrate a regime in which the MMOs are generated. Additionally, the mechanism of generation of the MMOs under antiepileptic drug conditions was illustrated in the 3D PC model. Combined with geometric singular perturbation theory (GSPT), this work shows that there is a range of parameters under which the reduced model explains the emergence of MMOs caused by an underlying canard phenomenon. In particular, we theoretically calculate the number of subthreshold oscillations using the relationship with the eigenvalue ratio of the singular perturbation system at the folded singular node, which is consistent with numerical simulations. Furthermore, a slow–fast dynamics analysis of the 3D PC model is performed, where two slow/one fast and one slow/two fast systems with the layer problem and the reduced problem are considered to explain the trajectory on the critical manifold. General one- and two-parameter bifurcation types are also discussed in this work. The first Lyapunov coefficient of the Hopf bifurcation can decide whether the bifurcation is supercritical or subcritical. Bogdanov–Takens (BT) bifurcation was also analyzed in this study and associated with three bifurcation curves near the BT point. Finally, studies on the GSPT and bifurcation analysis are of great importance for further understanding the complex dynamic behaviors and crucial roles of the signal transmission and information processing pathways of the biological nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Maselko, J.: Experimental study of the bifurcation diagram in the Belousov–Zhabotinskii reaction. React. Kinet. Cat. Lett. 15(2), 197–201 (1980)

    Google Scholar 

  2. Petrov, V., Scott, S.K., Showalter, K.: Mixed-mode oscillations in chemical systems. J. Chem. Phys. 97, 6191–6198 (1992)

    Google Scholar 

  3. Klink, R.M., Alonso, A.: Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J. Neurophysiol. 70, 128–143 (1993)

    Google Scholar 

  4. Koper, M.T.M.: Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram. Phys. D 80, 72–94 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Milik, A., Szmolyan, P., Loeffelmann, H., Groeller, E.: Geometry of mixed-mode oscillations in the 3-D autocatalator. Int. J. Bifurc. Chaos 8, 505–519 (1998)

    MATH  Google Scholar 

  6. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  7. Rubin, J., Wechselberger, M.: Giant squidhidden canard: the 3D geometry of the Hodgkin–Huxley model. Biol. Cybern. 97, 5–32 (2007)

    MATH  Google Scholar 

  8. Rubin, J., Wechselberger, M.: The selection of mixed-mode oscillations in a Hodgkin–Huxley model with multiple timescales. Chaos 18(1), 015105 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Desroches, M., Krauskopf, B., Osinga, H.M.: Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh–Nagumo system. Chaos 18, 015107 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Krupa, M., Jonathan, D.T.: Complex oscillations in the delayed FitzHugh–Nagumo equation. J. Nonlinear Sci. 26, 43–81 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Rotstein, H.G., Wechselberger, M., Kopell, N.: Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model. SIAM J. Appl. Dyn. Syst. 7, 1582–1611 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Wechselberger, M., Weckesser, W.: Homoclinic clusters and chaos associated with a folded node in a stellate cell model. Discrete Contin. Dyn. Syst. Ser. S 2, 829–850 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Wechselberger, M., Weckesser, W.: Bifurcations of mixed-mode oscillations in a stellate cell model. Phys. D 238, 1598–1614 (2009)

    MATH  Google Scholar 

  14. Agrawal, N., Hamam, B., Magistretti, J., Alonso, A., Ragsdale, D.: Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons. Neuroscience 102(1), 53–64 (2001)

    Google Scholar 

  15. Fransen, E., Tahvildari, B., Egorov, A., Hasselmo, M., Alonso, A.: Mechanism of graded persistent cellular activity of entorhinal cortex layer V neurons. Neuron 49, 735–746 (2006)

    Google Scholar 

  16. Acker, C., Kopell, N., White, J.: Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics. J. Comput. Neurosci. 15, 71–90 (2003)

    Google Scholar 

  17. Jalics, J., Krupa, M., Rotstein, H.G.: Mixed-mode oscillations in a three time-scale system of ODEs motivated by a neuronal model. Dyn. Syst. 25, 445–482 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Dickson, C., Magistretti, J., Shalinsky, H., Haman, B., Alonso, A.: Oscillatory activity in entorhinal neurons and circuits. Ann. Acad. Sci. 911, 127–150 (2000)

    Google Scholar 

  19. Yoshida, M., Alonso, A.: Cell-type specific modulation of intrinsic firing properties and subthreshold membrane oscillations by the M(Kv7)-current in neurons of the entorhinal cortex. J. Neurophysiol. 98, 2779–2794 (2007)

    Google Scholar 

  20. Ghaffari, B., Kouhnavard, M., Elbasiouny, S.M.: Mixed-mode oscillations in pyramidal neurons under antiepileptic drug conditions. PLoS ONE 12(6), e0178244 (2017)

    Google Scholar 

  21. Desroches, M., Guckenheimer, J., Krauskopf, B.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54(2), 211–288 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    MathSciNet  MATH  Google Scholar 

  23. Benoit, E., Callot, J.L., Diener, F., Diener, M.: Chasse au canard. Collect. Math. 32, 37–119 (1981)

    MathSciNet  MATH  Google Scholar 

  24. Wechselberger, M.: Existence and bifurcation of canards in \(R^3\) in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4, 101–139 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312–368 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Larter, R., Steinmetz, C.G.: Chaos via mixed-mode oscillations. Phil. Trans. R. Soc. Lond. A 337, 291–298 (1991)

    MATH  Google Scholar 

  27. Jones, C.K.R.T.: Geometric Singular Perturbation Theory in Dynamical Systems (Montecatini Terme, 1994). Springer, New York (1995)

    Google Scholar 

  28. Goryachev, A., Strizhak, P., Kapral, R.: Slow manifold structure and the emergence of mixed-mode oscillations. J. Chem. Phys. 107, 2881–2889 (1997)

    Google Scholar 

  29. Brøns, M., Krupa, M., Wechselberger, M.: Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst. Commun. 49, 39–63 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions. SIAM J. Math. Anal. 33, 286–314 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Krupa, M., Popović, N., Kopell, N., Rotstein, H.G.: Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos 18, 015106 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Krupa, M., Popović, N., Kopell, N.: Mixed-mode oscillations in three time-scale systems: a prototypical example. SIAM J. Appl. Dyn. Syst. 7, 361–420 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Desroches, M., Krauskopf, B., Osinga, H.M.: The geometry of slow manifolds near a folded node. SIAM J. Appl. Dyn. Syst. 7, 1131–1162 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Krupa, M., Wechselberger, M.: Local analysis near a folded saddle-node singularity. J. Differ. Equ. 248, 2841–2888 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Vo, T., Bertram, R., Tabak, J., Wechselberger, M.: Mixed-mode oscillations as a mechanism for pseudo-plateau bursting. J. Comput. Neurosci. 28, 443–458 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Vo, T., Bertram, R., Wechselberger, M.: Multiple geometric viewpoints of mixed mode dynamics associated with pseudo-plateau bursting. SIAM J. Appl. Dyn. Syst. 12(2), 789–830 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Ermentrout, B., Wechselberger, M.: Canards, clusters and synchronization in a weakly coupled interneuron model. SIAM J. Appl. Dyn. Syst. 8, 253–278 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Rinzel, J., Lee, Y.S.: Dissection of a model for neuronal parabolic bursting. J. Math. Biol. 25(6), 653–675 (1987)

    MathSciNet  MATH  Google Scholar 

  39. Larter, R., Steinmetz, C.G., Aguda, B.: Fast-slow variable analysis of the transition to mixed-mode oscillations and chaos in the peroxidase reaction. J. Chem. Phys. 89, 6506–6514 (1988)

    Google Scholar 

  40. Braaksma, B.: Singular Hopf bifurcation in systems with fast and slow variables. J. Nonlinear Sci. 8, 457–490 (1998)

    MathSciNet  MATH  Google Scholar 

  41. England, J.P., Krauskopf, B., Osinga, H.M.: Computing two-dimensional global invariant manifolds in slow-fast systems. Int. J. Bifurc. Chaos 17, 805–822 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Baer, S.M., Erneux, T.: Singular Hopf bifurcation to relaxation oscillations II. SIAM J. Appl. Math. 52, 1651–1664 (1992)

    MathSciNet  MATH  Google Scholar 

  43. Krupa, M., Ambrosio, B., Aziz-Alaoui, M.A.: Weakly coupled two-slow–two-fast systems, folded singularities and mixed mode oscillations. Nonlinearity 27, 1555–1574 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Lu, B., Liu, S., Liu, X., Jiang, X., Wang, X.: Bifurcation and spike adding transition in Chay–Keizer model. Int. J. Bifurc. Chaos 26(5), 1650090 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Wang, J., Lu, B., Liu, S., Jiang, X.: Bursting types and bifurcation analysis in the Pre-Bötzinger complex respiratory rhythm neuron. Int. J. Bifurc. Chaos 27(01), 231–245 (2017)

    MATH  Google Scholar 

  46. Zhan, F., Liu, S., Zhang, X., Wang, J., Lu, B.: Mixed-mode oscillations and bifurcation analysis in a pituitary model. Nonlinear Dyn. 94(2), 807–826 (2018)

    Google Scholar 

  47. Guckenheimer, J., Warrick, R.H., Peck, J., Willms, A.R.: Bifurcation, bursting, and spike frequency adaptation. J. Comput. Neurosci. 4, 257–277 (1997)

    MATH  Google Scholar 

  48. Mondal, A., Upadhyay, R.K., Ma, J., Yadav, B.K., Sharma, S.K., Mondal, A.: Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn. Neurodyn. 13(4), 393–407 (2019)

