Skip to main content

Advertisement

Log in

Global analysis of the dynamics of a mathematical model to intermittent HIV treatment

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the qualitative dynamics of a piecewise smooth system modeling the intermittent treatment of the human immunodeficiency virus. Typical singularities and closed orbits are observable, and we quantitatively explore the dynamics around those singularities and closed orbits. Moreover, we conclude that this protocol always will be successful since the trajectory passing through any initial condition converges to one of these distinguished orbits. Our formal mathematical results corroborate the real-world observation, where the virus is not eliminated, but the number of infected cells is controlled around a specific value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ananworanich, J., Gayet-Agernon, A., Le Braz, M., et al.: CD4-guided scheduled treatment interruptions compared with continuous therapy for patients infected with HIV-1: results of the staccato randomised trial. Lancet 368(9534), 459–465 (2006)

    Article  Google Scholar 

  2. Andronov, A., Vitt, A., Khaikin, S.: Theory of Oscillators. Adiwes International Series in Physics. Pergamon Press, (1966). Translated from the Russian by F. Immirzi. Translation edited and abridged by W. Fishwick

  3. Brogliato, B.: Nonsmooth Mechanics. Springer, London (1999)

    Book  MATH  Google Scholar 

  4. Carvalho, T., Freitas, B.: Birth of an arbitrary number of T-singularities in 3D piecewise smooth vector fields. Discrete Contin. Dyn. Syst. Ser. B 24(9), 4851–4861 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Carvalho, T., Teixeira, M.A., Tonon, D.J.: Asymptotic stability and bifurcations of 3D piecewise smooth vector fields. Zeitschrift für Angew. Math. Phys. 67(2), 31 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chua, L., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. 33(11), 1072–1118 (1986)

    Article  MATH  Google Scholar 

  7. Colombo, A., Jeffrey, M.R.: Nondeterministic chaos, and the twofold singularity in piecewise smooth flows. SIAM J. Appl. Dyn. Syst. 10(2), 423–451 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cristiano, R., Carvalho, T., Tonon, D.J., Pagano, D.J.: Hopf and homoclinic bifurcations on the sliding vector field of switching systems in \({\mathbb{R}}^3\): a case study in power electronics. Phys. D. Nonlinear Phenom. 347, 12–20 (2017)

    MATH  Google Scholar 

  9. Cristiano, R., Pagano, D.J., Carvalho, T., Tonon, D.J.: Bifurcations at a degenerate twofold singularity and crossing limit cycles. J. Differ. Equ. 268(1), 115–140 (2019)

    Article  MATH  Google Scholar 

  10. Cristiano, R., Pagano, D.J., Freire, E., Ponce, E.: Revisiting the Teixeira singularity bifurcation analysis. application to the control of power converters. Int. J. Bifurc. Chaos 28(9), 1850106 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, London (2008)

    MATH  Google Scholar 

  12. Dumortier, F., Llibre, J., Artés, J.: Qualitative Theory Of Planar Differential Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  13. Dutta, A., Gupta, P.K.: A mathematical model for transmission dynamics of HIV/AIDS with effect of weak CD4\(^+\)T cells. Chin. J. Phys. 56(3), 1045–1056 (2018)

    MathSciNet  Google Scholar 

  14. Emvudu, Y., Bongor, D., Koïna, R.: Mathematical analysis of HIV/AIDS stochastic dynamic models. Appl. Math. Model. 40(21–22), 9131–9151 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Springer, Dordrecht (1988)

    Book  Google Scholar 

  16. Granich, R.M., Gilks, C.F., Dye, C., Cock, K.M.D., Williams, B.G.: Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet 373(9669), 48–57 (2009)

    Article  Google Scholar 

  17. Hirschel, B., Flanigan, T.: Is it smart to continue to study treatment interruptions? AIDS 23(7), 757–759 (2009)

    Article  Google Scholar 

  18. Jeffrey, M.R., Colombo, A.: The twofold singularity of discontinuous vector fields. SIAM J. Appl. Dyn. Syst. 8(2), 624–640 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kirschner, D., Webb, G.F.: A model for treatment strategy in the chemotherapy of AIDS. Bull. Math. Biol. 58(2), 367–390 (1996)

    Article  MATH  Google Scholar 

  20. Korobeinikov, A.: Global properties of basic virus dynamics models. Bull. Math. Biol. 66, 879–883 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuznetsov, Y.A.: Elements of applied bifurcation theory. Applied Mathematical Sciences, 3rd edn., vol. 112. Springer, New York (2004). https://doi.org/10.1007/978-1-4757-3978-7

  22. Leenheer, P., Smith, H.L.: Virus dynamics: a global analysis. SIAM J. Appl. Math. 63(4), 1313–1327 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maggiolo, F., Airoldi, M., Callegaro, A., Martinelli, C., Dolara, A., Bini, T., Gregis, G., Quinzan, G., Ripamonti, D., Ravasio, V., Suter, F.: Cd4 cell-guided scheduled treatment interruptions in hiv-infected patients with sustained immunologic response to haart. AIDS 23(7), 799–807 (2009)

    Article  Google Scholar 

  24. Nowak, M., May, R.M.: Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  25. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–4 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rodrigues, D.S., Mancera, P.F., Carvalho, T., Gonçalves, L.F.: Sliding mode control in a mathematical model to chemoimmunotherapy: the occurrence of typical singularities. Appl. Math. Comput. 124782 (2019)

  27. Rodrigues, D.S., Mancera, P.F.A., Carvalho, T., Gonçalves, L.F.: A mathematical model for chemoimmunotherapy of chronic lymphocytic leukemia. Appl. Math. Comput. 349, 118–133 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Simpson, D.: A compendium of hopf-like bifurcations in piecewise-smooth dynamical systems. Phys. Lett. A 382(35), 2439–2444 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tang, B., Xiao, Y., Cheke, R.A., Wang, N.: Piecewise virus-immune model with HIV-1 RNA-guided therapy. J. Theor. Biol. 377, 36–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang, S., Xiao, Y., Wang, N., Wu, H.: Piecewise HIV virus dynamic model with CD4\(^{*}\)T cell count-guided therapy: I. J. Theor. Biol. 308(7), 123–134 (2012)

