Skip to main content
Log in

Vibration control for nonlinear overhead crane bridge subject to actuator failures and output constraints

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

An active robust adaptive fault-tolerant control protocol is studied for reducing vibration of crane bridge system and handling actuator faults and output constraints simultaneously based on a partial differential equation model. The closed-loop system subject to environmental perturbations and actuator failures can be stabilized with proposed control laws. Furthermore, output constraints of trolley can always be ensured via employing barrier Lyapunov function (BLF), and uncertain actuator faults can also be compensated availably using developed adaptive control laws without any knowledge of actuator fault information. Finally, numerical simulation is provided for illustrating performance of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang, Z., Wu, Y., Huang, J.: Differential-flatness-based finite-time anti-swing control of underactuated crane systems. Nonlinear Dyn. 87(3), 1749–1761 (2017)

    Article  MATH  Google Scholar 

  2. He, W., Zhang, S., Ge, S.S.: Adaptive control of a flexible crane system with the boundary output constraint. IEEE Trans. Ind. Electron. 61(8), 4126–4133 (2014)

    Article  Google Scholar 

  3. He, W., Ge, S.S.: Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66(4), 146–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang, M., Ma, X., Rong, X., Song, R., Tian, X., Li, Y.: A partially saturated adaptive learning controller for overhead cranes with payload hoisting/lowering and unknown parameters. Nonlinear Dyn. 89(3), 1779–1791 (2017)

    Article  MathSciNet  Google Scholar 

  5. Sun, N., Fang, Y., Chen, H.: Adaptive antiswing control for cranes in the presence of rail length constraints and uncertainties. Nonlinear Dyn. 81(1–2), 41–51 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christoph, H., Martin, B., Heiner, K.: Modeling the beam deflection of a gantry crane under load. J. Surv. Eng. 140(1), 52–59 (2014)

    Article  Google Scholar 

  7. Liu, P.F., Xing, L.J., Liu, Y.L., Zheng, J.Y.: Strength analysis and optimal design for main girder of double-trolley overhead traveling crane using finite element method. J. Fail. Anal. Prev. 14(1), 76–86 (2014)

    Article  Google Scholar 

  8. Gerdemeli, I., Esen, I., Ozer, D.: Dynamic response of an overhead crane beam due to a moving mass using moving finite element approximation. Key Eng. Mater. 450, 99–102 (2011)

    Article  Google Scholar 

  9. Xie, W.-P., Huang, J., Zhou, J.-L., He, W.: Vibration analysis of a suspension weight-bridge crane coupled system. J. Vib. Shock 15(14), 127–132 (2015)

    Google Scholar 

  10. Goncalves, J.F., Leon, D.M.D., Perondi, E.A.: Topology optimization of embedded piezoelectric actuators considering control spillover effects. J. Sound Vib. 388, 20–41 (2017)

    Article  Google Scholar 

  11. Balas, M.J.: Feedback control of flexible systems. IEEE Trans. Autom. Control 23, 673–679 (1978)

    Article  MATH  Google Scholar 

  12. Meirovitch, L., Baruh, H.: On the problem of observation spillover in self-adjoint distributed systems. J. Optim. Theory Appl. 39, 269–291 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, W., Meng, T., He, X., Ge, S.S.: Unified iterative learning control for flexible structures with input constraints. Automatica 86, 326–336 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nguyen, Q.C., Hong, K.-S.: Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control. J. Sound Vib. 329(22), 4588–4603 (2010)

    Article  Google Scholar 

  15. He, W., Meng, T.: Adaptive control of a flexible string system with input hysteresis. IEEE Trans. Control Syst. Technol. 26(2), 693–700 (2018)

    Article  Google Scholar 

  16. Liu, Z., Liu, J., He, W.: Dynamic modeling and vibration control for a nonlinear three-dimensional flexible manipulator. Int. J. Robust Nonlinear Control 28(13), 3927–3945 (2018)

    Article  MATH  Google Scholar 

  17. Gao, Z., Jiang, B., Shi, P., Liu, J., Xu, Y.: Passive fault-tolerant control design for near-space hypersonic vehicle dynamical system. Circuits Syst. Signal Process. 31(2), 565–581 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tabatabaeipour, S.M., Izadi-Zamanabadi, R., Bak, T., Ravn, A.P.: Passive fault-tolerant control of discrete time piecewise affine systems against actuator faults. Int. J. Syst. Sci. 43(11), 1985–1997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Benosman, M., Lum, K.-Y.: Passive actuators fault-tolerant control for affine nonlinear systems. IEEE Trans. Control Syst. Technol. 18(1), 152–163 (2010)