    Google Scholar 

  49. Izhikevich, E.: Neural excitability, spiking, and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Izhikevich, E.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. MIT Press, Cambridge (2006)

    Google Scholar 

  51. Carrillo, F.A., Verduzco, F., Delgado, J.: Analysis of the Takens–Bogdanov bifurcation on m-parameterized vector fields. Int. J. Bifurc. Chaos 20, 995–1005 (2010)

    MathSciNet  MATH  Google Scholar 

  52. Desroches, M., Kaper, T.J., Krupa, M.: Mixed-mode bursting oscillations: dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster. Chaos 23, 046106 (2013)

    MathSciNet  MATH  Google Scholar 

  53. Vo, T., Tabak, J., Bertram, R., Wechselberger, M.: A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells. J. Comput. Neurosci. 36(2), 259–278 (2014)

    MathSciNet  MATH  Google Scholar 

  54. Oseledec, V.I.: A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–231 (1968)

    MathSciNet  Google Scholar 

  55. Dzyubak, L., Dzyubak, O., Awrejcewicz, J.: Controlling and stabilizing unpredictable behaviour of metabolic reactions and carcinogenesis in biological systems. J. Nonlinear Dyn. 97, 1853–1866 (2019)

    Google Scholar 

  56. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)

    MATH  Google Scholar 

  57. Kevorkian, J., Cole, J.D.: Multiple Scale and Singular Perturbation Methods. Springer, New York (1996)

    MATH  Google Scholar 

  58. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29, 141–164 (2003)

    MathSciNet  MATH  Google Scholar 

  59. Mishchenko, E.F., Kolesov, Y.S., Kolesov, A.Y., Rhozov, N.K.: Asymptoticmethods in Singularly Perturbed Systems. Monographs in Contemporary Mathematics. Consultants Bureau, New York (1994)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the referees for providing valuable comments for this paper. We very much appreciate the support of the National Natural Science Foundation of China.

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11872183 and 11572127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Shenquan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

First, we rewrite the system for Eq. (4) as

$$\begin{aligned} \left\{ \begin{aligned}&\displaystyle \dot{V}=F_1(V,m_{k_s},n),\\&\dot{m_{k_s}}=F_2(V,m_{k_s}),\\&\dot{n}=F_3(V,n) \end{aligned}\right. \end{aligned}$$
(61)

where

$$\begin{aligned} \left\{ \begin{aligned} \displaystyle F_1&=\frac{1}{C}[I_\mathrm{app}-g_\mathrm{ks}m_{k_s}(V-E_\mathrm{K})\\&\quad -g_\mathrm{Nap}m_\mathrm{Nap_{\infty }}(V-E_\mathrm{Na})-g_Kn^4(V-E_\mathrm{Na})\\&\quad -g_\mathrm{Na}m^3_\mathrm{Na_{\infty }}(V)h_\mathrm{Na_{\infty }}(V)(V-E_\mathrm{Na})\\&\quad -g_\mathrm{L}(V-E_\mathrm{L})],\\ F_2&=\frac{m_{k_s\infty }(V)-m_{k_s}}{\tau _{k_s}(V)},\\ F_3&=\frac{n_{\infty }(V)-n}{\tau _{n}(V)} \end{aligned}\right. \end{aligned}$$
(62)

where \(m_{\mathrm{Na}\infty }(V)\), \(\alpha _\mathrm{mNa}(V)\), \(\beta _\mathrm{mNa}(V)\), \(h_{\mathrm{Na}\infty }(V)\), \(\alpha _\mathrm{hNa}(V)\), \(\beta _\mathrm{hNa}(V)\), \(m_{k_{s\infty }}(V)\), \(\alpha _{n}(V)\), \(\beta _{n}(V)\), \(\tau _{n}(V)\) and \(n_\infty (V)\) are defined as shown in Table 1.

The Jacobian matrix can be expressed as

$$\begin{aligned} A =\left( \begin{array}{c@{\quad }c@{\quad }c} \displaystyle \frac{\partial F_1}{\partial V} &{} \displaystyle \frac{\partial F_1}{\partial m_{k_s}} &{} \displaystyle \frac{\partial F_1}{\partial n} \\ \displaystyle \frac{\partial F_2}{\partial V} &{} \displaystyle \frac{\partial F_2}{\partial m_{k_s}} &{}\displaystyle \frac{\partial F_2}{\partial n}\\ \displaystyle \frac{\partial F_3}{\partial V} &{} \displaystyle \frac{\partial F_3}{\partial m_{k_s}} &{}\displaystyle \frac{\partial F_3}{\partial n} \end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} \displaystyle \frac{\partial F_1}{\partial V}= & {} \displaystyle G(V),\\ \frac{\partial F_1}{\partial m_\mathrm{ks}}= & {} \displaystyle -5.779162000V-520.1245800,\\ \frac{\partial F_1}{\partial n}= & {} -29.33333334n^3(V-55),\\ \frac{\partial F_2}{\partial V}= & {} 0.001709401709e^{(-0.1538461538V-3.538461537)}\\&/(e^{(-0.1538461538V-3.538461537)}+1)^2,\\ \frac{\partial F_2}{\partial m_\mathrm{ks}}= & {} -1/90,\\ \frac{\partial F_2}{\partial n}= & {} 0,\\ \frac{\partial F_3}{\partial V}= & {} H(V),\\ \frac{\partial F_3}{\partial m_\mathrm{ks}}= & {} 0,\\ \frac{\partial F_3}{\partial n}= & {} (12.50000000(e^{(-0.1V-2.7)}-1))\\&\quad e^{(-(1/80)V-37/80)}/(V+27), \end{aligned}$$
$$\begin{aligned} \frac{\partial F_1}{\partial V}= & {} G(V)\nonumber \\= & {} -5.779162000m_{k_s}-7.333333334n^4\nonumber \\&+0.2426666667e^{-(1/20)V-37/20} \nonumber \\&\quad (V-55)/((e^{(-0.1V-2.3)}-1)\nonumber \\&\quad ((-0.1V-2.3)/(e^{(-0.1V-2.3)}-1) \nonumber \\&+\,4e^{(1/18)V+23/18)}(0.07e{(-(1/20)V-37/20)}\nonumber \\&+\,1/(e^{(-0.1V-0.7)}+1)))\nonumber \\&+\,(0.002333333334(-5.2V-119.6))\nonumber \\&\quad e^{(-(1/20)V-37/20)}(V-55)/((e^{(-0.1V-2.3)}-1)\nonumber \\&\quad ((-0.1V-2.3)/(e^{(-0.1V-2.3)}-1)\nonumber \\&+\,4e^{(1/18)V+23/18)}(0.07e^{(-(1/20)V-37/20)}\nonumber \\&+\,1/(e^{(-0.1V-0.7)}+1)))\nonumber \\&-\,(0.04666666667(-5.2V-119.6))\nonumber \\&\quad e^{(-(1/20)V-37/20)}/((e^{(-0.1V-2.3)-1)}\nonumber \\&\quad ((-0.1V-2.3)/(e^{(-0.1V-2.3)}-1)\nonumber \\&+\,4e^{(1/18)V+23/18)}(0.07e^{(-(1/20)V-37/20)}\nonumber \\&+\,1/(e^{(-0.1V-0.7)}+1)))\nonumber \\&-\,(0.004666666667(-5.2V-119.6))\nonumber \\&\quad e^{(-(1/20)V-37/20)}(V-55)\nonumber \\&\quad e^{(-0.1V-2.3)}/((e^{(-0.1V-2.3)}-1)^2\nonumber \\&\quad ((-0.1V-2.3)/(e^{(-0.1V-2.3)}-1)\nonumber \\&+\,4e^{((1/18)V+23/18))}(0.07e^{(-(1/20)V-37/20)}\nonumber \\&+\,1/(e^{(-0.1V-0.7)}+1)))\nonumber \\&+\,(0.04666666667(-5.2V-119.6))\nonumber \\&\quad e^{(-(1/20)V-37/20)}(V-55)\nonumber \\&\quad (-0.1/(e^{(-0.1V-2.3)}-1)+(0.1(-0.1V-2.3))\nonumber \\&\quad e^{(-0.1V-2.3)}/(e^{(-0.1V-2.3)}-1)^2\nonumber \\&+\,(2/9)e^{((1/18)V+23/18)})/((e^{(-0.1V-2.3)}-1)\nonumber \\&\quad ((-0.1V-2.3)/(e^{(-0.1V-2.3)}-1)\nonumber \\&+\,4e^{((1/18)V+23/18)})^2(0.07e^{(-(1/20)V-37/20)}\nonumber \\&+\,1/(e^{(-0.1V-0.7)}+1)))\nonumber \\&+\,(0.04666666667(-5.2V-119.6))\nonumber \\&\quad e^{(-(1/20)V-37/20)}(V-55)\nonumber \\&\quad (-0.0035e^{(-(1/20)V-37/20)}\nonumber \\&+\,.1e^{(-0.1V-0.7)}/(e^{(-0.1V-0.7)}+1)^2)\nonumber \\&\quad /((e^{(-0.1V-2.3)}-1)((-0.1V-2.3)\nonumber \\&\quad /(e^{(-0.1V-2.3)}-1)\nonumber \\&+\,4e^{(1/18)V+23/18)}(0.07e^{(-(1/20)V-37/20)}\nonumber \\&+\,1/(e^{(-0.1V-0.7)}+1))^2)-0.06666666667\nonumber \\ \end{aligned}$$
(63)
$$\begin{aligned} \displaystyle \frac{\partial F_3}{\partial V}= & {} H(V)\nonumber \\= & {} -\,(12.5(-0.01/((e^{(-0.1V-2.7)}-1)\nonumber \\&\quad (-(0.01(V+27))/(e^{(-0.1V-2.7)}-1)\nonumber \\&+0.125e^{(-(1/80)V-37/80)}))-(0.001(V+27))\nonumber \\&\quad e^{(-0.1V-2.7)}/((e^{(-0.1V-2.7)}-1)^2\nonumber \\&\quad (-(0.01(V+27))/(e^{(-0.1V-2.7)}-1)\nonumber \\&+0.125e^{(-(1/80)V-37/80)}))+(0.01(V+27))\nonumber \\&\quad (-0.01/(e^{(-0.1V-2.7)}-1)-(0.001(V+27))\nonumber \\&\quad e^{(-0.1V-2.7)}/(e^{(-0.1V-2.7)}-1)^2\nonumber \\&-\,0.0015625e^{(-(1/80)V-37/80)})/((e^{(-0.1V-2.7)}-1)\nonumber \\&\quad (-(0.01(V+27))/(e^{(-0.1V-2.7)}-1)\nonumber \\&+\,0.125e^{(-(1/80)V-37/80)})^2)))(e^{(-0.1V-2.7)}-1)\nonumber \\&\quad e^{(-(1/80)V-37/80)}/(V+27)\nonumber \\&+\,(12.5(-(0.01(V+27))/((e^{(-0.1V-2.7)}-1)\nonumber \\&\quad (-(0.01(V+27))/(e^{(-0.1V-2.7)}-1)\nonumber \\&+\,0.125e^{(-(1/80)V-37/80)}))-n))(e^{(-0.1V-2.7)}-1)\nonumber \\&\quad e^{(-(1/80)V-37/80)}/(V+27)^2\nonumber \\&+\,(1.25(-(0.01(V+27))/((e^{(-0.1V-2.7)}-1)\nonumber \\&\quad (-(0.01(V+27))/(e^{(-0.1V-2.7)}-1)\nonumber \\&+\,0.125e^{(-(1/80)V-37/80)}))-n))e^{(-0.1V-2.7)}\nonumber \\&\quad e^{(-(1/80)}V-37/80)/(V+27)\nonumber \\&+\,(0.15625(-(0.01(V+27))/((e^{(-0.1V-2.7)}-1)\nonumber \\&\quad (-(0.01(V+27))/(e^{(-0.1V-2.7)}-1)\nonumber \\&+\,0.125e{(-(1/80)V-37/80)}))-n))\nonumber \\&\quad (e^{(-0.1V-2.7)}-1)e^{(-(1/80)V-37/80)}/(V+27)\nonumber \\ \end{aligned}$$
(64)

