Skip to main content
Log in

Sliding mode control for uncertain active vehicle suspension systems: an event-triggered \(\varvec{\mathcal {H}}_{\infty }\) control scheme

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper considers the event-triggered sliding mode control problem of uncertain active vehicle suspension systems. A more comprehensive polytope approach is employed to model the uncertainties which generally exist in the sprung and unsprung masses. Moreover, the corresponding mathematical model is constructed for the quarter-vehicle active suspension system. Meanwhile, the event-triggered transmission mechanism is taken into account to schedule communication and save bandwidth. The main purpose of this paper is to develop a proper sliding mode controller which can guarantee the asymptotic stability and \(\mathcal {H}_{\infty }\) performance for the suspension system with some constraints. By means of convex optimization technique, some sufficient conditions are derived to assure the constructed event-triggered sliding mode control law can not only ensure the corresponding sliding mode dynamics are asymptotically stable but also the predefined switching surface is reachable. Finally, the feasibility of the designed method is verified by a simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li, H., Yu, J., Hilton, C., Liu, H.: Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach. IEEE Trans. Ind. Electron. 60(8), 3328–3338 (2013)

    Article  Google Scholar 

  2. Guan, Y., Han, Q., Yao, H., Ge, X.: Robust \(\cal{H}_{\infty }\) event-triggered controller design for vehicle active suspension systems. Nonlinear Dyn. 94, 627–638 (2018)

    Article  Google Scholar 

  3. Al-Holou, N., Lahdhiri, T., Joo, D.S., Weaver, J., Al-Abbas, F.: Sliding mode neural network inference fuzzy logic control for active suspension systems. IEEE Trans. Fuzzy Syst. 10(2), 234–246 (2002)

    Article  Google Scholar 

  4. Sun, B., Wen, S., Wang, S., Huang, T., Li, P., Chen, Y.: Quantized synchronization of memristor-based neural networks via super-twisting algorithm. Neurocomputing 380, 133–140 (2020)

    Article  Google Scholar 

  5. Gao, H., Sun, W., Shi, P.: Robust sampled-data \(\cal{H}_{\infty }\) control for vehicle active suspension systems. IEEE Trans. Control Syst. Technol. 18(1), 238–245 (2010)

    Article  Google Scholar 

  6. Lin, B., Su, X.: Fault-tolerant controller design for active suspension system with proportional differential sliding mode observer. Int. J. Control Autom. Syst. 17(7), 1751–1761 (2019)

    Article  Google Scholar 

  7. Liu, L., Liu, Y., Li, D., Tong, S., Wang, Z.: Robust sampled-data \(\cal{H}_{\infty }\) control for vehicle active suspension systems. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2931770

    Article  Google Scholar 

  8. Li, J., Pan, K., Zhang, D., Su, Q.: Robust fault detection and estimation observer design for switched systems. Nonlinear Anal. Hybrid Syst. 34, 30–42 (2019)

    Article  MathSciNet  Google Scholar 

  9. Su, Q., Fan, Z., Lu, T., Long, Y., Li, J.: Fault detection for switched systems with all modes unstable based on interval observer. Information Sci. 517, 167–182 (2020)

    Article  MathSciNet  Google Scholar 

  10. Choi, H.D., Lee, C.J., Lim, M.T.: Fuzzy preview control for half-vehicle electro-hydraulic suspension system. Int. J. Control Autom. Syst. 16(5), 2489–2500 (2018)

    Article  Google Scholar 

  11. Liu, L., Liu, Y., Tong, S.: Fuzzy-based multierror constraint control for switched nonlinear systems and its applications. IEEE Trans. Fuzzy Syst. 27(8), 1519–1531 (2019)

    Article  Google Scholar 

  12. Fialho, I., Balas, G.J.: Road adaptive active suspension design using linear parameter-varying gain-scheduling. IEEE Trans. Control Syst. Technol. 10(1), 43–54 (2002)

    Article  Google Scholar 

  13. Liu, L., Liu, Y., Chen, A., Tong, S., Chen, C.L.P.: Integral barrier Lyapunov function-based adaptive control for switched nonlinear systems. Sci. China Inf. Sci. 63(3), 132203 (2020)