    MATH  Google Scholar 

  31. Teixeira, M.A.: Stability conditions for discontinuos vector fields. J. Differ. Equ. 88(1), 15–29 (1990)

    Article  Google Scholar 

  32. Teixeira, M.A.: Perturbation theory for non-smooth systems. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 6697–6709. Springer, New York (2009)

    Chapter  Google Scholar 

  33. World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection, (2016). https://www.who.int/hiv/pub/arv/arv-2016/en/

  34. World Health Organization. Data and statistics, (2019). https://www.who.int/hiv/data/en/. Accessed Sep 2019

Download references

Acknowledgements

Durval José Tonon is supported by PROCAD/CAPES Grant No. 88881.0 68462/2014-01 and PRONEX/FAPEG Grant 2017/10267000-508. Rony Cristiano and Luiz Fernando Gonçalves are financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES [Finance Code 001]. Tiago Carvalho is partially supported by Grants 2017/00883-0 and 2019/10450-0, São Paulo Research Foundation (FAPESP) and by CNPq-BRAZIL grant 304809/2017-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durval José Tonon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Computing the half-return maps

Appendix A. Computing the half-return maps

We consider a trajectory of system (30) initiated at the point \({\mathbf {x}}_0=(x_0,y_0,0)\in \Sigma ^{c,+}\) such that for \(t=t_1>0\) this trajectory transversally returns to \(\Sigma \) at the point \({\mathbf {x}}_1=(x_1,y_1,0)\in \Sigma ^{c,-}\). And its continuation from the point \({\mathbf {x}}_1\) such that for \(t=t_2>0\) this trajectory transversally returns to \(\Sigma \) at the point \({\mathbf {x}}_2=(x_2,y_2,0)\in \Sigma ^{c,+}\). See illustration in Fig. 12. Then, we define the half-return maps \((x_1,y_1)=P_+(x_0,y_0)\) and \((x_2,y_2)=P_-(x_1,y_1)\). In order to find the explicit expressions for the coefficients of each half-return map, we must determine the solution of system (30) for \({\widetilde{z}}=z- C_T\ge 0\) and for \({\widetilde{z}}=z-C_T\le 0\). Such solution for \({\widetilde{z}}\ge 0\) can be obtained from the variation in constants formula

Fig. 12
figure 12

First return application in \(\Sigma ^{c,+}\)

$$\begin{aligned} \widetilde{{\mathbf {x}}}(t)= & {} e^{A^+t}\widetilde{{\mathbf {x}}}_0+\int _0^{t} e^{A^+(t-s)}{\mathbf {v}}^+ds\nonumber \\= & {} e^{A^+t}\widetilde{{\mathbf {x}}}_0+\left( \int _0^{t} e^{A^+s}ds\right) {\mathbf {v}}^+, \end{aligned}$$
(A.1)

where

$$\begin{aligned} A^{+}= & {} \begin{bmatrix} -\alpha - {\bar{y}}_p &{}-{\bar{x}}_t&{}0\\ -a &{} -c &{}a\\ \delta -\alpha &{}0&{}-\delta \\ \end{bmatrix},\;\;\\ \widetilde{{\mathbf {x}}}_0= & {} \begin{bmatrix} {\widetilde{x}}_0\\ {\widetilde{y}}_0\\ 0 \end{bmatrix},\;\;{\mathbf {v}}^{+}=\begin{bmatrix} {\bar{x}}_t({\bar{y}}_q^+ - {\bar{y}}_p)\\ \frac{a{\bar{x}}_t{\bar{y}}_q^+}{\delta }-c{\bar{y}}_p\\ 0 \end{bmatrix}\;\;\text {and}\;\;\\ \widetilde{{\mathbf {x}}}(t)= & {} \begin{bmatrix} {\widetilde{x}}(t)\\ {\widetilde{y}}(t)\\ {\widetilde{z}}(t) \end{bmatrix}=\begin{bmatrix} x(t)-{\bar{x}}_t\\ y(t)-{\bar{y}}_p\\ z(t)-C_T \end{bmatrix}, \end{aligned}$$

being \({\widetilde{x}}_0\ge 0\), \(A^+=D{\mathbf {F}}_{+}({\bar{x}}_t,{\bar{y}}_p,C_T)\), \({\mathbf {v}}^{+}={\mathbf {F}}_{+}({\bar{x}}_t,{\bar{y}}_p,C_T)\). For simplicity, we take \(C_T=\frac{{\bar{x}}_t{\bar{y}}_q^+}{\delta } + {\bar{x}}_t\) and \(s={\bar{x}}_t\left( \alpha + {\bar{y}}_q^+\right) \). It will suffice to have the Taylor’s series approximation until the sixth-order terms for (A.1), namely

$$\begin{aligned} \widetilde{{\mathbf {x}}}(t)= & {} \widetilde{{\mathbf {x}}}_0+\left( t I+\dfrac{t^2}{2}A^++\dfrac{t^3}{6}(A^+)^2+\dfrac{t^4}{24}(A^+)^3\right. \nonumber \\&\left. + \dfrac{t^5}{5!}(A^+)^4+\dfrac{t^6}{6!}(A^+)^5\right) M+O(t^7), \end{aligned}$$
(A.2)

where \(M=A^+\widetilde{{\mathbf {x}}}_0+{\mathbf {v}}^+\) and I is the identity matrix of order 3.