We calculate the equilibrium of the system for Eq.(4) at point \(H_2\) (when \(g_\mathrm{ks} =8.668743\)) is \((V_0, {m_{k_s0}},n_0) = (-41.402667, 0.055662, 0.252883)\). The corresponding Jacobian matrix at point \(H_2\) is

$$\begin{aligned} A|_{H_2} = \left( \begin{array}{c@{\quad }c@{\quad }c} -0.48999 &{} -280.8518602 &{} 45.72923277\\ 0.00008985310312 &{} -1/90 &{}0\\ 0.002475075649&{} 0&{} -0.1767754695 \end{array} \right) , \end{aligned}$$

which has a pair of conjugate eigenvalues \(\lambda \) and \(\bar{\lambda }\), where \(\lambda =iw\), \(w=0.0784\). Therefore, the Hopf bifurcation occurred at \(H_2\) point as shown in Fig. 8. Set

$$\begin{aligned} \begin{aligned} q&=\left( \begin{array}{c} 0.9999 \\ 0.0002 - 0.0011i \\ 0.0117 - 0.0052i \end{array} \right) ,\\ p_0&=\left( \begin{array}{c} - 0.0003i\\ 0.9978 \\ -0.0353 - 0.0564i \end{array} \right) , \end{aligned} \end{aligned}$$

which satisfy that \(Aq=iwq\), \(Ap_0=-iwp_0\), \(A^Tp=-iwp\), and \(\langle p,q \rangle =1\). Here \(\langle p, q \rangle =\bar{p}_1q_1+\bar{p}_2q_2+\bar{p}_3q_3\) is the standard scalar product in \(\mathbf{C} ^3\).

By calculation, we can obtain

$$\begin{aligned} p=\left( \begin{array}{c} -1.6-2.8i \\ 9400.7-5396.9i \\ -637.6-340.4i \end{array} \right) , \end{aligned}$$

To compute the first Lyapunov coefficient, we move the equilibrium of the system to the origin of coordinate by making the following transformation

$$\begin{aligned} \left\{ \begin{array}{l} V=\xi _1+V_0,\\ m_{k_s}=\xi _2+{m_{k_s0}},\\ n=\xi _3+n_0. \end{array}\right. \end{aligned}$$
(65)

where \((V_0,{m_{k_s0}},n_0)=(-41.402667,0.055662,0.252883)\).

By this transformation, system for Eq. (23) changes into

$$\begin{aligned} \left\{ \begin{aligned} \displaystyle \frac{\mathrm{d}\xi _1}{\mathrm{d}t}&=\frac{1}{C}[I_\mathrm{app} -g_\mathrm{ks}(\xi _2+{m_{k_s0}}) (\xi _1+V_0-E_\mathrm{K})\\&\quad -g_\mathrm{K}(\xi _3+n_0)^4(\xi _1+V_0-E_\mathrm{Na})\\&\quad -g_\mathrm{Na}m^3_\mathrm{Na_{\infty }}(\xi _1+V_0)h_\mathrm{Na_{\infty }}\\&\quad (\xi _1+V_0)(\xi _1+V_0-E_\mathrm{Na})\\&\quad -g_\mathrm{L}(\xi _1+V_0-E_\mathrm{L})]\\ \displaystyle \frac{\mathrm{d}\xi _2}{\mathrm{d}t}&=\frac{m_{k_s\infty }(\xi _1+V_0)-(\xi _2+{m_{k_s0}})}{\tau _{k_s}(\xi _1+V_0)}\\ \displaystyle \frac{\mathrm{d}\xi _3}{\mathrm{d}t}&=\frac{n_{\infty }(\xi _1+V_0)-(\xi _3+n_0)}{\tau _{n}(\xi _1+V_0)} \end{aligned}\right. \end{aligned}$$
(66)

This system can also be represented as

$$\begin{aligned} \dot{x}=Ax+F(x),~x\in \mathbf{R} ^3, \end{aligned}$$
(67)

where \(A=A|_{H_2}\), \(F(x)=\displaystyle \frac{1}{2}B(x,x)+\displaystyle \frac{1}{6}C(x,x,x)+O(\Vert x\Vert ^4)\), B(xy) and C(xyz) are symmetric multilinear vector functions which take on the planar vectors \(x=(x_1,x_2,x_3)^\mathrm{T}\), \(y=(y_1,y_2,y_3)^\mathrm{T}\), \(z=(z_1,z_2,z_3)^\mathrm{T}\). In coordinates, we have

$$\begin{aligned} B_i(x,y)= & {} \left. \sum \limits _{j,k=1}^3\frac{\partial ^2F_i(\xi )}{\partial \xi _j \partial \xi _k}\right| _{\xi =0}x_j y_k,i=1,2,3 \end{aligned}$$
(68)
$$\begin{aligned} C_i(x,y,z)= & {} \left. \sum \limits _{j,k,l=1}^3\frac{\partial ^3F_i(\xi )}{\partial \xi _j \partial \xi _k \partial \xi _l}\right| _{\xi =0}x_j y_k z_l,i=1,2,3\nonumber \\ \end{aligned}$$
(69)

where \(\xi =(\xi _1,\xi _2,\xi _3)^\mathrm{T}\).

It is easy to calculate

$$\begin{aligned} B_1(x,y)= & {} -5.779162000x_1y_2\\&+(-0.4743733935)x_1y_3\\&+(-5.779162000)x_2y_1\\&+(-29.33333334(\xi _3+0.252883)^3)x_3y_1\\&+(-88.00000002(\xi _3+.252883)^2\\&\quad (\xi _1-96.402667))x_3y_3,\\ B_2(x,y)= & {} 0.00001228465090x_1y_1,\\ B_3(x,y)= & {} (-0.005036448192-0.01845124157\xi _3)x_1y_1\\&+0.2189409839x_1y_3+0.2189409839x_3y_1\\ C_1(x,y,z)= & {} -88.00000002(\xi _3+0.252883)^2x_1y_3z_3\\&-88.00000002(\xi _3+0.252883)^2x_3y_1z_3\\&-88.00000002(\xi _3+0.252883)^2x_3y_3z_1\\&-176(\xi _3+0.252883)(\xi _1-96.402667)x_3y_3z_3,\\ C_2(x,y,z)= & {} 0,\\ C_3(x,y,z)= & {} (0.0004494324415+0.001667115304\xi _3)x_1y_1z_1\\&-0.01845124157(x_1y_1z_3+x_3y_1z_1) \end{aligned}$$

Then take \(\xi =(\xi _1,\xi _2,\xi _3)^\mathrm{T}=\mathbf{0} \), there are

$$\begin{aligned} B(x,y)= & {} \left( \begin{array}{c} -5.779162000(x_1y_2+x_2y_1)-0.4743733935(x_1y_3+x_3y_1)+542.5141x_3y_3\\ 0.00001228465090x_1y_1 \\ -0.005036448192x_1y_1+ 0.2189409839x_1y_3+0.2189409839x_3y_1 \end{array} \right) ,\\ C(x,y,z)= & {} \left( \begin{array}{c} -5.6276(x_1y_3z_3+x_3y_1z_3+x_3y_3z_1)+429.06x_3y_3z_3\\ 0\\ 0.0004494324415x_1y_1z_1-0.01845124157(x_1y_1z_3+x_3y_1z_1) \end{array} \right) . \end{aligned}$$