    Article  MathSciNet  Google Scholar 

  14. Li, H., Zhang, Z., Yan, H., Xie, X.: Adaptive event-triggered fuzzy control for uncertain active suspension systems. IEEE Trans. Cybern. 49(12), 4388–4397 (2019)

    Article  Google Scholar 

  15. Du, H., Zhang, N.: \(\cal{H}_{\infty }\) control of active vehicle suspensions with actuator time delay. J. Sound Vib. 301(1–2), 236–252 (2007)

    Article  MathSciNet  Google Scholar 

  16. Liu, S., Zhou, H., Luo, X., Xiao, J.: Adaptive sliding fault tolerant control for nonlinear uncertain active suspension systems. J. Frankl. Inst. 353(1), 180–199 (2016)

    Article  MathSciNet  Google Scholar 

  17. Li, H., Jing, X., Lam, H.-K., Shi, P.: Fuzzy sampled-data control for uncertain vehicle suspension systems. IEEE Trans. Cybern. 44(7), 1111–1126 (2014)

    Article  Google Scholar 

  18. Koch, G., Kloiber, T.: Driving state adaptive control of an active vehicle suspension system. IEEE Trans. Control Syst. Technol. 22(1), 44–57 (2014)

    Article  Google Scholar 

  19. Fei, J., Xin, M.: Robust adaptive sliding mode controller for semi-active vehicle suspension system. Int. J. Innov. Comput. Inf. Control 8(1), 691–700 (2012)

    MathSciNet  Google Scholar 

  20. Wang, J., Shen, L., Xia, J., Wei, Y., Wang, Z., Chen, X.: Asynchronous dissipative filtering for nonlinear jumping systems subject to fading channels. J. Frankl. Inst. 357(1), 589–605 (2020)

    Article  MathSciNet  Google Scholar 

  21. Ye, D., Diao, N., Zhao, X.: Fault-tolerant controller design for general polynomial-fuzzy-model-based systems. IEEE Trans. Fuzzy Syst. 26(2), 1046–1051 (2018)

    Article  Google Scholar 

  22. Yazici, H., Sever, M.: \(L_{2}\) gain state derivative feedback control of uncertain vehicle suspension systems. J. Vib. Control 24(16), 3779–3794 (2018)

    Article  MathSciNet  Google Scholar 

  23. T. Wu, X. Huang, X. Chen, J. Wang: Sampled-data \(\cal{H}_{\infty }\) exponential synchronization for delayed semi-Markov jump CDNs: a looped-functional approach. Appl. Math. Comput. 377, Article 125156(2020)

  24. Shen, H., Wang, Y., Xia, J., Park, J.H., Wang, Z., Chen, X.: Fault-tolerant leader-following consensus for multi-agent systems subject to semi-Markov switching topologies: an event-triggered control scheme. Nonlinear Anal. Hybrid Syst. 34, 92–107 (2019)

    Article  MathSciNet  Google Scholar 

  25. Wang, Z., Shen, L., Xia, J., Shen, H., Wang, J.: Finite-time non-fragile \(\cal{L}_{2}-\cal{L}_{\infty }\) control for jumping stochastic systems subject to input constraints via an event-triggered mechanism. J. Frankl. Inst. 355(14), 6371–6389 (2018)

    Article  Google Scholar 

  26. Shen, H., Chen, M., Wu, Z., Cao, J., Park, J.H.: Reliable event-triggered asynchronous passive control for semi-Markov jump fuzzy systems and its application. IEEE Trans. Fuzzy Syst. 1, 2 (2019). https://doi.org/10.1109/TFUZZ.2019.2921264

    Article  Google Scholar 

  27. Wang, X., Wang, Z., Song, Q., Shen, H., Huang, X.: A waiting-time-based event-triggered scheme for stabilization of complex-valued neural networks. Neural Netw. 121, 329–338 (2020)

    Article  Google Scholar 

  28. Guan, Y., Han, Q., Ge, X.: \(L_{2}\) On asynchronous event-triggered control of decentralized networked systems. Inf. Sci. 425, 127–139 (2018)

    Article  Google Scholar 

  29. Cao, Y., Wang, S., Guo, Z., Huang, T., Wen, S.: \(L_{2}\) synchronization of memristive neural networks with leakage delay and parameters mismatch via event-triggered control. Neural Netw. 119, 178–189 (2019)