Remark 4

Note that solution (A.2) refers to system (30) linearized at pseudo-equilibrium point \({\mathbf {p}}\) [given in (35)] with \({\mathbf {p}}\) moved to the origin of a new state space \(\mathcal {{\widetilde{M}}}=\{({\widetilde{x}},{\widetilde{y}}, {\widetilde{z}})\in {\mathbb {R}}^3: {\widetilde{x}}^2+{\widetilde{y}}^2+{\widetilde{z}}^2<\varepsilon ^2 \}\) for \(\varepsilon ^2\) arbitrarily small. With this change the set \(L_I\) of invisible two–folds is moved to \((0,{\widetilde{y}},0)\) and the crossing regions \(\Sigma ^{c,+}\) and \(\Sigma ^{c,-}\) are redefined for all \(({\widetilde{x}},{\widetilde{y}},0)\) with \({\widetilde{x}}>0\) and \({\widetilde{x}}<0\), respectively.

From the third component of (A.2), we can determine an expression for the half-return time \(t_+=t_+({\widetilde{x}}_0,{\widetilde{y}}_0)\), which depends on \(({\widetilde{x}}_0,{\widetilde{y}}_0)\) and such that \({\widetilde{z}}(t_+)=0\). The polynomial approximation for the time \(t_+\) is given by

$$\begin{aligned} t_+({\widetilde{x}}_0,{\widetilde{y}}_0)={\widetilde{x}}_0\cdot \Phi ({\widetilde{x}}_0,{\widetilde{y}}_0), \end{aligned}$$
(A.3)

where \(\Phi (0,0)=\frac{2}{{\bar{x}}_t({\bar{y}}_p-{\bar{y}}_q^+)}>0\). For our purpose, we must compute all the coefficients of the polynomial \(\Phi ({\widetilde{x}}_0,{\widetilde{y}}_0)\) up to the fourth order terms. Some of these coefficients are very large expressions, and therefore, we do not make them explicit.

Now, substituting (A.3) in the first and the second component of (A.2), the half-return map \(({\widetilde{x}}_1,{\widetilde{y}}_1)=P_+({\widetilde{x}}_0,{\widetilde{y}}_0)\) satisfies

$$\begin{aligned} {\widetilde{x}}_1&=-{\widetilde{x}}_0+p_{20}^+{\widetilde{x}}_0^2 +p_{30}^+{\widetilde{x}}_0^3+p_{21}^+{\widetilde{x}}_0^2{\widetilde{y}}_0+ p_{40}^+{\widetilde{x}}_0^4\nonumber \\&\quad +p_{31}^+{\widetilde{x}}_0^3{\widetilde{y}}_0 +p_{22}^+{\widetilde{x}}_0^2{\widetilde{y}}_0^2 +{\widetilde{x}}_0^2\cdot O(3), \end{aligned}$$
(A.4)
$$\begin{aligned} {\widetilde{y}}_1&=v_{10}^+{\widetilde{x}}_0+{\widetilde{y}}_0+v_{11}^+ {\widetilde{x}}_0{\widetilde{y}}_0+v_{20}^+{\widetilde{x}}_0^2+v_{30}^+ {\widetilde{x}}_0^3\nonumber \\&\quad +v_{21}^+{\widetilde{x}}_0^2{\widetilde{y}}_0+v_{12}^+ {\widetilde{x}}_0{\widetilde{y}}_0^2+{\widetilde{x}}_0\cdot O(3), \end{aligned}$$
(A.5)

with coefficients of the quadratic terms given by

$$\begin{aligned} p_{20}^+= & {} \dfrac{\delta \left[ c{\bar{y}}_p+({\bar{y}}_p-{\bar{y}}_q^+) (\alpha +\delta +{\bar{y}}_p)\right] -a{\bar{x}}_t{\bar{y}}_q^+}{3/2{\bar{x}}_t \delta ({\bar{y}}_q^+-{\bar{y}}_p)^2} ,\nonumber \\ v_{10}^+= & {} \dfrac{2(a{\bar{x}}_t{\bar{y}}_q^+-c\delta {\bar{y}}_p)}{{\bar{x}}_t\delta ({\bar{y}}_p-{\bar{y}}_q^+)},\nonumber \\ v_{11}^+= & {} \dfrac{2{\bar{y}}_q^+(c\delta -a{\bar{x}}_t)}{{\bar{x}}_t \delta ({\bar{y}}_p-{\bar{y}}_q^+)^2},\nonumber \\ v_{20}^+= & {} \dfrac{2(a{\bar{x}}_t{\bar{y}}_q^+-c\delta {\bar{y}}_p) (2a{\bar{x}}_t{\bar{y}}_q^++\delta [c({\bar{y}}_p-3{\bar{y}}_q^+)+ ({\bar{y}}_p-{\bar{y}}_q^+)(\alpha +\delta +{\bar{y}}_p)])}{3{\bar{x}}_t^2 \delta ^2({\bar{y}}_q^+-{\bar{y}}_p)^3}, \end{aligned}$$
(A.6)