So we can simply calculate

$$\begin{aligned}&C(q,q,\bar{q})\\&\quad =\left( \begin{array}{c} 1.742413351068001\times 10^{-4} - 4.874140221600001\times 10^{-4}i\\ 0\\ 1.762492000503097\times 10^{-5} \end{array} \right) . \end{aligned}$$

\(\langle p,C(q,q,\bar{q})\rangle = -0.010151675869331 + 0.007267260943468i\)

$$\begin{aligned}&B(q,\bar{q})=\left( \begin{array}{c} 0.075523675405321\\ 1.228219409266651\times 10^{-5}\\ 8.726574863159161\times 10^{-5} \end{array} \right) .\\&A^{-1}B(q,\bar{q})=\left( \begin{array}{c} 1.001243699152279\times 10^{-5}\\ -2.957137884176276\times 10^{-8}\\ 9.082122179169386\times 10^{-8} \end{array} \right) .\\&B(q,A^{-1}B(q,\bar{q}))\\&\quad =\left( \begin{array}{c} 6.797131952840937\times 10^{-7}-1.676413529615720\times 10^{-7}i\\ 1.229869931697938\times 10^{-10}\\ -4.891624430061922\times 10^{-9}-1.139909059203593\times 10^{-8}i \end{array} \right) . \end{aligned}$$

\(\langle p,B(q,A^{-1}B(q,\bar{q}))=7.5371686766656\times 10^{-6} + 8.43812282046107\times 10^{-6}i\)

$$\begin{aligned}&B(q,q)\\&\quad =\left( \begin{array}{c} 0.046184512877321 - 0.048367240759569i\\ 1.228219409266651\times 10^{-5}\\ 0.000087265748632 - 0.002276758533937i \end{array} \right) .\\&(2iwE-A)^{-1}B(q,q)\\&\quad =\left( \begin{array}{c} -1.249468665174975 + 0.179439435913080i\\ -1.233254792815857 + 0.328687812096022i\\ -0.014661087710834 + 0.002637391934155i \end{array} \right) .\\&B(\bar{q},(2iwE-A)^{-1}B(q,q))\\&\quad =\left( \begin{array}{c} 7.136575872105496 - 1.052954468813263i \\ -1.534775143352734\times 10^{-5} + 2.204130392802322\times 10^{-6}i \\ -0.000322278445668 - 0.001289129315673i \end{array} \right) . \end{aligned}$$

\(\langle p,B(q,A^{-1}B(q,\bar{q}))\rangle = -7.982119604896726 +22.317274949636339i\).

The first Lyapunov coefficient is an index to judge the stability of the Hopf equilibrium, which is first applied in the two-dimensional system. However, for high-dimensional systems, we provide another expression which is calculated in the center manifold, as follows [56]:

$$\begin{aligned} l_1(0)= & {} \displaystyle \frac{1}{2w}\mathrm{Re}\{\langle p,C(q,q,\bar{q})\rangle \\&-2\langle p,B(q,A^{-1}B(q,\bar{q}))\rangle \\&+\langle p,B(\bar{q},(2iwE-A)^{-1}B(q,q))\rangle \}\\= & {} -50.971213999383991<0. \end{aligned}$$

Appendix B

First, we rewrite the system for Eq. (23) as

$$\begin{aligned} \frac{\mathrm{d}X}{\mathrm{d}t}= & {} F(X,\mu )\nonumber \\= & {} \left( \begin{array}{c} M_1(X,\mu )\\ M_2(X,\mu )\\ M_3(X,\mu ) \end{array}\right) , \end{aligned}$$
(70)

where \(X=(V, m_{k_s}, h)^\mathrm{T}, \mu =(I, g_\mathrm{ks})^\mathrm{T}\), and

$$\begin{aligned} \left\{ \begin{aligned} \displaystyle M_1(X,\mu )&=\frac{1}{C}[I_\mathrm{app}-g_{k_s}m_{k_s}(V-E_\mathrm{K})\\&\quad -g_\mathrm{Nap}m_\mathrm{Nap_{\infty }}(V-E_\mathrm{Na})\\&\quad -g_Kn^4(V-E_\mathrm{Na})\\&\quad -g_\mathrm{Na}m^3_\mathrm{Na_{\infty }}(V)h_\mathrm{Na_{\infty }}(V)(V-E_\mathrm{Na})\\&\quad -g_\mathrm{L}(V-E_\mathrm{L})],\\ M_2(X,\mu )&=\frac{m_{k_s\infty }(V)-m_{k_s}}{\tau _\mathrm{ks}(V)},\\ M_3(X,\mu )&=\frac{n_{\infty }(V)-n}{\tau _{n}(V)} \end{aligned}\right. \nonumber \\ \end{aligned}$$
(71)

where \(m_{\mathrm{Na}\infty }(V)\), \(\alpha _\mathrm{mNa}(V)\), \(\beta _\mathrm{mNa}(V)\), \(h_{\mathrm{Na}\infty }(V)\), \(\alpha _\mathrm{hNa}(V)\), \(\beta _\mathrm{hNa}(V)\), \(m_{K_{s\infty }}(V)\), \(\alpha _{n}(V)\), \(\beta _{n}(V)\), \(\tau _{n}(V)\) and \(n_\infty (V)\) are illustrated in Table 1.

Afterwards, the Taylor series of \(F(X,\mu )\) around \((X_0, \mu _0)\) can be obtained by

$$\begin{aligned} \begin{aligned} F(X, \mu )&=DF(X_0,\mu _0)(X-X_0)+F_{\mu }(X_0,\mu _0)(\mu -\mu _0)\\&\quad + \frac{1}{2} D^2 F(X_0,\mu _0)(X-X_0,X-X_0)\\&\quad +F_{\mu X}(X_0,\mu _0)(\mu -\mu _0, X-X_0)+\cdots . \end{aligned} \end{aligned}$$

Note

$$\begin{aligned}&A_1\triangleq ~DF(X_0, \mu _0)\nonumber \\&\quad =\left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial M_1}{\partial V} &{} \frac{\partial M_1}{\partial m_\mathrm{ks}} &{}\frac{\partial M_1}{\partial n}\\ \frac{\partial M_2}{\partial V} &{} \frac{\partial M_2}{\partial m_\mathrm{ks}} &{}\frac{\partial M_2}{\partial n}\\ \frac{\partial M_3}{\partial V} &{} \frac{\partial M_3}{\partial m_\mathrm{ks}} &{}\frac{\partial M_3}{\partial n}\\ \end{array} \right) \right| _{(X_0, \mu _0)} \end{aligned}$$
(72)
$$\begin{aligned}&\quad =\left( \begin{array}{c@{\quad }c@{\quad }c} -4.5727088564696&{} -80.30077644 &{} 804.9883276\\ 0.00001784512307 &{} -1/90 &{} 0\\ 0.001155776073 &{} 0 &{} -0.2088980861\\ \end{array} \right) \end{aligned}$$
(73)
$$\begin{aligned}&F_{\mu }(X_0, \mu _0)\nonumber \\&\quad =\left. \ \left( \begin{array}{c@{\quad }c} \frac{\partial M_1}{\partial I} &{} \frac{\partial M_1}{\partial g_\mathrm{ks}} \\ \frac{\partial M_2}{\partial I} &{} \frac{\partial M_2}{\partial g_\mathrm{ks}} \\ \frac{\partial M_3}{\partial I} &{} \frac{\partial M_3}{\partial g_\mathrm{ks}} \\ \end{array} \right) \right| _{(X_0, \mu _0)}\nonumber \\&\quad =\left( \begin{array}{c@{\quad }c} 0.6666666667&{} -63.66524300 \\ 0 &{} 0 \\ 0 &{} 0 \\ \end{array} \right) . \end{aligned}$$
(74)

The matrix \(A_1\) has three eigenvalues, specifically, 0, 0, and \(-4.776117677231149\). Set \(P=(p_1, p_2, P_0)\) be an invertible matrix, which satisfies

$$\begin{aligned} P^{-1}AP=\left( \begin{array}{c@{\quad }c} J_0&{}0\\ 0&{}J_1\end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} J_0=\left( \begin{array}{c@{\quad }c} 0&{}1\\ 0&{}0\end{array} \right) ,~J_1=-4.776117677231149, \end{aligned}$$

\(p_1\), \(p_2\) are generalized eigenvectors of the matrix \(A_1\), which correspond to the double-zero eigenvalue and \(P_0\) includes the generalized eigenvectors of the matrix \(J_1\). Thus, we conclude

$$\begin{aligned} p_1= & {} ( 1, 0.000843325052647- 0.002154679950670i, \\&0.005754280113072-0.000206016175909i )^\mathrm{T}, \\ p_2= & {} ( 1, -0.074291732336324+ 0.193917461907164i, \\&0.369290755503175+0.361481860671471i )^\mathrm{T},\\ P_0= & {} ( -2.670201010988380\times 10^5,1, \\&67.571842715765911 )^\mathrm{T}. \end{aligned}$$

If we define \(P^{-1}=(q_1, q_2, Q_0^\mathrm{T})^\mathrm{T}\), then

$$\begin{aligned} q_1= & {} ( 0.0218378-0.0075046i, -9.9541435\\&+230.1753368i, 86.4424250-33.0619089i )^\mathrm{T}, \\ q_2= & {} ( 0.0002377- 0.0000984i, -1.8560778\\&-1.9317156i,0.9669274 - 0.3601848i )^\mathrm{T},\\ Q_0= & {} ( -0.0000037-0.00000003i, -0.0000442\\&+0.0008548i, 0.0003273-0.0001252i ). \end{aligned}$$

