Skip to main content

Advertisement

Log in

Bursting vibration-based energy harvesting

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main purpose of this article is to demonstrate that bursting oscillations can be exploited to enhance the harvested electrical power. A vibration-based bistable Duffing energy harvester, a tristable energy harvester and an asymmetric bistable energy harvester are examined, and bursting oscillations are observed in the energy-harvesting systems with periodic excitation when an order gap exists between the exciting frequency and the natural frequency. The bifurcation mechanism of the bursting oscillations is presented via the bifurcation diagram and the transformed phase portrait of fast subsystem, which reveals that fold bifurcations occur at the transition between the quiescent states and the repetitive spiking states. Then, we investigate the influence of resistive load on the output power, and the optimal resistance is employed to determine the maximum of the power. Furthermore, compared with the method of traditional resonance energy harvesting, results clearly illustrate an improved output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171–1266 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Ibarz, B., Casado, J.M., Sanjuán, M.A.F.: Map-based models in neuronal dynamics. Phys. Rep. 501, 1–74 (2011)

    Google Scholar 

  3. Desroches, M., Guckenheimer, J., Krauskopf, B., Kuehn, C., Osinga, H.M., Wechselberger, M.: Mixed-mode oscillations with multiple time scales. SIAM Rev. 54, 211–288 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Rinzel, J.: Bursting oscillations in an excitable membrane model. In: Sleeman, B.D., Jarvis, R.J. (eds.) Ordinary and Partial Differential Equations, pp. 304–316. Springer, Berlin (1985)

    Google Scholar 

  5. Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E 65, 041922 (2002)

    MathSciNet  MATH  Google Scholar 

  6. Perc, M., Marhl, M.: Different types of bursting calcium oscillations in non-excitable cells. Chaos Soliton Fract. 18, 759–773 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Lu, Q.S., Yang, Z.Q., Duan, L.X.: Dynamics and transitions of firing patterns in deterministic and stochastic neuronal systems. Chaos Soliton Fract. 40, 577–597 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Han, X.J., Xia, F.B., Zhang, C., Yu, Y.: Origin of mixed-mode oscillations through speed escape of attractors in a Rayleigh equation with multiple-frequency excitations. Nonlinear Dyn. 88, 2693–2703 (2017)

    Google Scholar 

  9. Bi, Q.S., Zhang, Z.D.: Bursting phenomena as well as the bifurcation mechanism in controlled Lorenz oscillator with two time scales. Phys. Lett. A 375, 1183–1190 (2011)

    MATH  Google Scholar 

  10. Song, Z.G., Xu, J.: Codimension-two bursting analysis in the delayed neural system with external stimulations. Nonlinear Dyn. 67, 309–328 (2012)

    MATH  Google Scholar 

  11. Kingni, S.T., Ngueuteu, G.S.M., Woafo, P.: Bursting generation mechanism in a three-dimensional autonomous system, chaos control, and synchronization in its fractional-order form. Nonlinear Dyn. 76, 1169–1183 (2014)

    MathSciNet  Google Scholar 

  12. Zhang, Z.D., Liu, B.B., Bi, Q.S.: Non-smooth bifurcations on the bursting oscillations in a dynamic system with two timescales. Nonlinear Dyn. 79, 195–203 (2015)

    MathSciNet  Google Scholar 

  13. Wu, H.G., Bao, B.C., Liu, Z., Xu, Q., Jiang, P.: Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn. 83, 893–903 (2016)

    MathSciNet  Google Scholar 

  14. Kingston, S.L., Thamilmaran, K.: Bursting oscillations and mixed-mode oscillations in driven Liénard system. Int. J. Bifurc. Chaos 27, 1730025 (2017)

    MATH  Google Scholar 

  15. Han, X.J., Wei, M.K., Bi, Q.S., Kurths, J.: Obtaining amplitude-modulated bursting by multiple-frequency slow parametric modulation. Phys. Rev. E 97, 012202 (2018)