coefficients of the cubic terms given by

$$\begin{aligned} p_{21}^+=&\dfrac{\delta \left[ c({\bar{y}}_p+{\bar{y}}_q^+)+({\bar{y}}_p-{\bar{y}}_q^+) (\alpha +\delta +{\bar{y}}_p)\right] -2a{\bar{x}}_t{\bar{y}}_q^+}{3/2{\bar{x}}_t\delta ({\bar{y}}_q^+-{\bar{y}}_p)^3} ,\nonumber \\ p_{30}^+=&\frac{2}{9\delta ^2{\bar{x}}_t^2({\bar{y}}_q^+-{\bar{y}}_p)^4} \left( 4a^2{\bar{x}}_t^2({\bar{y}}_q^+)^2\right. \nonumber \\&\left. -a\delta {\bar{x}}_t{\bar{y}}_q^+ \left[ c(3{\bar{y}}_q^++5{\bar{y}}_p)+({\bar{y}}_q^+-{\bar{y}}_p)(\alpha +\delta +{\bar{y}}_p)\right] +\right. \nonumber \\&\left. -\delta ^2\left[ c^2(-{\bar{y}}_p)(3{\bar{y}}_q^++{\bar{y}}_p) +\alpha ({\bar{y}}_q^+-{\bar{y}}_p)\right. \right. \nonumber \\&\left. \left. (4({\bar{y}}_q^+-{\bar{y}}_p)(\delta +{\bar{y}}_p)\right. \right. \nonumber \\&\left. \left. -c{\bar{y}}_p)-c{\bar{y}}_p({\bar{y}}_q^+-{\bar{y}}_p)(\delta +{\bar{y}}_p)+\right. \right. \nonumber \\&\left. \left. +2\alpha ^2({\bar{y}}_q^+-{\bar{y}}_p)^2+2({\bar{y}}_q^ +-{\bar{y}}_p)^2(\delta +{\bar{y}}_p)^2\right] \right) ,\nonumber \\ v_{30}^+=&\frac{-2}{9 \delta ^3 {\bar{x}}_t^3 ({\bar{y}}_q^+-{\bar{y}}_p)^5} \left( 8 a^3 {\bar{x}}_t^3 ({\bar{y}}_q^+)^3\right. \nonumber \\&\left. -a^2 \delta {\bar{x}}_t^2 {\bar{y}}_q^+ (3 c {\bar{y}}_q^+ (5 {\bar{y}}_q^++3 {\bar{y}}_p)\right. \nonumber \\&\left. + ({\bar{y}}_q^+-{\bar{y}}_p) (5 {\bar{y}}_q^+ (\alpha +{\bar{y}}_p)+\right. \nonumber \\&\left. +\delta (2 {\bar{y}}_q^++3 {\bar{y}}_p)))+a \delta ^2 {\bar{x}}_t \left( 6 c^2 ({\bar{y}}_q^+)^2 ({\bar{y}}_q^+\right. \right. \nonumber \\&\left. \left. +3 {\bar{y}}_p)+c {\bar{y}}_q^+ ({\bar{y}}_q^+-{\bar{y}}_p) (2 (\alpha +{\bar{y}}_p) (3 {\bar{y}}_q^++2 {\bar{y}}_p) +\right. \right. \nonumber \\&\left. \left. +\delta (3 {\bar{y}}_q^++7 {\bar{y}}_p))+({\bar{y}}_q^+-{\bar{y}}_p)^2 \left( \delta (4 \alpha {\bar{y}}_q^+\right. \right. \right. \nonumber \\&\left. \left. \left. -3 \alpha {\bar{y}}_p+{\bar{y}}_q^+ {\bar{y}}_p)+2 {\bar{y}}_q^+ (\alpha +{\bar{y}}_p)^2+2 \delta ^2 {\bar{y}}_q^+\right) \right) +\right. \nonumber \\&\left. +c \delta ^3 {\bar{y}}_p \left( c^2 \left( -6 ({\bar{y}}_q^+)^2-3 {\bar{y}}_q^+ {\bar{y}}_p+{\bar{y}}_p^2\right) \right. \right. \nonumber \\&\left. \left. -c \left( 6 ({\bar{y}}_q^+)^2-7 {\bar{y}}_q^+ {\bar{y}}_p+{\bar{y}}_p^2\right) (\alpha +\delta +{\bar{y}}_p)+\right. \right. \nonumber \\&\left. \left. -({\bar{y}}_q^+-{\bar{y}}_p)^2 \left( 2 \delta ^2+\delta (\alpha +{\bar{y}}_p)+2 (\alpha +{\bar{y}}_p)^2\right) \right) \right) ,\nonumber \\ v_{21}^+=&\frac{2}{3 \delta ^2 {\bar{x}}_t^2 ({\bar{y}}_q^+-{\bar{y}}_p)^4} \left( 6 a^2 {\bar{x}}_t^2 ({\bar{y}}_q^+)^2\right. \nonumber \\&\left. -2 a \delta {\bar{x}}_t {\bar{y}}_q^+ \left[ c (5 {\bar{y}}_q^++{\bar{y}}_p) +({\bar{y}}_q^+-{\bar{y}}_p) (\alpha +\delta +{\bar{y}}_p)\right] +\right. \nonumber \\&\left. +c \delta ^2 \left[ c \left( 3 ({\bar{y}}_q^+)^2+4 {\bar{y}}_q^+ {\bar{y}}_p-{\bar{y}}_p^2\right) \right. \right. \nonumber \\&\left. \left. +(({\bar{y}}_q^+)^2-{\bar{y}}_p^2) (\alpha +\delta +{\bar{y}}_p)\right] \right) ,\nonumber \\ v_{12}^+=&\frac{2 {\bar{y}}_q^+ (c \delta -a {\bar{x}}_t)}{\delta {\bar{x}}_t ({\bar{y}}_q^+-{\bar{y}}_p)^3}, \end{aligned}$$
(A.7)

and the coefficients of the fourth-order terms of the first equation are given by

