Skip to main content

Coexistence of Chaotic, Quasiperiodic and Multiperiodic Features in Quantum Plasma

  • Conference paper
  • First Online:
Proceedings of the Seventh International Conference on Mathematics and Computing

Abstract

Coexistence of chaotic, quasiperiodic and multiperiodic features of arbitrary amplitude quantum ion-acoustic waves are rigorously discussed in a quantum plasma consisting of electrons and ions. A conservative dynamical system of four dimensions is proposed to investigate the dynamics of quantum ion-acoustic waves. The system shows qualitatively different dynamical features at different initial conditions with specific values of physical parameters for quantum ion-acoustic waves. Tools, such as, coexisting phase spaces and plots of time series and Lyapunov exponents are employed to validate the results.

Barsha Pradhan is grateful to Sikkim Manipal University for TMA Pai University research grant (Ref. No. 118/SMU/REG/UOO/104/2019) dated 15-07-2019.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He S, Banerjee S, Sun K (2019) Complex dynamics and multiple coexisting attractors in a fractional-order microscopic chemical system. Eur Phys J Spec Top 228:195

    Article  Google Scholar 

  2. Natiq H, Banerjee S, Misra AP, Said MRM (2019) Degenerating the butterfly attractor in a plasma perturbation model using nonlinear controllers. Chaos, Solitons Fractals 122:58

    Article  MathSciNet  Google Scholar 

  3. Natiq H, Said MRM, Ariffin MRK, He S, Rondoni L, Banerjee S (2018) Self-excited and hidden attractors in a novel chaotic system with complicated multistability. Eur Phys J Plus 133:557

    Article  Google Scholar 

  4. Rahim MFA, Natiq H, Fataf NAA, Banerjee S (2019) Dynamics of a new hyperchaotic system and multistability. Eur Phys J Plus 134:499

    Article  Google Scholar 

  5. Arecchi FT, Meucci R, Puccioni G, Tredicce J (1982) Experimental evidence of subharmonic bifurcations, multistability and turbulence in a Q-switched gas laser. Phys Rev Lett 49(17):1217

    Article  Google Scholar 

  6. Hahn SJ, Pae KH (2003) Competing multistability in a plasma diode. Phys Plasmas 10(1):314

    Article  Google Scholar 

  7. Yan B, Prasad PK, Mukherjee S, Saha A, Banerjee S (2020) Dynamical complexity and multistability in a novel lunar wake plasma system. Complexity 2020:5428548

    Google Scholar 

  8. Prasad PK, Gowrishankar A, Saha A, Banerjee S (2020) Dynamical properties and fractal patterns of nonlinear waves in solar wind plasma. Phys Scr 95:6

    Google Scholar 

  9. Abdikian A, Tamang J, Saha A (2020) Electron-acoustic supernonlinear waves and their multistability in the framework of the nonlinear Schrödinger equation. Commun Theor Phys 72:075502

    Google Scholar 

  10. Saha A, Sarkar S, Banerjee S, Mondal KK (2020) Signature of chaos and multistability in a Thomas-Fermi plasma. Eur Phys J Spec Top 229:979

    Article  Google Scholar 

  11. Yong J, Haida W, Changxuan Y (1988) Multistability phenomena in a discharge plasma. Chin Phys Lett 5(5):200

    Google Scholar 

  12. Saha A, Pradhan B, Banerjee S (2020) Multistability and dynamical properties of ion-acoustic wave for the nonlinear Schrödinger equation in an electron-ion quantum plasma. Phys Scr 95:055602

    Google Scholar 

  13. Pradhan B, Mukherjee S, Saha A, Natiq H, Banerjee S (2021) Multistability and chaotic scenario in a quantum pair-ion plasma. Zeitschrift für Naturforschung A 76:109

    Article  Google Scholar 

  14. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130

    Article  MathSciNet  Google Scholar 

  15. Strogatz SH (2016) Nonlinear dynamics and Chaos. 2nd edn, Avalon Publishing

    Google Scholar 

  16. Fell J, Roschke J, Beckmann P (1993) Deterministic chaos and the first positive Lyapunov exponent: a nonlinear analysis of the human electroencephalogram during sleep. Biol Cybern 69:139

    Article  Google Scholar 

  17. Wolf A, Swift JB, Swinney HL, Vastono JA (1985) Deterministic Lyapunov exponents from a time series. Phys D 16:285

    Article  MathSciNet  Google Scholar 

  18. Shapiro SL, Teukolsky SA (1983) Black holes, white dwarfs and neutron stars. Wiley, New York

    Book  Google Scholar 

  19. Koester D, Chanmugam G (1990) Physics of white dwarf stars. Rep Prog Phys 53:837

    Article  Google Scholar 

  20. Akbari-Moghanjoughi M (2011) Propagation of arbitrary-amplitude ion waves in relativistically degenerate electron-ion plasmas. Astrophys Space Sci 332:187

    Article  Google Scholar 

  21. Hossen MR, Nahar L, Sultana S, Mamun AA (2014) Relativistic ion-acoustic solitary waves in a magnetized pair ion dense plasma with nuclei of heavy elements. High Energy Density Phys 13:13

    Article  Google Scholar 

  22. Haas F, Garcia LG, Goedert J, Manfredi G (2003) Quantum ion-acoustic waves. Phys Plasmas 10:3858

    Article  Google Scholar 

  23. El-Labany SK, El-Taibany WF, Atteya A (2018) Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons. Phys Lett A 382:412

    Article  MathSciNet  Google Scholar 

  24. Saha A, Pradhan B, Banerjee S (2020) Bifurcation analysis of quantum ion-acoustic kink, anti-kink and periodic waves of the Burgers equation in a dense quantum plasma. Eur J Phys 135:216

    Google Scholar 

  25. Samanta UK, Saha A, Chatterjee P (2013) Bifurcations of dust acoustic solitary waves and periodic waves in an unmagnetized plasma with nonextensive ions. Astrophys Space Sci 347:293

    Article  Google Scholar 

  26. Sahu B, Poria S, Ghosh UN, Roychoudhury R (2012) Quasi-periodic behavior of ion acoustic solitary waves in electron-ion quantum plasma. Phys Plasmas 19:052306

    Google Scholar 

  27. Mahmood S, Haas F (2014) Ion-acoustic cnoidal waves in a quantum plasma. Phys Plasmas 21:102308

    Google Scholar 

  28. Michta D, Graziani F, Bonitz M (2015) Quantum hydrodynamics for plasmas -a thomas-fermi theory perspective. Contrib Plasma Phys 55(6):437

    Google Scholar 

  29. Moldabekov ZhA, Bonitz M, Ramazanov TS (2017) Gradient correction and Bohm potential for two- and one-dimensional electron gases at a finite temperature. Contrib Plasma Phys 57:499

    Article  Google Scholar 

  30. Moldabekov ZhA, Bonitz M, Ramazanov TS (2018) Theoretical foundations of quantum hydrodynamics for plasmas. Phys Plasmas 25:031903

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pradhan, B., Saha, A. (2022). Coexistence of Chaotic, Quasiperiodic and Multiperiodic Features in Quantum Plasma. In: Giri, D., Raymond Choo, KK., Ponnusamy, S., Meng, W., Akleylek, S., Prasad Maity, S. (eds) Proceedings of the Seventh International Conference on Mathematics and Computing . Advances in Intelligent Systems and Computing, vol 1412. Springer, Singapore. https://doi.org/10.1007/978-981-16-6890-6_68

Download citation

Publish with us

Policies and ethics