    Google Scholar 

  16. Marinelli, I., Vo, T., Gerardo-Giorda, L., Bertram, R.: Transitions between bursting modes in the integrated oscillator model for pancreatic-cells. J. Theor. Biol. 454, 310–319 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Challa, V., Prasad, M., Shi, Y., Fisher, F.: A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater. Struct. 75, 015035 (2008)

    Google Scholar 

  18. Shahruz, S.M.: Design of mechanical band-pass filters for energy scavenging. J. Sound Vib. 292, 987–998 (2006)

    Google Scholar 

  19. Harne, R., Wang, K.C.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 24, 023001 (2013)

    Google Scholar 

  20. Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. ASME Appl. Mech. Rev. 66, 040801 (2014)

    Google Scholar 

  21. Zhang, Y.W., Wang, C., Yuan, B., Fang, B.: Integration of geometrical and material nonlinear energy sink with piezoelectric material energy harvester. Shock Vib. 1987456, 1–11 (2017)

    Google Scholar 

  22. Tran, N., Ghayesh, M.H., Arjomandi, M.: Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Yang, Z.B., Wang, Y.Q., Zuo, L., Zu, J.: Introducing arc-shaped piezoelectric elements into energy harvesters. Energy Convers. Manag. 148, 260–266 (2017)

    Google Scholar 

  24. Cheng, G.G., Jiang, S.Y., Li, K., Zhang, Z.Q., Wang, Y., Yuan, N.Y., Ding, J.N., Zhang, W.: Effect of argon plasma treatment on the output performance oftriboelectric nanogenerator. Appl. Surf. Sci. 412, 350–356 (2017)

    Google Scholar 

  25. Yang, Z.B., Zhou, S.X., Zu, J., Inman, D.J.: High-performance piezoelectric energy harvesters and their applications. Joule 2, 642–697 (2018)

    Google Scholar 

  26. Dhote, S., Li, H.T., Yang, Z.B.: Multi-frequency responses of compliant orthoplanar spring designs for widening the bandwidth of piezoelectric energy harvesters. Int. J. Mech. Sci. 157–158, 684–691 (2019)

    Google Scholar 

  27. Zhang, Y.S., Zheng, R.C., Nakano, K., Cartmell, M.P.: Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting. Appl. Phys. Lett. 112, 143901 (2018)

    Google Scholar 

  28. Liu, C.C., Jing, X.J.: Vibration energy harvesting with a nonlinear structure. Nonlinear Dyn. 84, 2079–2098 (2016)

    MathSciNet  Google Scholar 

  29. Yan, Z.M., Hajj, M.: Nonlinear performances of an autoparametric vibration-based piezoelastic energy harvester. J. Intell. Mater. Sys. Struct. 28, 254–271 (2017)

    Google Scholar 

  30. Li, M., Zhou, J.J., Jing, X.J.: Improving low-frequency piezoelectric energy harvesting performance with novel X-structured harvesters. Nonlinear Dyn. 94, 1409–1428 (2018)

    Google Scholar 

  31. Tan, T., Yan, Z.M., Zou, Y.J., Zhang, W.M.: Optimal dual-functional design for a piezoelectric autoparametric vibration absorber. Mech. Syst. Signal. Process. 123, 513–532 (2019)

    Google Scholar 

  32. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)

    Google Scholar 

  33. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J. Sound. Vib. 330, 2339–2353 (2011)

    Google Scholar 

  34. Wang, H.Y., Tang, L.H.: Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling. Mech. Syst. Signal. Process. 86, 29–39 (2017)

    Google Scholar 

  35. Cao, J.Y., Zhou, S.X., Wang, W., Lin, J.: Influence of potential well depth on nonlinear tristable energy harvesting. Appl. Phys. Lett. 106, 173903 (2015)

    Google Scholar 

  36. Panyamn, M., Daqaq, M.F.: Characterizing the effective bandwidth of tristable energy harvesters. J. Sound Vib. 386, 336–358 (2017)

    Google Scholar 

  37. Wang, C., Zhang, Q.C., Wang, W., Feng, J.J.: A low-frequency, wideband quad-stable energy harvester using combined nonlinearity and frequency up-conversion by cantilever-surface contact. Mech. Syst. Signal. Process. 112, 305–318 (2018)

