Skip to main content
Log in

Coexistence of chaotic and complexity dynamics of fluctuations with long-range temporal correlations under typical condition for formation of multiple anodic double layers in DC glow discharge plasma

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Analysis of electrostatic floating potential fluctuations associated with multiple anodic double layer revealed a complexity dynamic coexisting with chaotic behavior. These externally controllable nonequilibrium quasi-stationary multiple anodic double layers were created in a cold cathode dc discharge setup in front of an extra anode which was used to supplement additional ionization. Despite the fact that chaos and complexity dynamics are often defined with entirely different properties, this study provides scenarios under which both can exist simultaneously. A stable multiple double-layer structure consisting of four successive double layers, each with positive and negative charged particles arranged in opposite sheets, was created when the anode potential exceeds a certain threshold value for a minimum gas breakdown bias between cathode and ground. After the stable multiple double layers was created, it was further controlled externally by varying the cathode bias between minimum gas breakdown bias of − 335 V and − 610 V at a pressure of 0.3 mbar for studying its advanced stages. With increase in cathode bias, multiple anodic double-layer structure advances towards the anode surface with the collapse of innermost layer due to the arrival of more energetic electrons in the anode zone. This process results from the self-organization and re-organization of charged particles in each double layer mediated by energetic electrons. The process continued until all the double layers disappeared and only an intense anode glow remained at anode for higher values of cathode bias. The chaotic dynamics of the system was studied at every stage by analyzing the corresponding floating potential fluctuations using FFT, phase space trajectories and nonlinear technique such as Lyapunov exponent, time-delay reconstruction etc. The analysis revealed the onset of chaos beyond − 410 V was triggered by the collapse of double layers. Estimation of correlation dimension, autocorrelation function and Hurst exponent unfolded the complexity features such as self-similarity and longtime dependence in the fluctuations. The value of correlation dimension reaches the maximum with an increase in cathode bias. Estimation of Hurst exponent using rescaled range analysis technique with values of H between 0.5 and 1 and algebraic decay of autocorrelation function provide signatures of long-range temporal correlations in the chaotic fluctuations and underlines the coexistence of complexity behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos: An Introduction to Dynamical Systems. Springer, Berlin (1996)

    MATH  Google Scholar 

  2. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Perseus Books, Reading (1994)

    Google Scholar 

  3. Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    MATH  Google Scholar 

  4. Lorenz, E.N.: A study of the predictability of a 28-variable atmospheric model. Tellus 17(3), 321–333 (1965)

    Google Scholar 

  5. Lorenz, E.N.: The Essence of Chaos, p. 227. UCL Press, London (1993)

    MATH  Google Scholar 

  6. Charney, J.G.: The dynamics of long waves in a baroclinic westerly current. J. Meteor. 4(5), 135–162 (1947)

    MathSciNet  Google Scholar 

  7. Arthur, W.B.: Complexity Economics: A Different Framework for Economic Thought (No. 2013-04-012) (2013)

  8. Kindleberger, C.P., Aliber, R.Z.: Manias, Panics, and Crashes A History of Financial Crises, 5th edn. Wiley, New Jersey (2005)

    Google Scholar 

  9. O’Malley, P.: From Risk to Resilience. Technologies of the Self in the Age of Catastrophes, pp. 1–30. Sydney (2011)

  10. Ormerod, P.: Economics, Management and Complex Systems. In: Allen, P., Maguire, S., McKelvey, B. (eds.) The Sage Handbook of Complexity and Management. SAGE Publications Ltd., London (2011)

    Google Scholar 

  11. Seeger, M.W.: Chaos and crisis: propositions for a general theory of crisis communication. Public Relations Review 28(4), 329–337 (2002)

    Google Scholar 

  12. Sellnow, T.L., Seeger, M.W., Ulmer, R.R.: Chaos theory, informational needs, and natural disasters. J. Appl. Commun. Res. 30(4), 269–292 (2002)

    Google Scholar 

  13. Goldberger, A.L., West, B.J.: Applications of nonlinear dynamics to clinical cardiology. Ann. N. Y. Acad. Sci. 504, 195–213 (1987)

    Google Scholar 

  14. Skarda, C.A., Freeman, W.J.: How brains make chaos in order to make sense of the world. Behav. Brain Sci. 10(2), 161–173 (1987)