By calculating related expressions in [51], we get

$$\begin{aligned} a= & {} \frac{1}{2}p_1^\mathrm{T}(q_2\cdot D^2F(X_0, \mu _0))p_1\\= & {} -3.642039599379696\times 10^{-5} \\&+ 1.650857475385467\times 10^{-5}i, \\ b= & {} p_1^\mathrm{T}(q_1\cdot D^2F(X_0, \mu _0))p_1\\&+ p_1^\mathrm{T}(q_2\cdot D^2F(X_0, \mu _0))p_2\\= & {} -0.001154465217808 + 0.002708751706266i, \\ S_1= & {} F_{\mu }^\mathrm{T}(X_0, \mu _0)q_2\\= & {} (0.1584924085\times 10^{-3}-0.6558824307\times 10^{-4}i, \\&-0.01513568655+0.006263537149i)^\mathrm{T}, \\ S_2= & {} \displaystyle \bigg [\frac{2a}{b} (p_1^\mathrm{T}(q_1\cdot D^2F(X_0, \mu _0))p_2 \\&+ p_2^\mathrm{T}(q_2\cdot D^2F(X_0, \mu _0))p_2) \\&- \displaystyle p_1^\mathrm{T}(q_2\cdot D^2F(X_0, \mu _0))p_2)\bigg ]\\&\quad F_{\mu }^\mathrm{T}(X_0, \mu _0)q_1 \\&- \frac{2a}{b}\sum \limits _{i=1}^{2}(q_i\cdot (F_{\mu X}(X_0, \mu _0)\\&- ((P_0J_1^{-1}Q_0)F_{\mu }(X_0, \mu _0))^\mathrm{T}\times D^2F(X_0, \mu _0)))p_i \\&+ (q_2 \cdot (F_{\mu X}(X_0, \mu _0)\\&-((P_0J_1^{-1}Q_0)F_{\mu }(X_0, \mu _0))^\mathrm{T} \\&\times D^2F(X_0, \mu _0)))p_1 \\= & {} (904.4677894-558.3855372i, -3517.914512\\&+23378.45005i)^\mathrm{T}. \end{aligned}$$

where

$$\begin{aligned} A1\triangleq & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial ^2 M_1}{\partial ^2 V^2} &{} \frac{\partial ^2 M_1}{\partial Vm_\mathrm{ks}} &{}\frac{\partial ^2 M_1}{\partial Vn}\\ \frac{\partial ^2 M_1}{\partial m_\mathrm{ks}V} &{} \frac{\partial ^2 M_2}{\partial m_\mathrm{ks}m_\mathrm{ks}} &{}\frac{\partial ^2 M_1}{\partial m_\mathrm{ks}n}\\ \frac{\partial ^2 M_1}{\partial nV} &{} \frac{\partial ^2 M_1}{\partial nm_\mathrm{ks}} &{}\frac{\partial ^2M_3}{\partial nn}\\ \end{array} \right) \right| _{(X_0, \mu _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} 0.02968286213&{} -.8319926667&{} -16.60324570\\ -.8319926667 &{} 0 &{} 0\\ -16.60324570 &{} 0 &{} 2919.445095\\ \end{array} \right) .\end{aligned}$$
(75)
$$\begin{aligned} A2\triangleq & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial ^2 M_2}{\partial V^2} &{} \frac{\partial ^2 M_2}{\partial Vm_\mathrm{ks}} &{}\frac{\partial ^2 M_2}{\partial Vn}\\ \frac{\partial ^2 M_2}{\partial m_\mathrm{ks}V} &{} \frac{\partial ^2 M_2}{\partial m_\mathrm{ks}m_\mathrm{ks}} &{}\frac{\partial ^2 M_2}{\partial m_\mathrm{ks}n}\\ \frac{\partial ^2 M_2}{\partial nV} &{} \frac{\partial ^2 M_2}{\partial nm_\mathrm{ks}} &{}\frac{\partial ^2M_3}{\partial nn}\\ \end{array} \right) \right| _{(X_0, \mu _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} -0.2687471610\times 10^{-5}&{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ \end{array} \right) . \end{aligned}$$
(76)
$$\begin{aligned} A3\triangleq & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial ^2 M_3}{\partial V^2} &{} \frac{\partial ^2 M_3}{\partial Vm_\mathrm{ks}} &{}\frac{\partial ^2 M_3}{\partial Vn}\\ \frac{\partial ^2 M_3}{\partial m_\mathrm{ks}V} &{} \frac{\partial ^2 M_3}{\partial m_\mathrm{ks}m_\mathrm{ks}} &{}\frac{\partial ^2 M_3}{\partial m_\mathrm{ks}n}\\ \frac{\partial ^2 M_3}{\partial nV} &{} \frac{\partial ^2 M_3}{\partial nm_\mathrm{ks}} &{}\frac{\partial ^2M_3}{\partial nn}\\ \end{array} \right) \right| _{(X_0, \mu _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} -0.1340960884\times 10^{-3}&{} 0 &{} 0.008085695255\\ 0 &{} 0 &{} 0\\ 0.008085695255 &{} 0 &{} 0\\ \end{array} \right) .\nonumber \\ \end{aligned}$$
(77)

And there is

$$\begin{aligned} i_j\cdot D^2F(X_0, \mu _0)= & {} i^{(1)}_j\cdot A1+i^{(2)}_j\nonumber \\&\cdot A2+i^{(3)}_j\cdot A3; \end{aligned}$$
(78)

where \(i=p,q , \ \ and \ \ j=1,2,3\).

Note

$$\begin{aligned} G1\triangleq & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial ^2 M_1}{\partial IV} &{} \frac{\partial ^2 M_1}{\partial Im_\mathrm{ks}} &{} \frac{\partial ^2 M_1}{\partial In}\\ \frac{\partial ^2 M_1}{\partial g_\mathrm{ks}V} &{} \frac{\partial ^2 M_1}{\partial g_\mathrm{ks}m_\mathrm{ks}} &{} \frac{\partial ^2 M_1}{\partial g_\mathrm{ks}n}\\ \end{array} \right) \right| _{(X_0, \mu _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} 0&{} 0 &{}0\\ -.6596326667 &{} -64.34413800 &{}0\\ \end{array} \right) . \end{aligned}$$
(79)
$$\begin{aligned} G2\triangleq & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial ^2 M_2}{\partial IV} &{} \frac{\partial ^2 M_2}{\partial Im_\mathrm{ks}} &{} \frac{\partial ^2 M_2}{\partial In}\\ \frac{\partial ^2 M_2}{\partial g_\mathrm{ks}V} &{} \frac{\partial ^2 M_2}{\partial g_\mathrm{ks}m_\mathrm{ks}} &{} \frac{\partial ^2 M_2}{\partial g_\mathrm{ks}n}\\ \end{array} \right) \right| _{(X_0, \mu _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} 0&{} 0 &{}0\\ 0 &{} 0 &{}0\\ \end{array} \right) . \end{aligned}$$
(80)
$$\begin{aligned} G3\triangleq & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial ^2 M_3}{\partial IV} &{} \frac{\partial ^2 M_3}{\partial Im_\mathrm{ks}} &{} \frac{\partial ^2 M_3}{\partial In}\\ \frac{\partial ^2 M_3}{\partial g_\mathrm{ks}V} &{} \frac{\partial ^2 M_3}{\partial g_\mathrm{ks}m_\mathrm{ks}} &{} \frac{\partial ^2 M_3}{\partial g_\mathrm{ks}n}\\ \end{array} \right) \right| _{(X_0, \mu _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} 0&{} 0 &{}0\\ 0 &{} 0 &{}0\\ \end{array} \right) . \end{aligned}$$
(81)

In addition, \(P_0J_1^{-1}Q_0=\)

$$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c} -0.2048-0.0016i&{} -2.4728+47.7885i&{} 18.3013-6.9978i\\ 7.6681\times 10^{-7}+5.9616\times 10^{-9}i &{} 0.9261\times 10^{-5}-0.1790\times 10^{-3}i &{} -0.6854\times 10^{-4}+0.2621\times 10^{-4}i\\ 0.5181\times 10^{-4}+4.0284\times 10^{-7}i &{} 0.6258\times 10^{-3}-0.01209i &{} -0.0046+0.0018i\\ \end{array} \right) .\nonumber \\ \end{aligned}$$
(82)

because

$$\begin{aligned} i_j\cdot F_{\mu X}(X_0, \mu _0)=i^{(1)}_j\cdot M_1+i^{(2)}_j\cdot M_2+i^{(3)}_j\cdot M_3;\nonumber \\ \end{aligned}$$
(83)

where \(i=p,q\), and \(j=1,2,3\). And, there is

$$\begin{aligned} Mi=\left( \begin{array}{c@{\quad }c} Gi\\ \mathbf{0} \end{array} \right) .\nonumber \\ \end{aligned}$$
(84)

If we regard \(\bar{\lambda }_1\), \(\bar{\lambda }_2\) as bifurcation parameters, where \(\bar{\lambda }_1=I+124.484261\)\(\bar{\lambda }_2=g_\mathrm{ks}-1.247989\), then

$$\begin{aligned} \beta _1= & {} S_1^\mathrm{T}(\mu -\mu _0)\nonumber \\= & {} (0.15849\times 10^{-3}-0.65588\times 10^{-4}i)\bar{\lambda }_1\nonumber \\&+(-0.01514+0.0063i )\bar{\lambda }_2\end{aligned}$$
(85)
$$\begin{aligned} \beta _2= & {} S_2^\mathrm{T}(\mu -\mu _0)\nonumber \\= & {} (904.467789-558.385537i)\bar{\lambda }_1\nonumber \\&+(-3517.9145+23378.45005i)\bar{\lambda }_2. \end{aligned}$$
(86)