    Google Scholar 

  38. Yang, T., Cao, Q.J.: Novel multi-stable energy harvester by exploring the benefits of geometric nonlinearity. J. Stat. Mech. Theory E (2019). https://doi.org/10.1088/1742-5468/ab0c15

    Article  Google Scholar 

  39. Li, H.T., Qin, W.Y.: Dynamics and coherence resonance of a laminated piezoelectric beam for energy harvesting. Nonlinear Dyn. 81, 1751–1757 (2015)

    MathSciNet  Google Scholar 

  40. Li, H.T., Qin, W.Y., Lan, C.B., Deng, W.Z., Zhou, Z.Y.: Dynamics and coherence resonance of tristable energy harvesting system. Smart. Mater. Struct. 25, 015001 (2016)

    Google Scholar 

  41. Chen, L.Q., Jiang, W.A.: Internal resonance energy harvesting. J. Appl. Mech. 82, 031004 (2015)

    Google Scholar 

  42. Chen, L.Q., Jiang, W.A.: A piezoelectric energy harvester based on internal resonance. Acta. Mech. Sin. 31, 223–228 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Cao, D.X., Leadenham, S., Erturk, A.: Internal resonance for nonlinear vibration energy harvesting. Eur. Phys. J. Spec. Top. 224, 2867–2880 (2015)

    Google Scholar 

  44. Jiang, W.A., Chen, L.Q., Ding, H.: Internal resonance in axially loaded beam energy harvesters with an oscillator to enhance the bandwidth. Nonlinear Dyn. 85, 2507–2520 (2016)

    Google Scholar 

  45. Chen, L.Q., Jiang, W.A., Panyam, M., Daqaq, M.F.: A broadband internally-resonant vibratory energy harvester. J. Acoust. Vib. 138, 061007 (2016)

    Google Scholar 

  46. Xiong, L., Tang, L., Mace, B.R.: A comprehensive study of 2:1 internal-resonance-based piezoelectric vibration energy harvesting. Nonlinear Dyn. 91, 1817–1834 (2018)

    Google Scholar 

  47. Yang, W., Towfighian, S.: Internal resonance and low frequency vibration energy harvesting. Smart. Mater. Struct. 26, 095008 (2017)

    Google Scholar 

  48. Liu, H.J., Gao, X.M.: Vibration energy harvesting under concurrent base and flow excitations with internal resonance. Nonlinear Dyn. 96, 1067–1081 (2019)

    MATH  Google Scholar 

  49. Nie, X.C., Tan, T., Yan, Z.M., Yan, Z.T., Hajj, M.R.: Broadband and high-efficient L-shaped piezoelectric energy harvester based on internal resonance. Int. J. Mech. Sci. 159, 287–305 (2019)

    Google Scholar 

  50. Sue, C.Y., Tsai, N.C.: Human powered MEMS-based energy harvest devices. Appl. Energy 93, 390–403 (2012)

    Google Scholar 

  51. Ylli, K., Hoffmann, D., Willmann, A., Becker, P., Folkmer, B., Manoli, Y.: Energy harvesting from human motion: exploiting swing and shock excitations. Smart Mater. Struct. 24, 025029 (2015)

    Google Scholar 

  52. Halim, M.A., Cho, H., Salauddin, M., Park, J.Y.: A miniaturized electromagnetic vibration energy harvester using flux-guided magnet stacks for human-body-induced motion. Sensors Actuators A 249, 23–31 (2016)

    Google Scholar 

  53. Fan, K.Q., Liu, Z.H., Liu, H.Y., Wang, L.S., Zhu, Y.M., Yu, B.: Scavenging energy from human walking through a shoe-mounted piezoelectric harvester. Appl. Phys. Lett. 110, 143902 (2017)

    Google Scholar 

  54. Wang, W., Cao, J.Y., Zhang, N., Lin, J., Liao, W.H.: Magnetic-spring based energy harvesting from human motions: design, modeling and experiments. Energy Convers. Manag. 132, 189–197 (2017)

