Skip to main content
Log in

Distributed Nash equilibrium seeking for networked games of multiple high-order systems with disturbance rejection and communication delay

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates distributed Nash equilibrium seeking problems for networked games played by multiple high-order systems with disturbance rejection and communication delay, where each player’ payoff function is determined by all players’ actions. To be specific, a fixed-time disturbance observer is used to enhance the capacity of disturbance rejection. In virtue of the observed values, the backstepping technique is performed to design a seeking strategy on the basis of a synthesis of a leader–follower consensus protocol and the gradient play technique, where a fixed-time differentiator is used to overcome the problem of ‘explosion of terms.’ Detailed stability analysis is conducted via the Lyapunov–Krasovskii method to show the convergence of the players’ actions to the Nash equilibrium under both constant and time-varying delays. Moreover, the relationship between the allowed upper bound of the communication delay and the controller parameters is also obtained analytically. Finally, numerical simulations are presented to demonstrate the effectiveness of the proposed seeking algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pang, J., Scutari, G., Facchinei, F., Wang, C.: Distributed power allocation with rate constraints in Gaussian parallel interference channels. IEEE Trans. Inf. Theory 54(8), 3471–3489 (2008)

    Article  MathSciNet  Google Scholar 

  2. Deligiannis, A., Panoui, A., Lambotharan, S., Chambers, J.: Game-theoretic power allocation and the Nash equilibrium analysis for a multistatic MIMO radar network. IEEE Trans. Signal Process. 65(24), 6397–6408 (2017)

    Article  MathSciNet  Google Scholar 

  3. Ardagna, D., Panicucci, B., Passacantando, M.: Generalized Nash equilibira for the service provisioning problem in cloud systems. IEEE Trans. Serv. Comput. 6(4), 429–442 (2013)

    Article  Google Scholar 

  4. Stankovic, M., Johansson, K.: Distributed seeking of Nash equilibria with applications to mobile sensor networks. IEEE Trans. Autom. Control 57(4), 904–919 (2012)

    Article  MathSciNet  Google Scholar 

  5. Salehisadaghiani, F., Pavel, L.: Distributed Nash equilibrium seeking: a gossip-based algorithm. Automatica 72, 209–216 (2016)

    Article  MathSciNet  Google Scholar 

  6. Salehisadaghiani, F., Pavel, L.: Distributed Nash equilibrium seeking in aggregative graphical games. Automatica 87, 17–24 (2018)

    Article  Google Scholar 

  7. Liang, S., Yu, P., Hong, Y.: Distributed Nash equilibrium seeking for aggregative games with coupled constraints. Automatica 85, 179–185 (2017)

    Article  MathSciNet  Google Scholar 

  8. Lu, K., Jing, G., Wang, L.: Distributed algorithms for searching generalized Nash equilibrium of noncooperative games. IEEE Trans. Cybern. 49(6), 2362–2371 (2019)

    Article  Google Scholar 

  9. Liu, S., Krstic, M.: Stochastic Nash equilibrium seeking for games with general nonlinear payoffs. SIAM J. Control Optim. 49(4), 1659–1679 (2011)

    Article  MathSciNet  Google Scholar 

  10. Poveda, J., Quijiano, N.: Shahshahani gradient-like extremum seeking. Automatica 58, 51–59 (2015)

    Article  MathSciNet  Google Scholar 

  11. Koshal, J., Nedic, A., Shanbhag, U.: Distributed algorithms for aggregative games on graphs. Oper. Res. 63(3), 680–704 (2016)

    Article  MathSciNet  Google Scholar 

  12. Yi, P., Pavel, L.: Asynchronous distributed algorithms for seeking generalized Nash equilibria under full and partial-decision information. IEEE Trans. Cybern. 50(6), 2514–2526 (2020)

    Article  Google Scholar 

  13. Ye, M., Hu, G.: Distributed Nash equilibrium seeking by a consensus based approach. IEEE Trans. Autom. Control 62(9), 4811–4818 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ye, M., Hu, G.: Distributed Nash equilibrium seeking in multiagent games under switching communication topologies. IEEE Trans. Cybern. 48(11), 3208–3217 (2018)