    Google Scholar 

  15. Pool, R.: Is it healthy to be chaotic? Science 243, 604–607 (1989)

    Google Scholar 

  16. Daniel, T., Friedrich, T.S., Mark, D.E.: A simple method for detecting chaos in nature. Commun. Biol. 3, 11 (2020)

    Google Scholar 

  17. Hastings, A., Hom, C.L., Ellner, S., Turchin, P., Charles, H., Godfray, J.: Chaos in ecology: is mother nature a strange attractor? Annu. Rev. Ecol. Sysl. 24, 1–33 (1993)

    Google Scholar 

  18. Anderson, D.F., Sturis, J.: Chaotic structures in generic management models. Syst. Dyn. Rev. 4, 218–245 (1988)

    Google Scholar 

  19. Gregersen, H.B., Sailer, L.: Chaos theory and its implications for social science research. Human Relat. 46(7), 777–802 (1993)

    Google Scholar 

  20. Fieguth, P.: An Introduction to Complex Systems Society, Ecology, and Nonlinear Dynamics. Springer, Berlin (2017)

    Google Scholar 

  21. Tranquillo, J.V.: An Introduction to Complex Systems Making Sense of a Changing World. Springer, Berlin (2019)

    Google Scholar 

  22. Gogolin, A., Nersesyan, A., Tsvelik, A.: Theory of Strongly Correlated Systems. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  23. Goldenfeld, N., Kadanoff, L.P.: Simple lessons from complexity. Science 284(5411), 87–89 (1999)

    Google Scholar 

  24. Samia, J., Temme, A., Bregt, A., Wallinga, J., Guzzetti, F., Ardizzone, F., Rossi, M.: Do landslides follow landslides? Insights in path dependency from a multi-temporal landslide inventory. Landslides 14, 547–558 (2017)

    Google Scholar 

  25. Cansler, C.A., McKenzie, D., Halpern, C.B.: Fire enhances the complexity of forest structure in alpine treeline ecotones. Ecosphere 9(2), e02091 (2018)

    Google Scholar 

  26. Shcherbakov, R., Turcotte, D.L., Rundle, J.B.: Complexity and earthquakes. Treatise Geophys. 4, 627–653 (2015)

    Google Scholar 

  27. Lee, W.H.K.: Complexity in Earthquakes, Tsunamis, and Volcanoes, and Forecast, Introduction to. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science. Springer, New York (2009)

    Google Scholar 

  28. Chen, F.F.: Introduction to Plasma Physics Ad Controlled Fusion. Springer, Berlin (2006)

    Google Scholar 

  29. Bittencourt, J.A.: Fundamentals of Plasma Physics. Springer, New York (2004)

    MATH  Google Scholar 

  30. Braun, T., Lisboa, J.A., Francke, R.E., Gallas, J.A.C.: Observation of deterministic chaos in electrical discharges in gases. Phys. Rev. Lett. 59, 613 (1987)

    Google Scholar 

  31. Cheung, P.Y., Wong, A.Y.: Chaotic behavior and period doubling in plasmas. Phys. Rev. Lett. 59, 551 (1987)

    Google Scholar 

  32. Cheung, P.Y., Donovan, S., Wong, A.Y.: Observation of intermittent chaos. Phys. Rev. Lett. 61, 1360 (1988)

    Google Scholar 

  33. Qin, J., Wang, L., Yuan, D.P., Gao, P., Zhang, B.Z.: Chaos and bifurcations in periodic windows observed in plasmas. Phys. Rev. Lett. 63, 163 (1989)

    Google Scholar 

  34. Weixing, D., Wei, H., Xiadong, W., Yu, C.X.: Quasiperiodic transition to chaos in a plasma. Phys. Rev. Lett. 70, 170 (1993)

    Google Scholar 

  35. Qin, J., Wang, L.: Dimension of undriven plasma chaos. Phys. Lett. A 156, 81–83 (1991)

    Google Scholar 

  36. Sharma, B.K., Buragohain, A., Chutia, J.: Periodic window and period subtracting in an ion-beam plasma system. Inter. J. Bifur. Chaos 3, 455 (1993)

    MATH  Google Scholar 

  37. Klinger, T., Greiner, F., Rohde, A., Pie, A.: Nonlinear dynamical behavior of thermionic low pressure discharges. II. Experimental. Phys. Plasmas 2, 1822–1836 (1995)