According to Theorem 1 in Ref. [51], the system for Eq. (23) at \(X = X_0\), \(\mu \approx \mu _0\), is locally topologically equivalent to

$$\begin{aligned} \left\{ \begin{aligned} \displaystyle \frac{\mathrm{d}z_1}{\mathrm{d}t}&=z_2,\\ \displaystyle \frac{\mathrm{d}z_2}{\mathrm{d}t}&=\beta _1+\beta _2z_1+az_1^2+bz_1z_2\\&=(0.1584924\times 10^{-3}-0.6558824\times 10^{-4}i)\bar{\lambda }_1\\&\quad +(-0.01513570+0.0062635i)\bar{\lambda }_2\\&\quad +((904.4677894-558.3855372i)\bar{\lambda }_1\\&\quad +(-3517.914512+23378.45005i)\bar{\lambda }_2)z_1\\&\quad +(-3.642039599379696\times 10^{-5}\\&\quad +1.650857475385467\times 10^{-5}i)z_1^2\\&\quad +(-0.001154465217808 + 0.002708751706266i)z_1z_2. \end{aligned}\right. \end{aligned}$$
(87)

In addition, the transformation of variables is made as follows:

$$\begin{aligned} t= & {} \Big |\frac{b}{a}\Big |t_1=\displaystyle 73.636207910921414t_1,\\ z_1= & {} \frac{a}{b^2}\eta _1\\= & {} \displaystyle \frac{(-0.3642039599\times 10^{-4} +0.1650857475385467\times 10^{-4}i)}{(-0.1154465218\times 10^{-2} +0.2708751706266\times 10^{-2}i)^2}\eta _1\\= & {} (1.535670905720935 - 4.348896894741531i)\eta _1,\\ z_2= & {} {\mathrm{sign}}\left( \frac{b}{a}\right) \frac{a^2}{b^3}\eta _2\\= & {} \displaystyle \frac{(-0.3642039599\times 10^{-4}+0.1650857475385467 \times 10^{-4}i)^2}{(-0.1154465218\times 10^{-2}+0.2708751706266\times 10^{-2}i)^3}\eta _2\\= & {} (0.055292389946590 - 0.029422219768626i)\eta _2, \end{aligned}$$

system (56) becomes

$$\begin{aligned} \left\{ \begin{aligned} \displaystyle \frac{\mathrm{d}\eta _1}{\mathrm{d}t_1}&=\eta _2,\\ \displaystyle \frac{\mathrm{d}\eta _2}{\mathrm{d}t_1}&=\bar{\beta }_1+\bar{\beta }_2\eta _1+\eta _1^2+s\eta _1\eta _2, \end{aligned}\right. \end{aligned}$$
(88)

where

$$\begin{aligned} \bar{\beta }_1= & {} \displaystyle \frac{b^4}{a^3}\beta _1\\= & {} (0.16106309-0.12134901i)\bar{\lambda }_1\\&+(-15.38118074 +11.58857174i)\bar{\lambda }_2,\\ \bar{\beta }_2= & {} \displaystyle \frac{b^2}{a^2}\beta _2\\= & {} (-2.594634\times 10^6- 5.146558\times 10^6i)\bar{\lambda }_1\\&+(1.246540\times 10^8 + 2.990890\times 10^7i)\bar{\lambda }_2,\\ s= & {} {\mathrm{sign}}(ab)=1. \end{aligned}$$

Since

$$\begin{aligned}&4\bar{\beta }_1-\bar{\beta }_2^2=0\\&\quad \Longleftrightarrow (1.97549304\times 10^{13}-2.67068651\times 10^{13}i)\bar{\lambda }_1^2\\&\qquad +(3.39007357\times 10^{14}+1.43828345\times 10^{15}i)\bar{\lambda }_1\bar{\lambda }_2\\&\qquad +(-1.46440823\times 10^{16}-7.45652823\times 10^{15}i)\bar{\lambda }_2^2\\&\qquad +(0.644252-0.485396i)\bar{\lambda }_1+(-61.524723\\&\qquad +46.354287i)\bar{\lambda }_2=0,\\&\bar{\beta }_1=0 \\&\quad \Longleftrightarrow \bar{\lambda }_1=(-54.261969203299586\\&\qquad +49.778808881697962i)\bar{\lambda }_2,\\&\bar{\beta }_2<0 \\&\quad \Longleftrightarrow \bar{\lambda }_2<(0.029048533873225 \\&\qquad + 0.034316968354156i)\bar{\lambda }_1,\\&\bar{\beta }_1+\displaystyle \frac{6}{25}\bar{\beta }_2^2=o(\bar{\beta }_2^2) \\&\quad \Longleftrightarrow (-4.74118330\times 10^{12} + 6.40964762\times 10^{12}i)\bar{\lambda }_1^2\\&\qquad +(-8.13617656\times 10^{13}-3.45188027\times 10^{14}i)\bar{\lambda }_1\bar{\lambda }_2\\&\qquad +(1.30146021\times 10^{-17}-6.62682341\times 10^{-18}i)\bar{\lambda }_2^2\\&\qquad +(-0.36420396\times 10^{-4}+0.16508575\times 10^{-4}i)\bar{\lambda }_1\\&\qquad +(-0.11544652\times 10^{-2}+0.27087517\times 10^{-2}i)\bar{\lambda }_2\\&\quad =o(\Vert (\bar{\lambda }_1,\bar{\lambda }_2)\Vert ^2). \end{aligned}$$

Appendix C

First, we rewrite the system for Eq. (23) as

$$\begin{aligned} \frac{\mathrm{d}X}{\mathrm{d}t}= & {} F(Y,\delta )\nonumber \\= & {} \left( \begin{array}{c} M_1(Y,\delta )\\ M_2(Y,\delta )\\ M_3(Y,\delta ) \end{array}\right) , \end{aligned}$$
(89)

where \(Y=(V,~m_\mathrm{ks},~h)^\mathrm{T}, ~\delta =(~g_\mathrm{ks},E_\mathrm{Na})^\mathrm{T}\), and

$$\begin{aligned} \left\{ \begin{aligned} \displaystyle M_1(Y,\delta )&=\frac{1}{C}[I_\mathrm{app}-g_{k_s}m_{k_s}(V-E_\mathrm{K})\\&\quad -g_\mathrm{Nap}m_\mathrm{Nap_{\infty }}(V-E_\mathrm{Na})\\&\quad -g_Kn^4(V-E_\mathrm{Na})\\&\quad -g_\mathrm{Na}m^3_\mathrm{Na_{\infty }}(V)h_\mathrm{Na_{\infty }}(V)(V-E_\mathrm{Na})\\&\quad -g_\mathrm{L}(V-E_\mathrm{L})],\\ M_2(Y,\delta )&=\frac{m_{k_s\infty }(V)-m_{k_s}}{\tau _\mathrm{ks}(V)},\\ M_3(Y,\delta )&=\frac{n_{\infty }(V)-n}{\tau _{n}(V)} \end{aligned}\right. \nonumber \\ \end{aligned}$$
(90)

where \(m_{\mathrm{Na}\infty }(V)\), \(\alpha _\mathrm{mNa}(V)\), \(\beta _\mathrm{mNa}(V)\), \(h_{\mathrm{Na}\infty }(V)\), \(\alpha _\mathrm{hNa}(V)\), \(\beta _\mathrm{hNa}(V)\), \(m_{K_{s\infty }}(V)\), \(\alpha _{n}(V)\), \(\beta _{n}(V)\), \(\tau _{n}(V)\) and \(n_\infty (V)\) are kept consistent with Table 1.

Let us consider the Taylor series of \(F(Y,\delta )\) around \((Y_0,\delta _0)\),

$$\begin{aligned} \begin{aligned} F(Y, \delta )&=DF(Y_0,\delta _0)(Y-Y_0)+F_{\delta }(Y_0,\delta _0)(\delta -\delta _0)\\&\quad + \frac{1}{2} D^2 F(Y_0,\delta _0)(Y-Y_0,Y-Y_0)\\&\quad +F_{\delta Y}(Y_0,\delta _0)(\delta -\delta _0, Y-Y_0)+\cdots . \end{aligned} \end{aligned}$$

Note

$$\begin{aligned} A_1\triangleq & {} DF(Y_0, \delta _0)\nonumber \\= & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial M_1}{\partial V} &{} \frac{\partial M_1}{\partial m_{k_s}} &{}\frac{\partial M_1}{\partial n}\\ \frac{\partial M_2}{\partial V} &{} \frac{\partial M_2}{\partial m_{k_s}} &{}\frac{\partial M_2}{\partial n}\\ \frac{\partial M_3}{\partial V} &{} \frac{\partial M_3}{\partial m_{k_s}} &{}\frac{\partial M_3}{\partial n}\\ \end{array} \right) \right| _{(Y_0, \delta _0)} \end{aligned}$$
(91)
$$\begin{aligned}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} a_0&{} -524.0657322 &{} 2375.144340\\ 0.00000473130416 &{} -1/90 &{} 0\\ 0.0006020199582 &{} 0 &{} -0.1517339434\\ \end{array} \right) . \end{aligned}$$
(92)
$$\begin{aligned} a_0= & {} -9.199900247+3.838047651/((1/e^{3.8246904}-1)\nonumber \\&(-3.8246904/(1/e^{3.8246904}-1)+33.48582990))\nonumber \\&-9.280672978/((1/e^{3.8246904}-1)^2\nonumber \\&(-3.8246904/(1/e^{3.8246904}-1)\nonumber \\&+33.48582990)e^{3.8246904})\nonumber \\&+(92.80672978(-.1/(1/e^{3.8246904}-1)\nonumber \\&-0.38246904/((1/e^{3.8246904}-1)^2e^{3.8246904})\nonumber \\&+1.860323883))/((1/e^{3.8246904}-1)\nonumber \\&(-3.8246904/(1/e^{3.8246904}-1)+33.48582990)^2)\nonumber \\ \end{aligned}$$
(93)