    Article  Google Scholar 

  15. Deng, Z., Liang, S.: Distributed algorithms for aggregative games of multiple heterogeneous Euler–Lagrange systems. Automatica 99, 246–252 (2019)

    Article  MathSciNet  Google Scholar 

  16. Ai, X., Yu, J., Jia, Z., Yang, D., Xu, X., Shen, Y.: Disturbance observer-based consensus tracking for nonlinear multiagent systems with switching topologies. Int. J. Robust Nonlinear Control 28(6), 2144–2160 (2018)

    Article  MathSciNet  Google Scholar 

  17. Deng, Z., Nian, X.: Distributed algorithm design for aggregative games of disturbed multiagent systems over weight-balanced digraphs. Int. J. Robust Nonlinear Control 28, 5344–5357 (2018)

    Article  MathSciNet  Google Scholar 

  18. Zhang, Y., Liang, S., Wang, X., Ji, H.: Distributed Nash equilibrium seeking for aggregative games with nonlinear dynamics under external disturbances. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2929394

    Article  Google Scholar 

  19. Ai, X., Yu, J., Jia, Z., Shen, Y., Ma, P., Yang, D.: Adaptive robust consensus tracking for nonlinear second-order multi-agent systems with heterogeneous uncertainties. Int. J. Robust Nonlinear Control 27(18), 5082–5096 (2017)

    Article  MathSciNet  Google Scholar 

  20. Ai, X.: Adaptive robust bipartite consensus of high-order uncertain multi-agent systems over cooperation–competition networks. J. Frankl. Inst. 357(3), 1813–1831 (2020)

    Article  MathSciNet  Google Scholar 

  21. Yu, J., Wang, L.: Group consensus in multi-agent systems with switching topologies and communication delays. Syst. Control Lett. 59(6), 340–348 (2010)

    Article  MathSciNet  Google Scholar 

  22. Liu, K., Xie, G., Wang, L.: Consensus for multi-agent systems under double integrator dynamics with time-varying communication delays. Int. J. Robust Nonlinear Control 22(17), 1881–1898 (2012)

    Article  MathSciNet  Google Scholar 

  23. Ren, W., Beard, R.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    Article  MathSciNet  Google Scholar 

  24. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  25. Ai, X., Yu, J.: Flatness-based finite-time leader-follower formation control of multiple quadrotors with external disturbances. Aerosp. Sci. Technol. 92, 20–33 (2019)

    Article  Google Scholar 

  26. Ai, X., Yu, J.: Fixed-time trajectory tracking for a quadrotor with external disturbances: a flatness-based sliding mode control approach. Aerosp. Sci. Technol. 89, 58–76 (2019)

    Article  Google Scholar 

  27. Ding, Z.: Adaptive consensus output regulation of a class of nonlinear systems with unknown high-frequency gain. Automatica 51, 3338–355 (2015)

    Article  MathSciNet  Google Scholar 

  28. Cai, H., Lewis, F., Hu, G., Huang, J.: The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems. Automatica 75, 299–305 (2017)

    Article  MathSciNet  Google Scholar 

  29. Abdessameud, A., Tayebi, A.: Distributed output regulation of heterogeneous linear multi-agent systems with communication constraints. Automatica 91, 152–158 (2018)

    Article  MathSciNet  Google Scholar 

  30. Scutari, G., Facchinei, F., Pang, J.S., Palomar, D.P.: Real and complex monotone communication games. IEEE Trans. Inf. Theory 60(7), 4197–4231 (2014)

    Article  MathSciNet  Google Scholar 

  31. Basin, M., Yu, P., Shtessel, Y.: Finite- and fixed-time differentiators utilizing HOSM techniques. IET Control Theory Appl. 11(8), 1144–1152 (2017)

    Article  MathSciNet  Google Scholar 

  32. Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    Article  MathSciNet  Google Scholar 

  33. He, S., Wang, W., Wang, J.: Adaptive backstepping impact angle control with autopilot dynamics and acceleration saturation consideration. Int. J. Robust Nonlinear Control 27, 3777–3793 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and all anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Ai.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, X. Distributed Nash equilibrium seeking for networked games of multiple high-order systems with disturbance rejection and communication delay. Nonlinear Dyn 101, 961–976 (2020). https://doi.org/10.1007/s11071-020-05758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05758-5

Keywords

Navigation