    Article  Google Scholar 

  20. Wang, R., Wang, J.: Passive actuator fault-tolerant control for a class of overactuated nonlinear systems and applications to electric vehicles. IEEE Trans. Veh. Technol. 62(3), 972–985 (2013)

    Article  Google Scholar 

  21. Steffen, T., Michail, K., Dixon, R., Zolotas, A., Goodall, R.: Optimal passive fault tolerant control of a high redundancy actuator. IFAC Proc. Vol. 42(8), 1234–1239 (2009)

    Article  Google Scholar 

  22. Liu, Z., Liu, J., He, W.: Robust adaptive fault tolerant control for a linear cascaded ode-beam systems. Automatica 98, 42–50 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tao, G., Joshi, S.M., Ma, X.: Adaptive state feedback and tracking control of systems with actuator failures. IEEE Trans. Autom. Control 46(1), 78–95 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, W., Wen, C.: Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica 46(12), 2082–2091 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, C., Wen, C., Lin, Y.: Adaptive actuator failure compensation for a class of nonlinear systems with unknown control direction. IEEE Trans. Autom. Control 62(1), 385–392 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu, G., Wang, S., Sun, L., Ge, W., Zhang, X.: Output feedback adaptive dynamic surface sliding mode control for quadrotor UAVs with tracking error constraints. Complexity 2020(10), 1–23 (2020)

    Google Scholar 

  27. Zhu, G., Nie, L., Zhe, L., Sun, L., Zhang, X., Wang, C.: Adaptive fuzzy dynamic surface sliding mode control of large-scale power systems with prescribe output tracking performance. ISA Trans. 99, 305–321 (2019)

    Article  Google Scholar 

  28. He, W., Ge, S.S.: Vibration control of a flexible beam with output constraint. IEEE Trans. Ind. Electron. 62(8), 5023–5030 (2015)

    Article  Google Scholar 

  29. Tee, K.P., Ren, B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 47(11), 2511–2516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ouyang, H., Lin, Y.: Adaptive fault-tolerant control for actuator failures: a switching strategy. Automatica 81, 87–95 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. He, W., Gao, H., Zhou, C., Yang, C., Li, Z.: Reinforcement learning control of a flexible two-link manipulator: an experimental investigation. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2975232

  32. Liu, Z., He, X., Zhao, Z., Ahn, C.K., Li, H.-X.: Vibration control for spatial aerial refueling hoses with bounded actuators. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.2984442

  33. Tee, K.P., Ge, S.S.: Control of nonlinear systems with partial state constraints using a barrier Lyapunov function. Int. J. Control 84(12), 2008–2023 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. De Queiroz, M., Dawson, D., Nagarkatti, S., Zhang, F.: Lyapunov-Based Control of Mechanical Systems. Springer, New York (2012)

    MATH  Google Scholar 

  35. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45, 918–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ro, K., Kuk, T., Kamman, J.: Design, test and evaluation of an actively stabilized drogue refueling system. In: Infotech@ Aerospace 2011, p. 1423 (2011)

  37. Paranjape, A.A., Guan, J., Chung, S.-J., Krstic, M.: PDE boundary control for flexible articulated wings on a robotic aircraft. IEEE Trans. Robot. 29(3), 625–640 (2013)

    Article  Google Scholar 

  38. Boskovic, J.D., Mehra, R.K.: A decentralized scheme for accommodation of multiple simultaneous actuator failures. In: Proceedings of the 2002 American Control Conference, pp. 5098–5103. Hammamet, Tunisia (2002)

  39. Liu, Z., Liu, J., He, W.: Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint. Automatica 77, 302–310 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kong, L., He, W., Dong, Y., Cheng, L., Yang, C., Li, Z.: Asymmetric bounded neural control for an uncertain robot by state feedback and output feedback. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2901277

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.61873296) and CAS Prospective Deployment Project under grant No. ZDRW-KT- 2019-1-010402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinkun Liu.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, X., Yang, H. & Liu, J. Vibration control for nonlinear overhead crane bridge subject to actuator failures and output constraints. Nonlinear Dyn 101, 419–438 (2020). https://doi.org/10.1007/s11071-020-05778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05778-1

Keywords

Navigation