    Google Scholar 

  38. Klinger, T., Greiner, F., Rohde, A., Piel, A., Koepke, M.E.: Van der Pol behavior of relaxation oscillations in a periodically driven thermionic discharge. Phys. Rev. E 52, 4316 (1995)

    Google Scholar 

  39. Gyergyek, T., Cercek, M., Jelic, N., Stanojevic, M.: Mode suppression of a two-dimensional potential relaxation instability in a weakly magnetized discharge plasma. Phys. Lett. A 176, 54–60 (1993)

    Google Scholar 

  40. Abrams, R.H., Yadlowsky, E.J., Lashinsky, H.: Periodic pulling and turbulence in a bounded plasma. Phys. Rev. Lett. 22, 275 (1969)

    Google Scholar 

  41. Koepke, M.E., Alport, M.J., Sheridan, T.E., Amatucci, W.E., Carroll III, J.J.: Asymmetric spectral broadening of modulated electrostatic ion‐cyclotron waves. Geophys. Res. Lett. 21, 1011–1014 (1994)

    Google Scholar 

  42. Nurujjaman, M., Sekar Iyengar, A.N., Parmananda, P.: Noise-invoked resonances near a homoclinic bifurcation in the glow discharge plasma. Phys. Rev. E 78, 026406 (2008)

    Google Scholar 

  43. Saha, D., Shaw, P.K., Janaki, M.S., Sekar Iyengar, A.N., Ghosh, S., Mitra, V., Wharton, A.M.: Investigation of complexity dynamics of inverse and normal homoclinic bifurcation in a glow discharge plasma. Phys. Plasmas 21, 032301 (2014)

    Google Scholar 

  44. Nurujjaman, M., Ramesh Narayanan, A.N., Iyengar, S.: Parametric investigation of nonlinear fluctuations in a dc glow discharge plasma. Chaos 17, 043121 (2007)

    MATH  Google Scholar 

  45. Ghosh, S., Shaw, P.K., Saha, D., Janaki, M.S., Sekar Iyengar, A.N.: Irregular-regular-irregular mixed mode oscillations in a glow discharge plasma. Phys. Plasmas 22, 052304 (2015)

    Google Scholar 

  46. Dendy, R.O., Chapman, S.C., Paczuski, M.: Fusion, space and solar plasmas as complex systems. Plasma Phys. Control. Fusion 49, A95–A108 (2007)

    Google Scholar 

  47. Sharma, A.S., Aschwanden, M.J., Crosby, N.B., Klimas, A.J., Milovanov, A.V., Morales, L., Sanchez, R., Uritsky, V.: 25 years of self-organized criticality: space and laboratory plasmas, space. Space Sci. Rev. 198, 167–216 (2016)

    Google Scholar 

  48. Boedo, J., et al.: Transport by intermittent convection in the boundary of the DIII-D tokamak. Phys. Plasmas 8, 4826–4833 (2001)

    Google Scholar 

  49. Sanchez, R., van Milligen, B., Newman, D., Carreras, B.: Quiet-time statistics of electrostatic turbulent fluxes from the JET tokamak and the W7-AS and TJ-II stellarators. Phys. Rev. Lett. 90, 185005 (2003)

    Google Scholar 

  50. Antar, G.Y., Krasheninnikov, S.I., Devynck, P., Doerner, R.P., Hollman, E.M., Boedo, J.A., Luckhardt, S.C., Conn, R.W.: Experimental evidence of intermittent convection in the edge of magnetic confinement devices. Phys. Rev. Lett. 87, 065001 (2001)

    Google Scholar 

  51. Carreras, B.A., Van Milligen, B., Pedrosa, M.A., Balbin, R., Hidalgo, C., Newman, D.E., Sanchez, E., Frances, M., Garcia-Cortes, I., Bleuel, J., Endler, M., Ricardi, C., Davies, S., Matthews, G.F., Martines, E., Antoni, V., Latten, A., Klinger, T.: Self-similarity of the plasma edge fluctuations. Phys. Plasmas 5, 3632 (1998)

    Google Scholar 

  52. Carreras, B.A., van Milligen, B., Hidalgo, C., Balbin, R., Sanchez, E., Garcia-Cortes, I., Pedrosa, M.A., Bleuel, J., Endler, M.: Self-similarity properties of the probability distribution function of turbulence-induced particle fluxes at the plasma edge. Phys. Rev. Lett. 83, 3653 (1999)

