Skip to main content
Log in

Adaptive model-free synchronization of different fractional-order neural networks with an application in cryptography

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an adaptive model-free control method is designed to synchronize a class of fractional-order neural networks which has a vast application in engineering and industry. The theoretical and analytical concepts of the method are based on the fractional-order version of the Lyapunov stability theorem and using adaptive control theory. Moreover, it is worth to mention that, because of using of boundedness property in states of chaotic systems, there is no trace of nonlinear/linear dynamic terms of the system in the control approach. Also, for the application point of view, a new crypto-system algorithm is proposed based on the designed adaptive model-free method for encryption/decryption of unmanned aerial vehicle color images. Plus, numerical simulations are created to emphasize the usability of the method and algorithm. Finally, this point should be emphasized that security analysis including key space analysis, key sensitivity analysis, histogram analysis, information entropy analysis and correlation analysis of the crypto-system are provided to confirm the results of the crypto-system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Williams, H.A.M., Jones, M.H., Nejati, M., Seabright, M.J., Bell, J., Penhall, N.D., Barnett, J.J., Duke, M.D., Scarfe, A.J., Ahn, H.S., Lim, J., MacDonald, B.A.: Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms. Biosyst. Eng. 181, 140–156 (2019). https://doi.org/10.1016/j.biosystemseng.2019.03.007

    Article  Google Scholar 

  2. Huynh, B.Q., Li, H., Giger, M.L.: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. J. Med. Imaging 3(3), 034501 (2016)

    Article  Google Scholar 

  3. Kang, M.-J., Kang, J.-W.: Intrusion detection system using deep neural network for in-vehicle network security. PLoS ONE 11(6), e0155781 (2016)

    Article  Google Scholar 

  4. Zeng, Q., Huang, H., Pei, X., Wong, S.: Modeling nonlinear relationship between crash frequency by severity and contributing factors by neural networks. Anal. Methods Accid. Res. 10, 12–25 (2016)

    Article  Google Scholar 

  5. Mikołajczyk, T., Nowicki, K., Bustillo, A., Pimenov, D.Y.: Predicting tool life in turning operations using neural networks and image processing. Mech. Syst. Signal Process. 104, 503–513 (2018)

    Article  Google Scholar 

  6. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 64, 213–231 (2018). https://doi.org/10.1016/j.cnsns.2018.04.019

    Article  Google Scholar 

  7. Petráš, I.: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Springer, Berlin (2011)

    Book  Google Scholar 

  8. Dadras, S., Momeni, H.R.: Control of a fractional-order economical system via sliding mode. Physica A 389(12), 2434–2442 (2010). https://doi.org/10.1016/j.physa.2010.02.025

    Article  Google Scholar 

  9. Aghababa, M.P.: Fractional modeling and control of a complex nonlinear energy supply-demand system. Complexity 20(6), 74–86 (2015). https://doi.org/10.1002/cplx.21533

    Article  MathSciNet  Google Scholar 

  10. Gomaa Haroun, A., Yin-Ya, L.: A novel optimized fractional-order hybrid fuzzy intelligent PID controller for interconnected realistic power systems. Trans. Inst. Meas. Control 41(11), 3065–3080 (2019)

    Article  Google Scholar 

  11. Ding, Y., Wang, Z., Ye, H.: Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control Syst. Technol. 20(3), 763–769 (2011)

    Article  Google Scholar 

  12. Jafari, P., Teshnehlab, M., Tavakoli-Kakhki, M.: Adaptive type-2 fuzzy system for synchronisation and stabilisation of chaotic non-linear fractional order systems. IET Control Theory Appl. 12(2), 183–193 (2018)

    MathSciNet  Google Scholar 

  13. Jafari, A.A., Mohammadi, S.M.A., Naseriyeh, M.H.: Adaptive type-2 fuzzy backstepping control of uncertain fractional-order nonlinear systems with unknown dead-zone. Appl. Math. Model. 69, 506–532 (2019). https://doi.org/10.1016/j.apm.2019.01.002

    Article  MathSciNet  MATH  Google Scholar 

  14. Ardeshiri, R.R., Khooban, M.H., Noshadi, A., Vafamand, N., Rakhshan, M.J.S.C.: Robotic manipulator control based on an optimal fractional-order fuzzy PID approach: SiL real-time simulation. Soft Comput. (2019). https://doi.org/10.1007/s00500-019-04152-7

