Skip to main content
Log in

Optimal model-free backstepping control for a quadrotor helicopter

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a design of a direct optimal control for a class of multi-input–multi-output (MIMO) nonlinear systems. This work focuses on the design of optimal model-free backstepping controller for a MIMO quadrotor helicopter perturbed by unknown external disturbances. The proposed method consists of using a model-free-based backstepping controller optimized by a cuckoo search algorithm. First, the overall dynamic model is decoupled into six interconnected subsystems. Then, the ideal backstepping controller with a known dynamic function is designed for each subsystem. The model-free based on backstepping control uses a new estimator approach to approximate the unknown dynamic model functions. After that, the global asymptotical stability of the closed-loop control system is proved via the Lyapunov theory. Moreover, the parameters of the proposed controller are optimized by the cuckoo search algorithm according to a cost function. The results of numerical simulations applied to the quadrotor helicopter system demonstrate the robustness and the effectiveness of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Aboudonia, A., El-Badawy, A., Rashad, R.: Disturbance observer-based feedback linearization control of an unmanned quadrotor helicopter. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 230(9), 877–891 (2016)

    MATH  Google Scholar 

  2. Al Younes, Y., Drak, A., Noura, H., Rabhi, A., El Hajjaji, A.: Robust model-free control applied to a quadrotor uav. J. Intell. Robot. Syst. 84(1–4), 37–52 (2016)

    Google Scholar 

  3. Alrashidi, M., Rahman, S., Pipattanasomporn, M.: Metaheuristic optimization algorithms to estimate statistical distribution parameters for characterizing wind speeds. Renew. Energy 149, 664–681 (2020)

    Google Scholar 

  4. Bouabdallah, S.: Design and control of quadrotors with application to autonomous flying. Technical Report (2007). https://doi.org/10.5075/epfl-thesis-3727

  5. Bounemeur, A., Chemachema, M., Essounbouli, N.: Indirect adaptive fuzzy fault-tolerant tracking control for mimo nonlinear systems with actuator and sensor failures. ISA Trans. 79, 45–61 (2018)

    Google Scholar 

  6. Bouzid, Y., Siguerdidjane, H., Bestaoui, Y.: Flight control boosters for three-dimensional trajectory tracking of quadrotor: theory and experiment. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 232(6), 709–727 (2018)

    Google Scholar 

  7. Chiou, J.S., Tran, H.K., Shieh, M.Y., Nguyen, T.N.: Particle swarm optimization algorithm reinforced fuzzy proportional–integral–derivative for a quadrotor attitude control. Adv. Mech. Eng. 8(9), 1687814016668705 (2016)

    Google Scholar 

  8. Fliess, M., Join, C.: Model-free control. Int. J. Control 86(12), 2228–2252 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Fliess, M., Join, C.: Stability margins and model-free control: a first look. In: 2014 European Control Conference (ECC), pp. 454–459. IEEE, New York (2014)

  10. Glida, H.E., Abdou, L., Chelihi, A.: Optimal fuzzy adaptive backstepping controller for attitude control of a quadrotor helicopter. In: 2019 International Conference on Control, Automation and Diagnosis (ICCAD), pp. 1–6 (2019). https://doi.org/10.1109/ICCAD46983.2019.9037915

  11. Han, F., Jiang, J., Ling, Q.H., Su, B.Y.: A survey on metaheuristic optimization for random single-hidden layer feedforward neural network. Neurocomputing 335, 261–273 (2019)

    Google Scholar 

  12. Hasseni, S.E.I., Abdou, L.: Decentralized pid control by using GA optimization applied to a quadrotor. J. Autom. Mobile Robot. Intell. Syst. 12, 33–44 (2018)

    Google Scholar 

  13. Hasseni, S.E.I., Abdou, L., Glida, H.E.: Parameters tuning of a quadrotor PID controllers by using nature-inspired algorithms. Evol. Intell. (2019). https://doi.org/10.1007/s12065-019-00312-8

    Article  Google Scholar 

  14. Jia, Z., Yu, J., Mei, Y., Chen, Y., Shen, Y., Ai, X.: Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerosp. Sci. Technol. 68, 299–307 (2017)

    Google Scholar 

  15. Jiang, X.Y., Su, C.L., Xu, Y.P., Liu, K., Shi, H.Y., Li, P.: An adaptive backstepping sliding mode method for flight attitude of quadrotor UAVs. J. Central South Univ. 25(3), 616–631 (2018)