$$\begin{aligned} p_{31}^+=&\frac{2}{9\delta ^2{\bar{x}}_t^2({\bar{y}}_q^+-{\bar{y}}_p)^5} \left( 16a^2{\bar{x}}_t^2({\bar{y}}_q^+)^2-a\delta {\bar{x}}_t{\bar{y}}_q^+\right. \nonumber \\&\left. \left[ c(17{\bar{y}}_q^++15{\bar{y}}_p)+3({\bar{y}}_q^+-{\bar{y}}_p)(\alpha +\delta +{\bar{y}}_p)\right] +\right. \nonumber \\&\left. +\delta ^2\left[ c^2\left( 3({\bar{y}}_q^+)^2+ 11{\bar{y}}_q^+{\bar{y}}_p+2{\bar{y}}_p^2\right) \right. \right. \nonumber \\&+c({\bar{y}}_q^+-{\bar{y}}_p) ({\bar{y}}_q^++2{\bar{y}}_p)(\alpha +\delta +{\bar{y}}_p)\nonumber \\&\left. \left. -4({\bar{y}}_q^+-{\bar{y}}_p)^2(\alpha +\delta +{\bar{y}}_p)^2\right] \right) ,\nonumber \\ p_{22}^+=&\frac{\delta \left[ c(2{\bar{y}}_q^++{\bar{y}}_p)-({\bar{y}}_q^+-{\bar{y}}_p) (\alpha +\delta +{\bar{y}}_p)\right] -3 a {\bar{x}}_t {\bar{y}}_q^+}{3/2\delta {\bar{x}}_t({\bar{y}}_q^+ -{\bar{y}}_p)^4},\nonumber \\ p_{40}^+=&\frac{-2}{135 \delta ^3 {\bar{x}}_t^3 ({\bar{y}}_q^+-{\bar{y}}_p)^6}\left( 100 a^3 {\bar{x}}_t^3 ({\bar{y}}_q^+)^3\right. \nonumber \\&-3 a^2 \delta {\bar{x}}_t^2 {\bar{y}}_q^+ (20 c {\bar{y}}_q^+ (2 {\bar{y}}_q^++3 {\bar{y}}_p)\nonumber \\&\left. +({\bar{y}}_q^+-{\bar{y}}_p) (20 {\bar{y}}_q^+ (\alpha +{\bar{y}}_p)+\right. \nonumber \\&\left. +\delta (11 {\bar{y}}_q^++9 {\bar{y}}_p)))+3 a \delta ^2 {\bar{x}}_t (c^2 {\bar{y}}_q^+ \left( 9 ({\bar{y}}_q^+)^2\right. \right. \nonumber \\&\left. \left. +62 {\bar{y}}_q^+ {\bar{y}}_p+29 {\bar{y}}_p^2\right) +c ({\bar{y}}_q^+-{\bar{y}}_p) (2 {\bar{y}}_q^+ (\alpha \right. \nonumber \\&\left. +{\bar{y}}_p) (7 {\bar{y}}_q^++13 {\bar{y}}_p)+\right. \nonumber \\&\left. +\delta (8 ({\bar{y}}_q^+)^2+29 {\bar{y}}_q^+ {\bar{y}}_p+3 {\bar{y}}_p^2))-({\bar{y}}_q^+-{\bar{y}}_p)^2 \right. \nonumber \\&(\delta (2 \alpha {\bar{y}}_q^++9 \alpha {\bar{y}}_p+8 {\bar{y}}_q^+ {\bar{y}}_p+3 {\bar{y}}_p^2)\nonumber \\&\left. +{\bar{y}}_q^+ (\alpha +{\bar{y}}_p)^2+\right. \nonumber \\&\left. +\delta ^2 (3 {\bar{y}}_p-2 {\bar{y}}_q^+)))+\delta ^3 (c^3 (-{\bar{y}}_p) (9 {\bar{y}}_q^++{\bar{y}}_p) \right. \nonumber \\&(3 {\bar{y}}_q^++7 {\bar{y}}_p)+3 \alpha ({\bar{y}}_q^+-{\bar{y}}_p) \nonumber \\&\left. (-2 c^2 {\bar{y}}_p (7 {\bar{y}}_q^++3 {\bar{y}}_p)+\right. \nonumber \\&\left. +c {\bar{y}}_p ({\bar{y}}_q^+-{\bar{y}}_p) (11 \delta +2 {\bar{y}}_p)+({\bar{y}}_q^+-{\bar{y}}_p)^2 \right. \nonumber \\&(19 \delta ^2+22 {\bar{y}}_p^2+38 \delta {\bar{y}}_p))-6 c^2 {\bar{y}}_p ({\bar{y}}_q^+-{\bar{y}}_p) \nonumber \\&\left. (7 {\bar{y}}_q^++3 {\bar{y}}_p) (\delta +{\bar{y}}_p)+\right. \nonumber \\&\left. +3 \alpha ^2 ({\bar{y}}_q^+-{\bar{y}}_p)^2 (c {\bar{y}}_p+({\bar{y}}_q^+-{\bar{y}}_p) (19 \delta \right. \nonumber \\&+22 {\bar{y}}_p))+3 c {\bar{y}}_p ({\bar{y}}_q^+-{\bar{y}}_p)^2 (\delta ^2+{\bar{y}}_p^2+11 \delta {\bar{y}}_p)\nonumber \\&\left. +22 \alpha ^3 ({\bar{y}}_q^+-{\bar{y}}_p)^3+\right. \nonumber \\&\left. +({\bar{y}}_q^+-{\bar{y}}_p)^3 (\delta +{\bar{y}}_p) (22 \delta ^2+22 {\bar{y}}_p^2+35 \delta {\bar{y}}_p))\right) . \end{aligned}$$
(A.8)

The computations for the map \(P_-\) are totally similar. We use again the formula given in (A.1), this time with

$$\begin{aligned} A^{-}= & {} \begin{bmatrix} -\alpha - N_{RT}{\bar{y}}_p &{}-N_{RT}{\bar{x}}_t&{}0\\ -N_{PI}a &{} -c &{}N_{PI}a\\ \delta -\alpha &{}0&{}-\delta \\ \end{bmatrix},\;\;\widetilde{{\mathbf {x}}}_1=\begin{bmatrix} {\widetilde{x}}_1\\ {\widetilde{y}}_1\\ 0 \end{bmatrix},\\ {\mathbf {v}}^{-}= & {} \begin{bmatrix} {\bar{x}}_t({\bar{y}}_q^+ - N_{RT}{\bar{y}}_p)\\ \frac{a{\bar{x}}_t{\bar{y}}_q^+N_{PI}}{\delta }-c{\bar{y}}_p\\ 0 \end{bmatrix}, \end{aligned}$$