    Google Scholar 

  53. Alex, P., Carreras, B.A., Arumugam, S., Sinha, S.K.: Self-organized criticality in a cold plasma. Phys. Plasmas 24, 120701 (2017)

    Google Scholar 

  54. Alex, P., Carreras, B.A., Arumugam, S., Sinha, S.K.: Self-organized criticality: an interplay between stable and turbulent regimes of multiple anodic double layers in glow discharge plasma. Phys. Plasmas 25, 053514 (2018)

    Google Scholar 

  55. Block, L.P.: Potential double layers in the ionosphere. Cosmic Electrodyn. 3, 349 (1972)

    Google Scholar 

  56. Block, L.P.: A double layer review. Astrophys. Space Sci. 55, 59–83 (1978)

    Google Scholar 

  57. Raadu, M., Rasmussen, J.J.: Dynamical aspects of electrostatic double layers. Astrophys. Space Sci. 14, 43–71 (1988)

    Google Scholar 

  58. Alfven, H.: On the theory of magnetic storms and aurorae. Tellus 10(1), 104–116 (1958)

    Google Scholar 

  59. McIlwain, C.E.: Direct measurement of particles producing visible aurorae. PhD thesis, The University of Iowa, Direct Measurement of Particles Producing Visible Aurorae (1960)

  60. Matsumoto, H., Kojiima, H., Miyatake, T., Omura, Y., Okada, M., Nagano, I., Tsutsui, M.: Electrostatic solitary waves (ESW) in the magnetotail: BEN wave forms observed by GEOTAIL. Geophys. Res. Lett. 21(25), 2915–2918 (1984)

    Google Scholar 

  61. Pickett, J.S., Chen, L.J., Kahler, S.W., Santolik, O., Gurnett, D.A., Tsurutani, B.T., Balogh, A.: On the generation of solitary waves observed by Cluster in the near-Earth magnetosheath. Ann. Geophys. 22, 2515–2523 (2004)

    Google Scholar 

  62. Cattell, C., Crumley, J., Dombeck, J., Wygant, J., Mozer, F.S.: Polar observations of solitary waves at the Earth’s Magnetopause. Geophys. Res. Lett. 29(5), (2002). https://doi.org/10.1029/2001GL014046

  63. Bale, S.D., Kellogg, P.J., Larson, D.E., Lin, R.P., Goetz, K., Lepping, R.P.: Bipolar electrostatic structures in the shock transition region: Evidence of electron phase space holes. Geophys. Res. Lett. 25, 2929 (1998)

    Google Scholar 

  64. Kurth, W.S., Gurnett, D.A., Persoon, A.M., Roux, A., Bolton, S.J., Alexander, C.J.: The plasma wave environment of Europa. Planet. Space Sci. 49, (2001)

  65. Crawford, F.W., Cannara, A.B.: Structure of the double sheath in a hot-cathode plasma. J. Appl. Phys. 36, 3135–3141 (1965)

    Google Scholar 

  66. Stangeby, P.C., Allen, J.E.: Current limitation in mercury vapour discharges II. Experiment. J. Phys. D 6(2), 224 (1973)

    Google Scholar 

  67. Allen, J.E.: On the applicability of the Druyvesteyn method of measuring electron energy distributions. J. Phys. D. Appl. Phys. 11(3), L35 (1978)

    Google Scholar 

  68. Taylor, R.J., Baker, D.R., Ikezi, H.: Observation of collisionless electrostatic shocks. Phys. Rev. Lett. 24(5), 206 (1970)

    Google Scholar 

  69. Taylor, R.J., MacKenzie, K.R., Ikezi, H.: A large double plasma device for plasma beam and wave studies. Rev. Sci. Instrum. 43, 1675–1678 (1972)

    Google Scholar 

  70. Coakley, P., Hershkowitz, N.: Laboratory double layers. Phys. Fluids 22, 1171–1181 (1979)

    Google Scholar 

  71. Theisen, W.L., Carpenter, R.T., Merlino, R.L.: Filamentary double layers. Phys. Plasmas 1, 1345–1348 (1994)

    Google Scholar 

  72. Motley, R.W., D’Angelo, N.: Excitation of electrostatic plasma oscillations near the ion cyclotron frequency. Phys. Fluids 6, 296–299 (1963)