    Google Scholar 

  16. JiGuang, L., Xin, C.: A robust enhancement system based on observer-backstepping controller. J. Vis. Commun. Image Represent. 57, 34–38 (2018)

    Google Scholar 

  17. Labbadi, M., Cherkaoui, M.: Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerosp. Sci. Technol. 93, 105306 (2019)

    Google Scholar 

  18. Laha, D., Gupta, J.N.: An improved cuckoo search algorithm for scheduling jobs on identical parallel machines. Comput. Ind. Eng. 126, 348–360 (2018)

    Google Scholar 

  19. Li, C., Zhang, Y., Li, P.: Full control of a quadrotor using parameter-scheduled backstepping method: implementation and experimental tests. Nonlinear Dyn. 89(2), 1259–1278 (2017)

    Google Scholar 

  20. Li, Z., Ma, X., Li, Y.: Model-free control of a quadrotor using adaptive proportional derivative-sliding mode control and robust integral of the signum of the error. Int. J. Adv. Robot. Syst. 15(5), 1729881418800885 (2018)

    Google Scholar 

  21. Li, Z., Ma, X., Li, Y.: Robust tracking control strategy for a quadrotor using RPD-SMC and RISE. Neurocomputing 331, 312–322 (2019)

    Google Scholar 

  22. Lin, J.: Oppositional backtracking search optimization algorithm for parameter identification of hyperchaotic systems. Nonlinear Dyn. 80(1–2), 209–219 (2015)

    MathSciNet  Google Scholar 

  23. Liu, Y., Qi, N., Yao, W., Liu, Y., Li, Y.: Optimal scheduling for aerial recovery of multiple unmanned aerial vehicles using genetic algorithm. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. (2019). https://doi.org/10.1177/0954410019842487

    Article  Google Scholar 

  24. Mareli, M., Twala, B.: An adaptive Cuckoo search algorithm for optimisation. Appl. Comput. Inf. 14(2), 107–115 (2018)

    Google Scholar 

  25. Meng, W., Yang, Q., Jagannathan, S., Sun, Y.: Adaptive neural control of high-order uncertain nonaffine systems: a transformation to affine systems approach. Automatica 50(5), 1473–1480 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Mohd Basri, M.A., Husain, A.R., Danapalasingam, K.A.: A hybrid optimal backstepping and adaptive fuzzy control for autonomous quadrotor helicopter with time-varying disturbance. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 229(12), 2178–2195 (2015)

    MATH  Google Scholar 

  27. Mohd Basri, M.A., Husain, A.R., Danapalasingam, K.A.: Intelligent adaptive backstepping control for mimo uncertain non-linear quadrotor helicopter systems. Trans. Inst. Meas. Control 37(3), 345–361 (2015)

    MATH  Google Scholar 

  28. Muñoz, F., González-Hernández, I., Salazar, S., Espinoza, E.S., Lozano, R.: Second order sliding mode controllers for altitude control of a quadrotor UAS: real-time implementation in outdoor environments. Neurocomputing 233, 61–71 (2017)

    Google Scholar 

  29. Mustafa, G.I., Wang, H., Tian, Y.: Vibration control of an active vehicle suspension systems using optimized model-free fuzzy logic controller based on time delay estimation. Adv. Eng. Softw. 127, 141–149 (2019)

    Google Scholar 

  30. Nadda, S., Swarup, A.: On adaptive sliding mode control for improved quadrotor tracking. J. Vib. Control 24(14), 3219–3230 (2018)

    MathSciNet  Google Scholar 

  31. Ouyang, F., Cheng, H., Lan, Y., Zhang, Y., Yin, X., Hu, J., Peng, X., Wang, G., Chen, S.: Automatic delivery and recovery system of wireless sensor networks (WSN) nodes based on UAV for agricultural applications. Comput. Electron. Agric. 162(2), 31–43 (2019)

    Google Scholar 

  32. Özbek, N.S., Önkol, M., Efe, M.Ö.: Feedback control strategies for quadrotor-type aerial robots: a survey. Trans. Inst. Meas. Control 38(5), 529–554 (2016)