    Article  Google Scholar 

  30. Pan, H., Sun, W., Zhang, J., Yan, S., Lin, W.: Adaptive event-triggered control for vehicle active suspension systems with state constraints. IFAC-PapersOnLine 51(31), 955–960 (2018)

    Article  Google Scholar 

  31. Wang, G., Chadli, M., Chen, H., Zhou, Z.: Event-triggered control for active vehicle suspension systems with network-induced delays. J. Frankl. Inst. 356(1), 147–172 (2019)

    Article  MathSciNet  Google Scholar 

  32. Wang, J., Yang, C., Shen, H., Cao, J., Rutkowski, L.: Sliding mode control for slow-sampling singularly perturbed systems subject to Markov jump parameters. IEEE Trans. Syst. Man Cybern. (2020). https://doi.org/10.1109/TSMC.2020.2979860

    Article  Google Scholar 

  33. Sun, B., Cao, Y., Guo, Z., Yan, Z., Wen, S.: Synchronization of discrete-time recurrent neural networks with time-varying delays via quantized sliding mode control. Appl. Math. Comput. 375, 125093 (2020)

    MathSciNet  Google Scholar 

  34. Ding, S., Chen, W.-H., Mei, K., Murray-Smith, D.J.: Disturbance observer design for nonlinear systems represented by input–output models. IEEE Trans. Ind. Electron. 67(2), 1222–1232 (2020)

    Article  Google Scholar 

  35. Joe, H., Kim, M., Yu, S.-C.: Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dyn. 78(1), 183–196 (2014)

    Article  Google Scholar 

  36. Mobayen, S.: An adaptive chattering-free PID sliding mode control based on dynamic sliding manifolds for a class of uncertain nonlinear systems. Nonlinear Dyn. 82(1–2), 53–60 (2015)

    Article  MathSciNet  Google Scholar 

  37. Ding, S., Liu, L., Park, J.H.: A novel adaptive nonsingular terminal sliding mode controller design and its application to active front steering system. Int. J. Robust Nonlinear Control. 29(12), 4250–4269 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Hua, C., Chen, J., Guan, X.: Fractional-order sliding mode control of uncertain quavs with time-varying state constraints. Nonlinear Dyn. 95(2), 1347–1360 (2019)

    Article  Google Scholar 

  39. Wu, L., Gao, Y., Liu, J., Li, H.: Event-triggered sliding mode control of stochastic systems via output feedback. Automatica 82, 79–92 (2017)

    Article  MathSciNet  Google Scholar 

  40. Gao, H., Lam, J., Wang, C.: Multi-objective control of vehicle active suspension systems via load-dependent controllers. J. Sound Vib. 290(3–5), 654–675 (2006)

    Article  Google Scholar 

  41. Du, H., Zhang, N., Lam, J.: Parameter-dependent input-delayed control of uncertain vehicle suspensions. J. Sound Vib. 317(3–5), 537–556 (2008)

    Article  Google Scholar 

  42. Li, H., Liu, H., Hand, S., Hilton, C.: Multi-objective \(\cal{H}_{\infty }\) control for vehicle active suspension systems with random actuator delay. Int. J. Syst. Sci. 43(12), 2214–2227 (2012)

    Article  MathSciNet  Google Scholar 

  43. Chen, H., Guo, K.-H.: Constrained \( \cal{H}_{\infty }\) control of active suspensions: an LMI approach. IEEE Trans. Control Syst. Technol. 13(3), 412–421 (2005)

    Article  Google Scholar 

  44. Wu, Z.-G., Shi, P., Su, H., Chu, J.: Stochastic synchronization of Markovian jump neural networks with time-varying delay using sampled data. IEEE Trans. Cybern. 43(6), 1796–1806 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work of H. Shen was supported by the National Natural Science Foundation of China (Grant Nos. 61703004 and 61873002). Also, the work of J.H. Park was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2019R1A5A808029011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju H. Park or Hao Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Xia, J., Park, J.H. et al. Sliding mode control for uncertain active vehicle suspension systems: an event-triggered \(\varvec{\mathcal {H}}_{\infty }\) control scheme. Nonlinear Dyn 103, 3209–3221 (2021). https://doi.org/10.1007/s11071-020-05742-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05742-z

Keywords

Navigation