being \({\widetilde{x}}_1\le 0\), \(A^-=D{\mathbf {F}}_{-}({\bar{x}}_t,{\bar{y}}_p,C_T)\) and \({\mathbf {v}}^{-}={\mathbf {F}}_{-}({\bar{x}}_t,{\bar{y}}_p,C_T)\). We compute the approximation up to fifth order of the half-return time \(t_-=t_-({\widetilde{x}}_1,{\widetilde{y}}_1)\). This is done by solving the equation \({\widetilde{z}}(t_-)=0\) so that, after the evaluation at such a time for the other two coordinates of the solution, we determine the image of the half-return map \(({\widetilde{x}}_2,{\widetilde{y}}_2)=P_-({\widetilde{x}}_1,{\widetilde{y}}_1)\), namely

$$\begin{aligned} {\widetilde{x}}_2&=-{\widetilde{x}}_1+p_{20}^-{\widetilde{x}}_1^2+ p_{30}^-{\widetilde{x}}_1^3+p_{21}^-{\widetilde{x}}_1^2{\widetilde{y}}_1+ p_{40}^-{\widetilde{x}}_1^4\nonumber \\&\quad +p_{31}^-{\widetilde{x}}_1^3{\widetilde{y}}_1 +p_{22}^-{\widetilde{x}}_1^2{\widetilde{y}}_1^2+{\widetilde{x}}_1^2 \cdot O(3), \end{aligned}$$
(A.9)
$$\begin{aligned} {\widetilde{y}}_2&=v_{10}^-{\widetilde{x}}_1+{\widetilde{y}}_1+v_{11}^- {\widetilde{x}}_1{\widetilde{y}}_1+v_{20}^-{\widetilde{x}}_1^2+v_{30}^- {\widetilde{x}}_1^3\nonumber \\&\quad +v_{21}^-{\widetilde{x}}_1^2{\widetilde{y}}_1+v_{12}^- {\widetilde{x}}_1{\widetilde{y}}_1^2+{\widetilde{x}}_1\cdot O(3), \end{aligned}$$
(A.10)

with coefficients of the quadratic terms given by

$$\begin{aligned} p_{20}^-= & {} \dfrac{\delta \left[ c{\bar{y}}_p+({\bar{y}}_p-{\bar{y}}_q^-) (\alpha +\delta +N_{RT}{\bar{y}}_p)\right] -a{\bar{x}}_t{\bar{y}}_q^-N_{PI} N_{RT}}{3/2{\bar{x}}_t\delta ({\bar{y}}_q^--{\bar{y}}_p)^2 N_{RT}} ,\nonumber \\ v_{10}^-= & {} \dfrac{2\left( \frac{c\delta }{N_{RT}} {\bar{y}}_p-a{\bar{x}}_t{\bar{y}}_q^-N_{PI}\right) }{{\bar{x}}_t\delta ({\bar{y}}_q^--{\bar{y}}_p)},\nonumber \\ v_{11}^-= & {} \dfrac{2{\bar{y}}_q^-(c\delta -a{\bar{x}}_tN_{PI}N_{RT})}{{\bar{x}}_t \delta ({\bar{y}}_q^--{\bar{y}}_p)^2N_{RT}},\nonumber \\ v_{20}^-= & {} \dfrac{2(aN_{PI}N_{RT}{\bar{x}}_t{\bar{y}}_q^--c\delta {\bar{y}}_p) (2aN_{PI}N_{RT}{\bar{x}}_t{\bar{y}}_q^-+\delta [c({\bar{y}}_p-3{\bar{y}}_q^-) +({\bar{y}}_p-{\bar{y}}_q^-)(\alpha +\delta +N_{RT}{\bar{y}}_p)])}{3{\bar{x}}_t^2\delta ^2({\bar{y}}_q^--{\bar{y}}_p)^3N_{RT}^2}, \end{aligned}$$
(A.11)