    Google Scholar 

  33. Panomrattanarug, B., Higuchi, K., Mora-Camino, F.: Attitude control of a quadrotor aircraft using LQR state feedback controller with full order state observer. In: The SICE Annual Conference 2013, pp. 2041–2046. IEEE, New York (2013)

  34. Premkumar, K., Manikandan, B.: Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor. Eng. Sci. Technol. Int. J. 19(2), 818–840 (2016)

    Google Scholar 

  35. Priya, K., Rajasekar, N.: Application of flower pollination algorithm for enhanced proton exchange membrane fuel cell modelling. Int. J. Hydrog. Energy 44, 18438–18449 (2019)

    Google Scholar 

  36. Qin, Y., Rath, J.J., Hu, C., Sentouh, C., Wang, R.: Adaptive nonlinear active suspension control based on a robust road classifier with a modified super-twisting algorithm. Nonlinear Dyn. 97(4), 2425–2442 (2019)

    Google Scholar 

  37. Qiu, J., Sun, K., Rudas, I.J., Gao, H.: Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2944761

    Article  Google Scholar 

  38. Slotine, J.J.E., Li, W., et al.: Applied nonlinear control, vol. 199. Prentice hall, Englewood Cliffs, NJ (1991)

  39. Talbi, N.: Design of fuzzy controller rule base using bat algorithm. Energy Proc. 162, 241–250 (2019)

    Google Scholar 

  40. Wang, G.G., Chu, H.E., Mirjalili, S.: Three-dimensional path planning for UCAV using an improved bat algorithm. Aerosp. Sci. Technol. 49, 231–238 (2016)

    Google Scholar 

  41. Woellner, R., Wagner, T.C.: Saving species, time and money: application of unmanned aerial vehicles (UAVs) for monitoring of an endangered alpine river specialist in a small nature reserve. Biol. Conserv. 233, 162–175 (2019)

    Google Scholar 

  42. Yan, K., Chen, M., Wu, Q.: Neural network-based adaptive fault tolerant tracking control for unmanned autonomous helicopters with prescribed performance. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 233(12), 4350–4362 (2019)

    Google Scholar 

  43. Zeghlache, S., Kara, K., Saigaa, D.: Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft. ISA Trans. 59, 215–231 (2015)

    MATH  Google Scholar 

  44. Zhang, J., Ren, Z., Deng, C., Wen, B.: Adaptive fuzzy global sliding mode control for trajectory tracking of quadrotor UAVs. Nonlinear Dyn. 97, 1–19 (2019)

    Google Scholar 

  45. Zhang, R., Jiang, X., Li, R.: Improved decomposition-based multi-objective Cuckoo search algorithm for spectrum allocation in cognitive vehicular network. Phys. Commun. 34, 301–309 (2019)

    Google Scholar 

  46. Zhang, X., Lu, X., Jia, S., Li, X.: A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning. Appl. Soft Comput. 70, 371–388 (2018)

    Google Scholar 

  47. Zhao, L., Dai, L., Xia, Y., Li, P.: Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control. Mech. Syst. Signal Process. 129, 531–545 (2019)

    Google Scholar 

  48. Zhen, Z., Xing, D., Gao, C.: Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm. Aerosp. Sci. Technol. 76, 402–411 (2018)

    Google Scholar 

  49. Zhou, Y., Miao, F., Luo, Q.: Symbiotic organisms search algorithm for optimal evolutionary controller tuning of fractional fuzzy controllers. Appl. Soft Comput. 77, 497–508 (2019)

    Google Scholar 

  50. Zhu, Y., Zheng, W.X.: Multiple Lyapunov functions analysis approach for discrete-time switched piecewise-affine systems under dwell-time constraints. IEEE Trans. Autom. Control (2019). https://doi.org/10.1109/TAC.2018.2797173

    Article  Google Scholar 

  51. Zhu, Y., Zhong, Z., Basin, M.V., Zhou, D.: A descriptor system approach to stability and stabilization of discrete-time switched PWA systems. IEEE Trans. Autom. Control 63(10), 3456–3463 (2018). https://doi.org/10.1109/TAC.2019.2938302

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the University of Biskra. This work was supported also by the Algerian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossam Eddine Glida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glida, H.E., Abdou, L., Chelihi, A. et al. Optimal model-free backstepping control for a quadrotor helicopter. Nonlinear Dyn 100, 3449–3468 (2020). https://doi.org/10.1007/s11071-020-05671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05671-x

Keywords

Navigation