By calculation, there is

$$\begin{aligned} A_1\triangleq & {} DF(Y_0, \delta _0)\nonumber \\= & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial M_1}{\partial V} &{} \frac{\partial M_1}{\partial m_{k_s}} &{}\frac{\partial M_1}{\partial n}\\ \frac{\partial M_2}{\partial V} &{} \frac{\partial M_2}{\partial m_{k_s}} &{}\frac{\partial M_2}{\partial n}\\ \frac{\partial M_3}{\partial V} &{} \frac{\partial M_3}{\partial m_{k_s}} &{}\frac{\partial M_3}{\partial n}\\ \end{array} \right) \right| _{(Y_0, \delta _0)} \end{aligned}$$
(94)
$$\begin{aligned}= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} -9.443041117(nearly)&{} -524.0657322 &{} 2375.144340\\ 0.000004731304161 &{} -1/90 &{} 0\\ 0.0006020199582 &{} 0 &{} -0.1517339434\\ \end{array} \right) .\nonumber \\ \end{aligned}$$
(95)

Then,

$$\begin{aligned} F_{\mu }(Y_0, \delta _0)= & {} \left. \ \left( \begin{array}{c@{\quad }c} \frac{\partial M_1}{\partial g_\mathrm{ks}} &{} \frac{\partial M_1}{\partial E_\mathrm{Na}} \\ \frac{\partial M_2}{\partial g_\mathrm{ks}} &{} \frac{\partial M_2}{\partial E_\mathrm{Na}} \\ \frac{\partial M_3}{\partial g_\mathrm{ks}} &{} \frac{\partial M_3}{\partial E_\mathrm{Na}} \\ \end{array} \right) \right| _{(Y_0, \delta _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c} -69.96982574&{} 4.188172505048008 \\ 0 &{} 0 \\ 0 &{} 0 \\ \end{array} \right) .\nonumber \\ \end{aligned}$$
(96)

The matrix \(A_1\) has three eigenvalues, that is, 0, 0, and \(-9.594213398933288\). Let \(P=(p_1, p_2, P_0)\) be an invertible matrix, which satisfies

$$\begin{aligned} P^{-1}AP=\left( \begin{array}{c@{\quad }c} J_0&{}0\\ 0&{}J_1\end{array} \right) , \end{aligned}$$

where

$$\begin{aligned} J_0=\left( \begin{array}{c@{\quad }c} 0&{}1\\ 0&{}0\end{array} \right) ,~J_1= -9.594213398933288, \end{aligned}$$

\(p_1\), \(p_2\) are generalized eigenvectors of the matrix \(A_1\) corresponding to the double-zero eigenvalues and \(P_0\) indicates the generalized eigenvectors of the matrix \(J_1\). Then we get

$$\begin{aligned} p_1= & {} ( 1, 6.859055672332738\times 10^{-4}, \\&\quad 0.004124660623372 )^\mathrm{T}, \\ p_2= & {} ( 1, 0.062156774117970, 0.004124660623372 )^\mathrm{T},\\ P_0= & {} ( -2.025467388383832\times 10^6, 1, \\&-1.568466182380163\times 10^4 )^\mathrm{T}. \end{aligned}$$

If we define \(P^{-1}=(q_1, q_2, Q_0^\mathrm{T})^\mathrm{T}\), so

$$\begin{aligned} q_1= & {} ( 2.1635881181719, -0.0238844412902, \\&\quad 0.0000005626868 )^\mathrm{T}, \\ q_2= & {} ( -16.2678683997221, 16.2678683997221, 0 )^\mathrm{T},\\ Q_0= & {} ( -279.3999317518015 , 3.0853980363227, \\&-0.0001364201346 ). \end{aligned}$$

After calculating related expressions in Ref. [51], we get

$$\begin{aligned} a= & {} \frac{1}{2}p_1^\mathrm{T}(q_2\cdot D^2F(Y_0, \delta _0))p_1\\= & {} 7.790675229\times 10^{-8}, \\ b= & {} p_1^\mathrm{T}(q_1\cdot D^2F(Y_0, \delta _0))p_1 \\&+ p_1^\mathrm{T}(q_2\cdot D^2F(Y_0, \delta _0))p_2\\= & {} 0.00004837327504, \\ S_1= & {} F_{\delta }^\mathrm{T}(Y_0, \delta _0)q_2\\= & {} (1138.259917, -68.13263915)^\mathrm{T}, \\ S_2= & {} \displaystyle \bigg [\frac{2a}{b} (p_1^\mathrm{T}(q_1\cdot D^2F(Y_0, \delta _0))p_2\\&+ p_2^\mathrm{T}(q_2\cdot D^2F(Y_0, \delta _0))p_2) \\&- \displaystyle p_1^\mathrm{T}(q_2\cdot D^2F(Y_0, \delta _0))p_2)\bigg ]\\&\quad F_{\delta }^\mathrm{T}(Y_0, \delta _0)q_1 \\&- \frac{2a}{b}\sum \limits _{i=1}^{2}(q_i\cdot (F_{\delta Y}(Y_0, \delta _0)\\&- ((P_0J_1^{-1}Q_0)F_{\delta }(Y_0, \delta _0))^\mathrm{T}\times D^2F(Y_0, \delta _0)))p_i \\&+ (q_2 \cdot (F_{\delta Y}(Y_0, \delta _0)\\&-((P_0J_1^{-1}Q_0)F_{\delta }(Y_0, \delta _0))^\mathrm{T} \\&\times D^2F(Y_0, \delta _0)))p_1 \\= & {} (-9.87502004880888\times 10^{11}, \\&-3.34555762806193\times 10^{11})^\mathrm{T}. \end{aligned}$$

where

$$\begin{aligned} A1\triangleq & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial ^2 M_1}{\partial ^2 V^2} &{} \frac{\partial ^2 M_1}{\partial Vm_\mathrm{ks}} &{}\frac{\partial ^2 M_1}{\partial Vn}\\ \frac{\partial ^2 M_1}{\partial m_\mathrm{ks}V} &{} \frac{\partial ^2 M_2}{\partial m_\mathrm{ks}m_\mathrm{ks}} &{}\frac{\partial ^2 M_1}{\partial m_\mathrm{ks}n}\\ \frac{\partial ^2 M_1}{\partial nV} &{} \frac{\partial ^2 M_1}{\partial nm_\mathrm{ks}} &{}\frac{\partial ^2M_3}{\partial nn}\\ \end{array} \right) \right| _{(Y_0, \delta _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} 0.02403267096&{} -4.979393334&{} -19.20015775\\ -4.979393334 &{} 0 &{} 0\\ -19.20015775 &{} 0 &{} 8206.603836\\ \end{array} \right) . \end{aligned}$$
(97)
$$\begin{aligned} A2\triangleq & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial ^2 M_2}{\partial V^2} &{} \frac{\partial ^2 M_2}{\partial Vm_\mathrm{ks}} &{}\frac{\partial ^2 M_2}{\partial Vn}\\ \frac{\partial ^2 M_2}{\partial m_\mathrm{ks}V} &{} \frac{\partial ^2 M_2}{\partial m_\mathrm{ks}m_\mathrm{ks}} &{}\frac{\partial ^2 M_2}{\partial m_\mathrm{ks}n}\\ \frac{\partial ^2 M_2}{\partial nV} &{} \frac{\partial ^2 M_2}{\partial nm_\mathrm{ks}} &{}\frac{\partial ^2M_3}{\partial nn}\\ \end{array} \right) \right| _{(Y_0, \delta _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} -7.238523899\times 10^{-7}&{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0\\ \end{array} \right) . \end{aligned}$$
(98)
$$\begin{aligned} A3\triangleq & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial ^2 M_3}{\partial V^2} &{} \frac{\partial ^2 M_3}{\partial Vm_{k_s}} &{}\frac{\partial ^2 M_3}{\partial Vn}\\ \frac{\partial ^2 M_3}{\partial m_{k_s}V} &{} \frac{\partial ^2 M_3}{\partial m_\mathrm{ks}m_{k_s}} &{}\frac{\partial ^2 M_3}{\partial m_{k_s}n}\\ \frac{\partial ^2 M_3}{\partial nV} &{} \frac{\partial ^2 M_3}{\partial nm_{k_s}} &{}\frac{\partial ^2M_3}{\partial nn}\\ \end{array} \right) \right| _{(Y_0, \delta _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} -0.6425180442\times 10^{-4}&{} 0 &{} 0.005262992907\\ 0 &{} 0 &{} 0\\ 0.005262992907 &{} 0 &{} 0\\ \end{array} \right) .\nonumber \\ \end{aligned}$$
(99)

And there is

$$\begin{aligned} i_j\cdot D^2F(Y_0, \delta _0)= & {} i^{(1)}_j\cdot A1+i^{(2)}_j\nonumber \\&\cdot A2+i^{(3)}_j\cdot A3; \end{aligned}$$
(100)

where \(i=p,q , \ \ and \ \ j=1,2,3\).