coefficients of the cubic terms given by

$$\begin{aligned} p_{21}^-=&\dfrac{\delta \left[ c({\bar{y}}_p+{\bar{y}}_q^-) +({\bar{y}}_p-{\bar{y}}_q^-)(\alpha +\delta +N_{RT}{\bar{y}}_p)\right] -2a{\bar{x}}_t{\bar{y}}_q^-N_{PI}}{3/2{\bar{x}}_t\delta ({\bar{y}}_q^--{\bar{y}}_p)^3 N_{RT}} ,\nonumber \\ p_{30}^-=&\frac{2}{9 \delta ^2 N_{RT}^2 {\bar{x}}_t^2 ({\bar{y}}_q^--{\bar{y}}_p)^4} \left( 4 a^2 N_{PI}^2 N_{RT}^2 {\bar{x}}_t^2 ({\bar{y}}_q^-)^2\right. \nonumber \\&\left. -a \delta N_{PI} N_{RT} {\bar{x}}_t {\bar{y}}_q^- (c (3 {\bar{y}}_q^-+5 {\bar{y}}_p)+\right. \nonumber \\&\left. +({\bar{y}}_q^--{\bar{y}}_p) (\alpha +\delta +N_{RT} {\bar{y}}_p))-\delta ^2 \right. \nonumber \\&\left. \left( -c^2 {\bar{y}}_p (3 {\bar{y}}_q^-+{\bar{y}}_p)+\alpha ({\bar{y}}_p-{\bar{y}}_q^-) (c {\bar{y}}_p\right. \right. \nonumber \\&\left. \left. -4 ({\bar{y}}_q^--{\bar{y}}_p) (\delta +N_{RT} {\bar{y}}_p))+\right. \right. \nonumber \\&+c {\bar{y}}_p ({\bar{y}}_p-{\bar{y}}_q^-) (\delta +N_{RT} {\bar{y}}_p)+2 \alpha ^2 ({\bar{y}}_q^--{\bar{y}}_p)^2\nonumber \\&\left. \left. +2({\bar{y}}_q^--{\bar{y}}_p)^2 (\delta +N_{RT} {\bar{y}}_p)^2\right) \right) ,\nonumber \\ v_{30}^-=&\frac{-2}{9 \delta ^3 N_{RT}^3 {\bar{x}}_t^3 ({\bar{y}}_q^--{\bar{y}}_p)^5} \left( 8 a^3 N_{PI}^3 N_{RT}^3 {\bar{x}}_t^3 ({\bar{y}}_q^-)^3\right. \nonumber \\&\left. -a^2 \delta N_{PI}^2 N_{RT}^2 {\bar{x}}_t^2 {\bar{y}}_q^- (3 c {\bar{y}}_q^- (5 {\bar{y}}_q^-+3 {\bar{y}}_p)+\right. \nonumber \\&+({\bar{y}}_q^--{\bar{y}}_p) (5 \alpha {\bar{y}}_q^-+5 N_{RT} {\bar{y}}_q^- {\bar{y}}_p+2 \delta {\bar{y}}_q^-\nonumber \\&\left. +3 \delta {\bar{y}}_p))+a \delta ^2 N_{PI} N_{RT} {\bar{x}}_t \left( 6 c^2 ({\bar{y}}_q^-)^2 ({\bar{y}}_q^-+3 {\bar{y}}_p)+\right. \right. \nonumber \\&+c {\bar{y}}_q^- ({\bar{y}}_q^--{\bar{y}}_p) (2 (3 {\bar{y}}_q^-+2 {\bar{y}}_p) (\alpha +N_{RT} {\bar{y}}_p)\nonumber \\&\left. \left. +\delta (3 {\bar{y}}_q^-+7 {\bar{y}}_p))+({\bar{y}}_q^--{\bar{y}}_p)^2 \left( \delta (4 \alpha {\bar{y}}_q^-\right. \right. \right. \nonumber \\&\left. \left. \left. -3 \alpha {\bar{y}}_p+N_{RT} {\bar{y}}_q^- {\bar{y}}_p)+\right. \right. \right. \nonumber \\&\left. \left. +2 {\bar{y}}_q^- (\alpha +N_{RT} {\bar{y}}_p)^2+2 \delta ^2 {\bar{y}}_q^-\right) \right) \nonumber \\&\left. +c \delta ^3 {\bar{y}}_p \left( c^2 \left( -6 ({\bar{y}}_q^-)^2-3 {\bar{y}}_q^- {\bar{y}}_p+{\bar{y}}_p^2\right) +\right. \right. \nonumber \\&-c \left( 6 ({\bar{y}}_q^-)^2-7 {\bar{y}}_q^- {\bar{y}}_p+{\bar{y}}_p^2\right) (\alpha +\delta +N_{RT} {\bar{y}}_p)\nonumber \\&\left. \left. -({\bar{y}}_q^--{\bar{y}}_p)^2 \left( 2 \delta ^2+\delta (\alpha +N_{RT} {\bar{y}}_p)\right. \right. \right. \nonumber \\&\left. \left. \left. +2 (\alpha +N_{RT} {\bar{y}}_p)^2\right) \right) \right) ,\nonumber \\ v_{21}^-=&\frac{2}{3 \delta ^2 N_{RT}^2 {\bar{x}}_t^2 ({\bar{y}}_q^--{\bar{y}}_p)^4} \left( 6 a^2 N_{PI}^2 N_{RT}^2 {\bar{x}}_t^2 ({\bar{y}}_q^-)^2\right. \nonumber \\&-2 a \delta N_{PI} N_{RT} {\bar{x}}_t {\bar{y}}_q^- (c (5 {\bar{y}}_q^-+{\bar{y}}_p)+\nonumber \\&+({\bar{y}}_q^--{\bar{y}}_p) (\alpha +\delta +N_{RT} {\bar{y}}_p))\nonumber \\&+c \delta ^2 \left( c \left( 3 ({\bar{y}}_q^-)^2+4 {\bar{y}}_q^- {\bar{y}}_p-{\bar{y}}_p^2\right) \right. \nonumber \\&\left. \left. +({\bar{y}}_q^--{\bar{y}}_p) ({\bar{y}}_q^-+{\bar{y}}_p) (\alpha +\delta +N_{RT} {\bar{y}}_p)\right) \right) ,\nonumber \\ v_{12}^-=&\frac{2 {\bar{y}}_q^- (c \delta -a N_{PI} N_{RT} {\bar{x}}_t)}{\delta N_{RT} {\bar{x}}_t ({\bar{y}}_q^--{\bar{y}}_p)^3}, \end{aligned}$$
(A.12)

and the coefficients of the fourth-order terms of the first equation are given by