    Google Scholar 

  55. Fan, K.Q., Zhang, Y.W., Liu, H.Y., Cai, M.L., Tan, Q.X.: A nonlinear two-degree-of-freedom electromagnetic energy harvester for ultra-low frequency vibrations and human body motions. Renew. Energy 138, 292–302 (2019)

    Google Scholar 

  56. Haroun, A., Yamada, I., Warisawa, S.: Study of electromagnetic vibration energy harvesting with free/impact motion for low frequency operation. J. Sound Vib. 349, 389–402 (2015)

    Google Scholar 

  57. Zhou, S.X., Cao, J.Y., Inman, D.J., Liu, S.S., Wang, W., Lin, J.: Impact-induced high-energy orbits of nonlinear energy harvesters. Appl. Phys. Lett. 106, 093901 (2015)

    Google Scholar 

  58. Masoumi, M., Wang, Y.: Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: modeling, simulation and experiment. J. Sound Vib. 381, 192–205 (2016)

    Google Scholar 

  59. Zhang, X.T., Pan, H.Y., Qi, L.F., Zhang, Z.T., Yuan, Y.P., Liu, Y.J.: A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads. Appl. Energy 204, 1535–1543 (2017)

    Google Scholar 

  60. Emam, S.A., Abdalla, M.M.: Subharmonic parametric resonance of simply supported buckled beams. Nonlinear Dyn. 79, 1443–1456 (2015)

    Google Scholar 

  61. Panyam, M., Daqaq, M.F., Emam, S.A.: Exploiting the subharmonic parametric resonances of a buckled beam for vibratory energy harvesting. Meccanica 53, 3545–3564 (2018)

    Google Scholar 

  62. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69, 1063–1079 (2012)

    Google Scholar 

  63. Triplett, A., Quinn, D.D.: The effect of non-linear piezoelectric coupling on vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 20, 1959–1967 (2009)

    Google Scholar 

  64. Rocha, R.T., Balthazar, J.M., Tusset, A.M., Piccirillo, V., Felix, J.L.P.: Nonlinear piezoelectric vibration energy harvesting from a portal frame with two-to-one internal resonance. Meccanica 52, 2583–2602 (2017)

    MathSciNet  Google Scholar 

  65. Iliuk, I., Balthazar, J.M., Tusset, A.M., Piqueira, J.R.C., Pontes, B.R., Felix, J.L.P., Bueno, A.M.: Application of passive control to energy harvester efficiency using a nonideal portal frame structural support system. J. Intell. Mater. Syst. Struct. 25, 417–429 (2014)

    Google Scholar 

  66. He, Q.F., Daqaq, M.F.: Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise. J. Sound Vib. 333, 3479–3489 (2014)

    Google Scholar 

  67. Jiang, W.A., Chen, L.Q.: Stochastic averaging based on generalized harmonic functions for energy harvesting systems. J. Sound Vib. 377, 264–283 (2016)

    Google Scholar 

  68. Jiang, W.A., Sun, P., Xia, Z.W.: Probabilistic solution of the vibratory energy harvester excited by Gaussian white noise. Int. J. Dyn. Control 7, 167–177 (2019)

    MathSciNet  Google Scholar 

  69. Jiang, W.A., Sun, P., Zhao, G.L., Chen, L.Q.: Path integral solution of vibratory energy harvesting systems. Appl. Math. Mech. Engl. Ed. 40, 579–590 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are supported by the National Natural Science Foundation of China (Nos. 11632008 and 11702119), the Natural Science Foundation of Jiangsu Province (No. BK20170565), the Qing Lan Project of Jiangsu Province, the Training program for Young Talents of Jiangsu University and the construction of new scientific and technological innovation team of JUST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin-Sheng Bi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, WA., Han, XJ., Chen, LQ. et al. Bursting vibration-based energy harvesting. Nonlinear Dyn 100, 3043–3060 (2020). https://doi.org/10.1007/s11071-020-05712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05712-5

Keywords

Navigation