Skip to main content
Log in

Riemann–Hilbert approach and N-soliton solutions for a new two-component Sasa–Satsuma equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new two-component Sasa–Satsuma equation associated with a \(4\times 4\) matrix spectral problem is proposed by resorting to the zero-curvature equation. Riemann–Hilbert problems are formulated on the basis of spectral analysis of the \(4\times 4\) matrix Lax pair for the two-component Sasa–Satsuma equation, from which zero structures of the Riemann–Hilbert problems are investigated. As applications, N-soliton formulas of the two-component Sasa–Satsuma equation are obtained by solving a particular Riemann–Hilbert problem corresponding to the reflectionless case. Further, the obtained N-soliton formulas are expressed by the ratios of determinants, which are more compact and convenient for symbolic computations. Moreover, the interaction dynamics of the multi-soliton solutions are analyzed and graphically illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sasa, N., Satsuma, J.: New-type of solutions for a higher-order nonlinear evolution equation. J. Phys. Soc. Jpn. 60, 409–417 (1991)

    Article  MATH  Google Scholar 

  2. Nakkeeran, K., Porsezian, K., Sundaram, S.P., et al.: Optical solitons in \(N\)-coupled higher order nonlinear Schrödinger equations. Phys. Rev. Lett. 80, 1425 (1998)

    Google Scholar 

  3. Hasegawa, A., Kodama, Y.: Solitons in Optical Communications. Clarendon, Oxford (1995)

    MATH  Google Scholar 

  4. Ghosh, S., Kundu, A., Nandy, S.: Soliton solutions, Liouville integrability andgauge equivalence of Sasa–Satsuma equaiton. J. Math. Phys. 40, 1993–2000 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gilson, C., Hietarinta, J., Nimmo, J.J.C., Ohta, Y.: Sasa-Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solutions. Phys. Rev. E 68, 016614 (2003)

    Article  MathSciNet  Google Scholar 

  6. Nimmo, J.J.C., Yilmaz, H.: Binary Darboux transformation for the Sasa–Satsuma equation. J. Phys. A 48, 425202 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Akhmediev, N., Soto-Crespo, J.M., Devine, N., Hoffmann, N.P.: Rogue wave spectra of the Sasa–Satsuma equation. Phys. D 294, 37–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mu, G., Qin, Z.Y., Grimshaw, R., Akhmediev, N.: Intricate dynamics of rogue waves governed by the Sasa–Satsuma equation. Phys. D 402, 132252 (2020)

    Article  MathSciNet  Google Scholar 

  9. Wei, J., Wang, X., Geng, X.G.: Periodic and rational solutions of the reduced Maxwell–Bloch equations. Commun. Nonlinear Sci. Numer. Simul. 59, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  10. Li, R.M., Geng, X.G.: On a vector long wave-short wave-type model. Stud. Appl. Math. 144, 164–184 (2020)

    Article  Google Scholar 

  11. Li, R.M., Geng, X.G.: Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wei, J., Geng, X.G., Zeng, X.: The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Am. Math. Soc. 371, 1483–1507 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Yang, J.K., Kaup, D.K.: Squared eigenfunctions for the Sasa–Satsuma equation. J. Math. Phys. 50, 023504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, J., Park, Q.H., Shin, H.J.: Conservation laws in higher-order nonlinear Schrödinger equations. Phys. Rev. E 58, 6746–6751 (1998)

    Article  MathSciNet  Google Scholar 

  15. Sergyeyev, A., Demskoi, D.: Sasa-Satsuma (complex modified Korteweg-de Vries II) and the complex sine-Gordon II equation revisited: recursion operators, nonlocal symmetries, and more. J. Math. Phys. 48, 042702 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, L.H., He, G.L., Geng, X.G.: The full positive flows of Manakov hierarchy, Hamiltonian structures and conservation laws. Appl. Math. Comput. 220, 20–37 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Xu, J., Fan, E.G.: The unified transform method for the Sasa–Satsuma equation on the half-line. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469, 20130068 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhai, Y.Y., Geng, X.G.: The coupled Sasa–Satsuma hierarchy: trigonal curve and finite genus solutions. Anal. Appl. 15, 667–697 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, H., Geng, X.G., Xue, B.: The Deift–Zhou steepest descent method to long-time asymptotics for the Sasa–Satsuma equation. J. Differ. Equ. 265, 5984–6008 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  21. Deift, P.A., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems, asymptotics for the mKdV equation. Ann. Math. 137, 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  23. Yang, J.K.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  24. Shchesnovich, V.S., Barashenkov, I.V.: Soliton-radiation coupling in the parametrically driven, damped nonlinear Schrödinger equation. Phys. D 164, 83–109 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang, B., Chen, Y.: High-order soliton matrices for Sasa–Satsuma equation via local Riemann–Hilbert problem. Nonlinear Anal. Real World Appl. 45, 918–941 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, D.S., Zhang, D.J., Yang, J.K.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51, 023510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Geng, X.G., Li, R.M., Xue, B.: A vector general nonlinear Schrödinger equation with \((m+n)\) components. J. Nonlinear Sci. 30, 991–1013 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Geng, X.G., Wu, J.P.: Riemann-Hilbert approach and \(N\)-soliton solutions for a generalized Sasa–Satsuma equation. Wave Motion 60, 62–72 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Ma, W.X.: Application of the Riemann–Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal. Real World Appl. 47, 1–17 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma, W.X.: Riemann–Hilbert problems and \(N\)-soliton solutions for a coupled mKdV system. J. Geom. Phys. 132, 45–54 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Wu, J.P., Geng, X.G.: Inverse scattering transform and soliton classification of the coupled modified Korteweg–de Vries equation. Commun. Nonlinear Sci. Numer. Simul. 53, 83–93 (2017)

    Article  MathSciNet  Google Scholar 

  32. Geng, X.G., Chen, M.M., Wang, K.D.: Long-time asymptotics of the coupled modified Korteweg–de Vries equation. J. Geom. Phys. 142, 151–167 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, J.P.: Riemann–Hilbert approach of the Newell-type long-wave-short-wave equation via the temporal-part spectral analysis. Nonlinear Dyn. 98, 749–760 (2019)

    Article  MATH  Google Scholar 

  34. Yan, Z.Y.: Initial-boundary value problem for the spin-1 Gross–Pitaevskii system with a \(4\times 4\) Lax pair on a finite interval. J. Math. Phys. 60, 083511 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T., Fang, Y.: Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations. J. Geom. Phys. 146, 103508 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fokas, A.S., Lenells, J.: The unified method: I. Nonlinearizable problems on the half-line. J. Phys. A Math. Theor. 45, 195201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lenells, J., Fokas, A.S.: The unified method: II. NLS on the half-line t-periodic boundary conditions. J. Phys. A Math. Theor. 45, 195202 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yan, Z.Y.: An initial-boundary value problem for the integrable spin-1 Gross–Pitaevskii equations with a \(4\times 4\) Lax pair on the half-line. Chaos 27, 053117 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)

    Article  MATH  Google Scholar 

  40. Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci. 28, 739–763 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11871440, 11931017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguo Geng.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Su, T., Geng, X. et al. Riemann–Hilbert approach and N-soliton solutions for a new two-component Sasa–Satsuma equation. Nonlinear Dyn 101, 597–609 (2020). https://doi.org/10.1007/s11071-020-05772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05772-7

Keywords

Navigation