    Article  Google Scholar 

  15. Jafari, A.A., Mohammadi, S.M., Farsangi, M.M., Naseriyeh, M.H.: Observer-based fractional-order adaptive type-2 fuzzy backstepping control of uncertain nonlinear MIMO systems with unknown dead-zone. Nonlinear Dyn. 95(4), 3249–3274 (2019)

    Article  Google Scholar 

  16. Roohi, M., Khooban, M.-H., Esfahani, Z., Aghababa, M.P., Dragicevic, T.: A switching sliding mode control technique for chaos suppression of fractional-order complex systems. Trans. Inst. Meas. Control 41(10), 2932–2946 (2019). https://doi.org/10.1177/0142331219834606

    Article  Google Scholar 

  17. Esfahani, Z., Roohi, M., Gheisarnejad, M., Dragičević, T., Khooban, M.-H.: Optimal non-integer sliding mode control for frequency regulation in stand-alone modern power grids. Appl. Sci. 9(16), 3411 (2019)

    Article  Google Scholar 

  18. Mofid, O., Mobayen, S.: Adaptive synchronization of fractional-order quadratic chaotic flows with nonhyperbolic equilibrium. J. Vib. Control 24(21), 4971–4987 (2017). https://doi.org/10.1177/1077546317740021

    Article  MathSciNet  Google Scholar 

  19. Luo, S., Li, S., Tajaddodianfar, F.J.N.D.: Adaptive chaos control of the fractional-order arch MEMS resonator. Nonlinear Dyn. 91(1), 539–547 (2018). https://doi.org/10.1007/s11071-017-3890-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma, Z., Ma, H.: Adaptive fuzzy backstepping dynamic surface control of strict-feedback fractional order uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/tfuzz.2019.2900602

    Article  Google Scholar 

  21. Liu, H., Li, S.-G., Wang, H.-X., Li, G.-J.: Adaptive fuzzy synchronization for a class of fractional-order neural networks. Chin. Phys. B 26(3), 030504 (2017). https://doi.org/10.1088/1674-1056/26/3/030504

    Article  Google Scholar 

  22. Lu, S., Wang, X.: Observer-based command filtered adaptive neural network tracking control for fractional-order chaotic PMSM. IEEE Access 7, 88777–88788 (2019). https://doi.org/10.1109/ACCESS.2019.2926526

    Article  Google Scholar 

  23. Shukla, M.K., Sharma, B.B.: Control and synchronization of a class of uncertain fractional order chaotic systems via adaptive backstepping control. Asian J. Control 20(2), 707–720 (2018). https://doi.org/10.1002/asjc.1593

    Article  MathSciNet  MATH  Google Scholar 

  24. Ni, J., Liu, L., Liu, C., Hu, X.: Fractional order fixed-time nonsingular terminal sliding mode synchronization and control of fractional order chaotic systems. Nonlinear Dyn. 89(3), 2065–2083 (2017). https://doi.org/10.1007/s11071-017-3570-6

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, L., Zhu, Y., Zheng, W.X.: Synchronization and state estimation of a class of hierarchical hybrid neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 27(2), 459–470 (2016). https://doi.org/10.1109/TNNLS.2015.2412676

    Article  MathSciNet  Google Scholar 

  26. Zhang, L., Zhu, Y., Zheng, W.X.: State estimation of discrete-time switched neural networks with multiple communication channels. IEEE Trans. Cybern. 47(4), 1028–1040 (2017). https://doi.org/10.1109/TCYB.2016.2536748

    Article  Google Scholar 

  27. Zhu, Y., Zheng, W.X., Zhou, D.: Quasi-synchronization of discrete-time Lur’e-type switched systems with parameter mismatches and relaxed PDT constraints. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/tcyb.2019.2930945

    Article  Google Scholar 

  28. Vafamand, N., Khorshidi, S., Khayatian, A.: Secure communication for non-ideal channel via robust TS fuzzy observer-based hyperchaotic synchronization. Chaos Solitons Fractals 112, 116–124 (2018). https://doi.org/10.1016/j.chaos.2018.04.035

    Article  MathSciNet  MATH  Google Scholar 

  29. Vafamand, N., Khorshidi, S.: Robust polynomial observer-based chaotic synchronization for non-ideal channel secure communication: an SOS approach. Iran. J. Sci. Technol. Trans. Electr. Eng. 42(1), 83–94 (2018). https://doi.org/10.1007/s40998-018-0047-7