    Google Scholar 

  73. Rynn, N., D’Angelo, N.: Device for generating a low temperature, highly ionized cesium plasma. Rev. Sci. Instrum. 31, 1326–1333 (1960)

    Google Scholar 

  74. Sato, N., Popa, G., Mrk, E., Mravlag, E., Schrittwieser, R.: Instability as a source for traveling ion waves. Phys. Fluids 19(1), 70–73 (1976)

    Google Scholar 

  75. Sato, N., Hatakeyama, R., Iizuka, S., Mieno, T., Saeki, K., Rasmussen, J., Michelson, P.: Ultrastrong stationary double layers in a nondischarge magnetoplasma. Phys. Rev. Lett. 46(20), 1330 (1981)

    Google Scholar 

  76. Torven, S, Babic, M.: Current chopping space charge layers in a low-pressure arc plasma. In: Proceedings 12th International Conference on Phenomenon in Ionized Gases, p. 124. Eindhoven, The Netherlands, Pt I (1975)

  77. Torven, S., Babic, M.: Current limitation in low pressure mercury arcs. In: Proceeedings of the 4th International Conference on Gas Dishcarges, Swansea, vol. 34, p. 323 (1976)

  78. Hultqvist, B.: On the production of a magnetic-field-aligned electric field by the interaction between the hot magnetospheric plasma and the cold ionosphere. Planet. Space Sci. 19, 749–759 (1971)

    Google Scholar 

  79. Hultqvist, B.: On the interaction between the magnetosphere and the ionosphere. In: Proceedings of STO Symposium, Lenin grad, (1970)

  80. Singh, N.: Computer experiments on the formation and dynamics of electric double layers (in plasma). Plasma Phys. 22, 1–24 (1980)

    Google Scholar 

  81. Baker, K.D., Singh, N., Block, L.P., Kist, R.: Studies of strong laboratory double layers and comparison with computer simulation. J. Plasma Phys. 26, 1–27 (1981)

    Google Scholar 

  82. Iizuka, S., Saeki, K., Katta, Y.: Buneman instability, pierce instability, and double-layer formation in a collisionless plasma. Phys. Rev. Lett. 43(19), 1404 (1979)

    Google Scholar 

  83. Saeki, K., Iizuka, S., Sato, N.: Ion heating due to double-layer disruption in a plasma. Phys. Rev. Lett. 45, 1980 (1853)

    Google Scholar 

  84. Sanduloviciu, M., Lozneanu, E.: On the generation mechanism and the instability properties of anode double layers. Plasma Phys. Controll. Fusion 28(3), 585 (1986)

    Google Scholar 

  85. Song, B., DAngelo, N., Merlino, R.L.: On anode spots, double layers and plasma contactors. J. Phys. D Appl. Phys. 24, 1789–1795 (1991)

    Google Scholar 

  86. Song, B., DAngelo, N., Merlino, R.L.: Stability of a spherical double layer produced through ionization. J. Phys. D Appl. Phys. 25, 938–941 (1992)

    Google Scholar 

  87. Aflori, M., Ivan, L.M., Mihai Plugaru, M., Amarandei, G., Dimitriu, D.G.: Controlling the appearance and dynamic of a plasma ball of fire by using an additional electrode. Rom. J. Phys. 50(9–10), 1107 (2005)

    Google Scholar 

  88. Ionita, C., Dimitriu, D.G., Schrittwieser, R.W.: Elementary processes at the origin of the generation and dynamics of multiple double layers in DP machine plasma. Int. J. Mass Spectrom. 233(1–3), 343–354 (2004)

    Google Scholar 

  89. Strat, M., Strat, G., Gurlui, S.: Ordered plasma structures in the interspace of two independently working discharges. Phys. Plasmas 10, 3592–3600 (2003)

    Google Scholar 

  90. Dimitriu, D.G., Aflori, M., Ivan, L.M., Ionita, C., Schrittwieser, R.W.: Common physical mechanism for concentric and non-concentric multiple double layers in plasma. Plasma Phys. Control. Fusion 49(3), 237–248 (2007)

    Google Scholar 

  91. Agop, M., Dimitriu, D.G., Niculescu, O., Poll, E., Radu, V.: Experimental and theoretical evidence for the chaotic dynamics of complex structures. Phys. Scr. 87, 045501 (2013)