Note

$$\begin{aligned} G1\triangleq & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial ^2 M_1}{\partial g_\mathrm{ks}V} &{} \frac{\partial ^2 M_1}{\partial g_\mathrm{ks}m_{k_s}} &{} \frac{\partial ^2 M_1}{\partial g_\mathrm{ks}n}\\ \frac{\partial ^2 M_1}{\partial E_\mathrm{Na}V} &{} \frac{\partial ^2 M_1}{\partial E_\mathrm{Na}m_{k_s}} &{} \frac{\partial ^2 M_1}{\partial E_\mathrm{Na}n}\\ \end{array} \right) \right| _{(Y_0, \delta _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} -0.664816&{} -70.16460267 &{}0\\ -0.00179970 &{} 0 &{}19.20015775\\ \end{array} \right) . \end{aligned}$$
(101)
$$\begin{aligned} G2\triangleq & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial ^2 M_2}{\partial g_\mathrm{ks}V} &{} \frac{\partial ^2 M_2}{\partial g_\mathrm{ks}m_{k_s}} &{} \frac{\partial ^2 M_2}{\partial g_\mathrm{ks}n}\\ \frac{\partial ^2 M_2}{\partial E_\mathrm{Na}V} &{} \frac{\partial ^2 M_2}{\partial E_\mathrm{Na}m_{k_s}} &{} \frac{\partial ^2 M_2}{\partial E_\mathrm{Na}n}\\ \end{array} \right) \right| _{(Y_0, \delta _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} -0.664816&{} 0 &{}0\\ 0 &{} 0 &{}0\\ \end{array} \right) . \end{aligned}$$
(102)
$$\begin{aligned} G3\triangleq & {} \left. \ \left( \begin{array}{c@{\quad }c@{\quad }c} \frac{\partial ^2 M_3}{\partial g_\mathrm{ks}V} &{} \frac{\partial ^2 M_3}{\partial g_\mathrm{ks}m_{k_s}} &{} \frac{\partial ^2 M_3}{\partial g_\mathrm{ks}n}\\ \frac{\partial ^2 M_3}{\partial E_\mathrm{Na}V} &{} \frac{\partial ^2 M_3}{\partial E_\mathrm{Na}m_{k_s}} &{} \frac{\partial ^2 M_3}{\partial E_\mathrm{Na}n}\\ \end{array} \right) \right| _{(Y_0, \delta _0)}\nonumber \\= & {} \left( \begin{array}{c@{\quad }c@{\quad }c} 0&{} 0 &{}0\\ 0 &{} 0 &{}0\\ \end{array} \right) . \end{aligned}$$
(103)

In addition,

$$\begin{aligned}&P_0J_1^{-1}Q_0\nonumber \\&\quad =\left( \begin{array}{c@{\quad }c@{\quad }c} -5.898508054\times 10^7&{} 6.513689910\times 10^5&{} -28.80012381\\ 29.12171329 &{} -0.3215894736 &{} 0.00001421900149\\ -4.567642247\times 10^5 &{} 5044.022140&{} -0.2230202299\\ \end{array} \right) .\nonumber \\ \end{aligned}$$
(104)

because

$$\begin{aligned} i_j\cdot F_{\delta Y}(Y_0, \delta _0)= & {} i^{(1)}_j\cdot M1+i^{(2)}_j\nonumber \\&\cdot M2+i^{(3)}_j\cdot M3; \end{aligned}$$
(105)

where \(i=p,q\), and \(j=1,2,3\). And, there is

$$\begin{aligned} Mi=\left( \begin{array}{c@{\quad }c} Gi\\ \mathbf{0} \end{array} \right) . \end{aligned}$$
(106)

If we choose \(\bar{\lambda }_1\), \(\bar{\lambda }_2\) as bifurcation parameters where \(\bar{\lambda }_1=g_\mathrm{ks}-7.469090\), \(\bar{\lambda }_2=E_\mathrm{Na}-138.951322\), then

$$\begin{aligned} \beta _1= & {} S_1^\mathrm{T}(\delta -\delta _0) \end{aligned}$$
(107)
$$\begin{aligned}= & {} (1138.259917)\bar{\lambda }_1 \nonumber \\&+(-68.13263915)\bar{\lambda }_2, \end{aligned}$$
(108)
$$\begin{aligned} \beta _2= & {} S_2^\mathrm{T}(\delta -\delta _0) \end{aligned}$$
(109)
$$\begin{aligned}= & {} (-9.87502004880888\times 10^{11})\bar{\lambda }_1\nonumber \\&+(-3.34555762806193\times 10^{11})\bar{\lambda }_2. \end{aligned}$$
(110)

Due to Theorem 1 in Ref. [51], the system for Eq. (23) at \(Y = Y_0, \delta \approx \delta _0\), is locally topologically equivalent to

$$\begin{aligned} \left\{ \begin{aligned} \displaystyle \frac{\mathrm{d}z_1}{\mathrm{d}t}&=z_2,\\ \displaystyle \frac{\mathrm{d}z_2}{\mathrm{d}t}&=\beta _1+\beta _2z_1+az_1^2+bz_1z_2\\&=(1138.259917)\bar{\lambda }_1+(-68.13263915)\bar{\lambda }_2\\&\quad +((-9.87502004880888\times 10^{11})\bar{\lambda }_1\\&\quad +(-3.34555762806193\times 10^{11})\bar{\lambda }_2)z_1\\&\quad +(7.790675229\times 10^{-8})z_1^2\\&\quad +0.00004837327504z_1z_2. \end{aligned}\right. \nonumber \\ \end{aligned}$$
(111)

By making the following transformation of variables

$$\begin{aligned} t= & {} \Big |\frac{b}{a}\Big |t_1\\= & {} \displaystyle 620.9124834t_1,\\ z_1= & {} \frac{a}{b^2}\eta _1\\= & {} \displaystyle \frac{7.790675229\times 10^{-8}}{(0.00004837327504)^2}\eta _1\\= & {} 33.29385754\eta _1,\\ z_2= & {} {\mathrm{sign}}\left( \frac{b}{a}\right) \frac{a^2}{b^3}\eta _2\\= & {} \displaystyle \frac{(7.790675229\times 10^{-8})^2}{(0.00004837327504)^3}\eta _2\\= & {} 0.05362085388\eta _2, \end{aligned}$$

system (112) becomes

$$\begin{aligned} \left\{ \begin{aligned} \displaystyle \frac{\mathrm{d}\eta _1}{\mathrm{d}t_1}&=\eta _2,\\ \displaystyle \frac{\mathrm{d}\eta _2}{\mathrm{d}t_1}&=\bar{\beta }_1+\bar{\beta }_2\eta _1+\eta _1^2+s\eta _1\eta _2, \end{aligned}\right. \end{aligned}$$
(112)

where

$$\begin{aligned} \bar{\beta }_1= & {} \displaystyle \frac{b^4}{a^3}\beta _1\\= & {} (1.318068887\times 10^7)\bar{\lambda }_1\\&+(-7.889543551\times 10^5)\bar{\lambda }_2,\\ \bar{\beta }_2= & {} \displaystyle \frac{b^2}{a^2}\beta _2\\= & {} (-3.807139312\times 10^{17})\bar{\lambda }_1\\&+(-1.289820568\times 10^{17})\bar{\lambda }_2,\\ s= & {} {\mathrm{sign}}(ab)=1. \end{aligned}$$

Since

$$\begin{aligned}&4\bar{\beta }_1-\bar{\beta }_2^2=0 \\&\quad \Longleftrightarrow (-1.449430974\times 10^{35})\bar{\lambda }_1^2\\&\qquad +(-9.821053180\times 10^{34})\bar{\lambda }_1\bar{\lambda }_2\\&\qquad +(-1.663637098\times 10^{34})\bar{\lambda }_2^2\\&\qquad +(5.272275548\times 10^7)\bar{\lambda }_1\\&\qquad +(-3.155817420\times 10^6)\bar{\lambda }_2=0,\\&\bar{\beta }_1=0 \\&\quad \Longleftrightarrow \bar{\lambda }_1 =0.05985683775\bar{\lambda }_2,\\&\bar{\beta }_2<0 \\&\quad \Longleftrightarrow \bar{\lambda }_2>-2.951681347\bar{\lambda }_1,\\&\bar{\beta }_1+\displaystyle \frac{6}{25}\bar{\beta }_2^2=o(\bar{\beta }_2^2) \\&\quad \Longleftrightarrow (3.478634338\times 10^{34})\bar{\lambda }_1^2\\&\qquad +(2.357052763\times 10^{34})\bar{\lambda }_1\bar{\lambda }_2\\&\qquad +(3.992729035\times 10^{33})\bar{\lambda }_2^2\\&\qquad +(1.318068887 \times 10^7)\bar{\lambda }_1\\&\qquad +(-7.889543551\times 10^5)\bar{\lambda }_2\\&\quad =o(\Vert (\bar{\lambda }_1,\bar{\lambda }_2)\Vert ^2). \end{aligned}$$

Appendix D (tables)

See Tables 1, 2, 3 and 4.

Table 1 Standard parameter values for the PC model
Table 2 Data related to the special bifurcation points with two-parameter (I, \(g_\mathrm{ks}\))
Table 3 Data related to the special bifurcation points with two-parameter (\(g_\mathrm{ks}\), \(E_\mathrm{Na}\))
Table 4 Data related to the special bifurcation points

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaru, L., Shenquan, L. Canard-induced mixed-mode oscillations and bifurcation analysis in a reduced 3D pyramidal cell model. Nonlinear Dyn 101, 531–567 (2020). https://doi.org/10.1007/s11071-020-05801-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05801-5

Keywords

Navigation