    Article  MATH  Google Scholar 

  30. Li, Y., Wang, H., Tian, Y.: Fractional-order adaptive controller for chaotic synchronization and application to a dual-channel secure communication system. Mod. Phys. Lett. B 33(24), 1950290 (2019). https://doi.org/10.1142/s0217984919502907

    Article  MathSciNet  Google Scholar 

  31. Li, R.-G., Wu, H.-N.: Adaptive synchronization control with optimization policy for fractional-order chaotic systems between 0 and 1 and its application in secret communication. ISA Trans. 92, 35–48 (2019). https://doi.org/10.1016/j.isatra.2019.02.027

    Article  Google Scholar 

  32. Balasubramaniam, P., Muthukumar, P., Ratnavelu, K.: Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlinear Dyn. 80(1), 249–267 (2015). https://doi.org/10.1007/s11071-014-1865-4

    Article  MathSciNet  MATH  Google Scholar 

  33. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: A novel cascade encryption algorithm for digital images based on anti-synchronized fractional order dynamical systems. Multimedia Tools Appl. 76(22), 23517–23538 (2017). https://doi.org/10.1007/s11042-016-4052-4

    Article  Google Scholar 

  34. Muthukumar, P., Balasubramaniam, P., Ratnavelu, K.: Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem. Int. J. Dyn. Control 5(1), 115–123 (2017). https://doi.org/10.1007/s40435-015-0169-y

    Article  MathSciNet  Google Scholar 

  35. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  36. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187(2), 777–784 (2007). https://doi.org/10.1016/j.amc.2006.08.163

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, C., Tong, Y.: Adaptive control and synchronization of a fractional-order chaotic system. Pramana 80(4), 583–592 (2013)

    Article  Google Scholar 

  38. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81(10), 3088–3092 (1984). https://doi.org/10.1073/pnas.81.10.3088

    Article  MATH  Google Scholar 

  39. Zhang, S., Yu, Y., Yu, J.: LMI conditions for global stability of fractional-order neural networks. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2423–2433 (2017). https://doi.org/10.1109/TNNLS.2016.2574842

    Article  MathSciNet  Google Scholar 

  40. Fradkov, A.L., Evans, R.J.: Control of chaos: methods and applications in engineering. Ann. Rev. Control 29(1), 33–56 (2005). https://doi.org/10.1016/j.arcontrol.2005.01.001

    Article  Google Scholar 

  41. Curran, P.F., Chua, L.O.: Absolute stability theory and the synchronization problem. Int. J. Bifurc. Chaos 07(06), 1375–1382 (1997). https://doi.org/10.1142/s0218127497001096

    Article  MathSciNet  MATH  Google Scholar 

  42. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002). https://doi.org/10.1023/a:1016592219341

    Article  MathSciNet  MATH  Google Scholar 

  43. Asl, M.S., Javidi, M.: An improved PC scheme for nonlinear fractional differential equations: Error and stability analysis. J. Comput. Appl. Math. 324, 101–117 (2017). https://doi.org/10.1016/j.cam.2017.04.026

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, Y., Wang, H., Li, Y., Pei, B.: Image encryption based on synchronization of fractional chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 19(10), 3735–3744 (2014). https://doi.org/10.1016/j.cnsns.2014.02.029

    Article  MathSciNet  MATH  Google Scholar 

  45. SIPI Image Database. http://sipi.usc.edu/database/. Accessed Oct 2019

  46. Moafimadani, S.S., Chen, Y., Tang, C.: A new algorithm for medical color images encryption using chaotic systems. Entropy 21(6), 577 (2019)

    Article  MathSciNet  Google Scholar 

  47. Wu, X., Kan, H., Kurths, J.: A new color image encryption scheme based on DNA sequences and multiple improved 1D chaotic maps. Appl. Soft Comput. 37, 24–39 (2015). https://doi.org/10.1016/j.asoc.2015.08.008

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Nature Sciences Foundation of China (Grant No. 11671104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Roohi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest related to the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohi, M., Zhang, C. & Chen, Y. Adaptive model-free synchronization of different fractional-order neural networks with an application in cryptography. Nonlinear Dyn 100, 3979–4001 (2020). https://doi.org/10.1007/s11071-020-05719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05719-y

Keywords

Navigation