    Google Scholar 

  92. Dimitriu, D.G., Aflori, M., Ivan, L.M., Radu, V., Poll, E., Agop, M.: Experimental and theoretical investigations of plasma multiple double layers and their evolution to chaos. Plasma Sources Sci. Technol. 22, 035007 (2013)

    Google Scholar 

  93. Dimitriu, D.G., Irimiciuc, S.A., Popescu, S., Agop, M., Ionita, C., Schrittwieser, R.W.: On the interaction between two fireballs in low-temperature plasma. Phys. Plasmas 22, 113511 (2015)

    Google Scholar 

  94. Conde, L., Ferro Fontan, C., Lambas, J.: The transition from an ionizing electron collecting plasma sheath into an anodic double layer as a bifurcation. Phys. Plasmas 13, 113504 (2006)

    Google Scholar 

  95. Baalrud, S.D., Longmier, B., Hershkowitz, N.: Equilibrium states of anodic double layers. Plasma Sour. Sci. Technol. 18, 035002 (2009)

    Google Scholar 

  96. Hairapetian, G., Stenzel, R.L.: Expansion of a two-electron-population plasma into vacuum. Phys. Rev. Lett. 61, 1607 (1988)

    Google Scholar 

  97. Eliezer, S., Hora, M.: Double layers in laser-produced plasmas. Phys. Rep. 172, 339–407 (1989)

    Google Scholar 

  98. Charles, C., Boswell, R.W.: Current-free double-layer formation in a high-density helicon discharge. Appl. Phys. Lett. 82, 1356–1358 (2003)

    Google Scholar 

  99. Alex, P., Arumugham, S., Sinha, S.K.: Triggering of Buneman instability and existence of multiple double layers in laboratory plasma. Phys. Lett. A 381, 3652–3658 (2017)

    Google Scholar 

  100. Alex, P.: Generation scenarios of anodic structures and experimental realization of turbulence in unmagnetized plasma. Accept. Plasma Sci. Technol. 22, 8 (2020)

    Google Scholar 

  101. Alex, P., Arumugam, S., Jayaprakash, K., Suraj, K.S.: Order–chaos–order–chaos transition and evolution of multiple anodic double layers in glow discharge plasma. Results Phys. 5, 235–240 (2015)

    Google Scholar 

  102. Sanduloviciu, M., Borcia, C., Leu, G.: Self-organization phenomena in current carrying plasmas related to the non-linearity of the current versus voltage characteristic. Phys. Lett. A 208, 136–142 (1995)

    Google Scholar 

  103. Lozneanu, E., Borcia, C., Popescu, S., Sanduloviciu, M., Ionita, C., Dimitriu, D., Ignatescu, V., Schrittwieser, R.: On the origin of flicker noise in various plasmas. J. Plasma Fusion Res. Ser. 4, 331–334 (2001)

    Google Scholar 

  104. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A. 33, 1134 (1986)

    MathSciNet  MATH  Google Scholar 

  105. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D 110, 43–50 (1997)

    MATH  Google Scholar 

  106. Kantz, H.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  107. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenomena 65(1–2), 117–134 (1993)

    MathSciNet  MATH  Google Scholar 

  108. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica 9D, 80 (1983)

    MathSciNet  MATH  Google Scholar 

  109. Lakshmanan, M., Rajasekar, S.: Nonlinear Dynamics Integrability, Chaos and Patterns. Springer, Berlin (2003)

    MATH  Google Scholar 

  110. Mandelbrot, B.B., Wallis, J.R.: Reply [to “Comments on ‘Noah, Joseph, and Operational Hydrology’by Benoit B. Mandelbrot and James R. Wallis”]. Water Resour. Res. 4(5), 909–918 (1969)

    Google Scholar 

  111. Hurst, H.E.: Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 116, 770 (1951)

    Google Scholar 

Download references

Funding

The research work has been partially funded by University Grant Commission (UGC), India, under the project F.No.41-970/2012(SR) and Department of Science and Technology (DST), India, under the project SR/FRT-PS-053/2010. We also thank Pondicherry University for the Startup Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prince Alex.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alex, P., Perumal, M. & Sinha, S.K. Coexistence of chaotic and complexity dynamics of fluctuations with long-range temporal correlations under typical condition for formation of multiple anodic double layers in DC glow discharge plasma. Nonlinear Dyn 101, 655–673 (2020). https://doi.org/10.1007/s11071-020-05737-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05737-w

Keywords

Navigation