$$\begin{aligned} p_{31}^-=&\frac{2}{9 \delta ^2 N_{RT}^2 {\bar{x}}_t^2 ({\bar{y}}_q^--{\bar{y}}_p)^5} \left( 16 a^2 N_{PI}^2 N_{RT}^2 {\bar{x}}_t^2 ({\bar{y}}_q^-)^2\right. \nonumber \\&-a \delta N_{PI} N_{RT} {\bar{x}}_t {\bar{y}}_q^- (c (17 {\bar{y}}_q^-+15 {\bar{y}}_p)+\nonumber \\&+3 ({\bar{y}}_q^--{\bar{y}}_p) (\alpha +\delta +N_{RT} {\bar{y}}_p))\nonumber \\&\left. +\delta ^2 \left( c^2 \left( 3 ({\bar{y}}_q^-)^2+11 {\bar{y}}_q^- {\bar{y}}_p+2 {\bar{y}}_p^2\right) +\right. \right. \nonumber \\&+c ({\bar{y}}_q^--{\bar{y}}_p) ({\bar{y}}_q^-+2 {\bar{y}}_p) (\alpha +\delta +N_{RT} {\bar{y}}_p)\nonumber \\&\left. \left. -4 ({\bar{y}}_q^--{\bar{y}}_p)^2 (\alpha +\delta +N_{RT} {\bar{y}}_p)^2\right) \right) ,\nonumber \\ p_{22}^-=&\frac{ \delta \left[ c (2 {\bar{y}}_q^-+{\bar{y}}_p)-({\bar{y}}_q^--{\bar{y}}_p) (\alpha +\delta +N_{RT} {\bar{y}}_p)\right] -3 a N_{PI} N_{RT} {\bar{x}}_t {\bar{y}}_q^-}{3/2 \delta N_{RT} {\bar{x}}_t ({\bar{y}}_q^--{\bar{y}}_p)^4},\nonumber \\ p_{40}^-=&\frac{-2}{135 \delta ^3 N_{RT}^3 {\bar{x}}_t^3 ({\bar{y}}_q^--{\bar{y}}_p)^6} \left( 100 a^3 N_{PI}^3 N_{RT}^3 {\bar{x}}_t^3 ({\bar{y}}_q^-)^3\right. \nonumber \\&-3 a^2 \delta N_{PI}^2 N_{RT}^2 {\bar{x}}_t^2 {\bar{y}}_q^- (20 c {\bar{y}}_q^- (2 {\bar{y}}_q^-+3 {\bar{y}}_p)+\nonumber \\&+({\bar{y}}_q^--{\bar{y}}_p) (20 {\bar{y}}_q^- (\alpha +N_{RT} {\bar{y}}_p)+\delta (11 {\bar{y}}_q^-+9 {\bar{y}}_p)))\nonumber \\&\left. -3 a \delta ^2 N_{PI} N_{RT} {\bar{x}}_t \left( -c^2 {\bar{y}}_q^- \left( 9 ({\bar{y}}_q^-)^2+62 {\bar{y}}_q^- {\bar{y}}_p+29 {\bar{y}}_p^2\right) +\right. \right. \nonumber \\&+c (-({\bar{y}}_q^--{\bar{y}}_p)) \left( 2 {\bar{y}}_q^- (7 {\bar{y}}_q^-+13 {\bar{y}}_p) (\alpha +N_{RT} {\bar{y}}_p)\right. \nonumber \\&\left. \left. \left. +\delta \left( 8 ({\bar{y}}_q^-)^2+29 {\bar{y}}_q^- {\bar{y}}_p+3 {\bar{y}}_p^2\right) \right) +\right. \right. \nonumber \\&+({\bar{y}}_q^--{\bar{y}}_p)^2 \left( \delta (\alpha (2 {\bar{y}}_q^-+9 {\bar{y}}_p)+N_{RT} {\bar{y}}_p (8 {\bar{y}}_q^-\right. \nonumber \\&\left. \left. \left. +3 {\bar{y}}_p))+{\bar{y}}_q^- (\alpha +N_{RT} {\bar{y}}_p)^2+\delta ^2 (3 {\bar{y}}_p-2 {\bar{y}}_q^-)\right) \right) +\right. \nonumber \\&+\delta ^3 \left( c^3 (-{\bar{y}}_p) (9 {\bar{y}}_q^-+{\bar{y}}_p) (3 {\bar{y}}_q^-+7 {\bar{y}}_p)\right. \nonumber \\&\left. \left. +3 \alpha ({\bar{y}}_q^--{\bar{y}}_p) \left( -2 c^2 {\bar{y}}_p (7 {\bar{y}}_q^-+3 {\bar{y}}_p)+\right. \right. \right. \nonumber \\&+c {\bar{y}}_p ({\bar{y}}_q^--{\bar{y}}_p) (11 \delta +2 N_{RT} {\bar{y}}_p)+({\bar{y}}_q^--{\bar{y}}_p)^2 \nonumber \\&\left. \left. \left. \left( 19 \delta ^2+22 N_{RT}^2 {\bar{y}}_p^2+38 \delta N_{RT} {\bar{y}}_p\right) \right) +\right. \right. \nonumber \\&-6 c^2 {\bar{y}}_p ({\bar{y}}_q^--{\bar{y}}_p) (7 {\bar{y}}_q^-+3 {\bar{y}}_p) (\delta +N_{RT} {\bar{y}}_p)\nonumber \\&\left. \left. +3 \alpha ^2 ({\bar{y}}_q^--{\bar{y}}_p)^2 (c {\bar{y}}_p+({\bar{y}}_q^--{\bar{y}}_p) (19 \delta +22 N_{RT} {\bar{y}}_p))+\right. \right. \nonumber \\&\left. \left. +3 c {\bar{y}}_p ({\bar{y}}_q^--{\bar{y}}_p)^2 \left( \delta ^2+N_{RT}^2 {\bar{y}}_p^2+11 \delta N_{RT} {\bar{y}}_p\right) +\right. \right. \nonumber \\&+22 \alpha ^3 ({\bar{y}}_q^--{\bar{y}}_p)^3+({\bar{y}}_q^--{\bar{y}}_p)^3 (\delta +N_{RT} {\bar{y}}_p) \nonumber \\&\left. \left. \left( 22 \delta ^2+22 N_{RT}^2 {\bar{y}}_p^2+35 \delta N_{RT} {\bar{y}}_p\right) \right) \right) . \end{aligned}$$
(A.13)

Remark 5

Substituting (36) in \(v_{10}^-\) and \(v_{10}^+\), we prove that \(v_{10}^-=v_{10}^+\).

Remark 6

Although in the half-return maps \(P_-\) and \(P_+\) we have not given the coefficients of the fifth-order terms of the first equation and the fourth and fifth-order terms of the second equation, such coefficients can be calculated since it appears in terms of the third and fourth order of the determinant and trace given in (47). We prefer not to show such coefficients since they are not necessary for the conclusion of this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, T., Cristiano, R., Gonçalves, L.F. et al. Global analysis of the dynamics of a mathematical model to intermittent HIV treatment. Nonlinear Dyn 101, 719–739 (2020). https://doi.org/10.1007/s11071-020-05775-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05775-4

Keywords

Mathematics Subject Classification

Navigation