Skip to main content
Log in

Complex dynamics of multi-regional economic interactions

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamical systems are being employed over the last decades to investigate complex behaviors in traditional fields as engineering and physics, but also in biology, medicine, economics and financial markets. In this regard, the modeling of economic systems have had an increasing importance to support proper government interventions or enterprises investment decisions. This work investigates dynamical behavior of multi-regional economic interaction. A mathematical model proposed by Ishiyama and Saiki is employed considering that an economic coupling mechanism is based on investment decisions made by global companies. This model is based on Kaldor–Goodwin model for independent countries. Numerical simulations analyze three different scenarios related to the economic behavior of isolated countries. Complex dynamics can emerge from the interaction of both countries including situations where two uncoupled countries with periodic behaviors turn to a chaotic situation when the coupling is established. This behavior reinforces the importance of nonlinear analysis of economic systems in order to better understand their behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abraham-Frois, G. (ed.): Non-Linear Dynamics and Endogenous Cycles. Lecture Notes in Economics and Mathematical Systems, vol. 463. Springer, Berlin (1998). https://doi.org/10.1007/978-3-642-58901-0

    Book  MATH  Google Scholar 

  2. Ahmed, E., Barkley, Rosser J., Uppal, J.Y.: Evidence of nonlinear speculative bubbles in pacific-rim stock markets. Q. Rev. Econ. Finance 39(1), 21–36 (1999). https://doi.org/10.1016/S1062-9769(99)80002-7

    Article  Google Scholar 

  3. Asada, T.: Kaldorian dynamics in an open economy. J. Econ. Z. Nationalkon. 62(3), 239–269 (1995). https://doi.org/10.1007/BF01238819

    Article  MATH  Google Scholar 

  4. Asada, T., Semmler, W.: Growth and finance: an intertemporal model. J. Macroecon. 17(4), 623–649 (1995). https://doi.org/10.1016/0164-0704(95)80086-7

    Article  Google Scholar 

  5. Barnett, W.A., Serletis, A., Serletis, D.: Nonlinear and complex dynamics in economics. Macroecon. Dyn. 19, 1749–1779 (2015). https://doi.org/10.1017/S1365100514000091

    Article  Google Scholar 

  6. Baumol, W.J., Benhabib, J.: Chaos: significance, mechanism, and economic applications. J. Econ. Perspect. 3(1), 77–105 (1989). https://doi.org/10.1257/jep.3.1.77

    Article  Google Scholar 

  7. BenSaïda, A.: Noisy chaos in intraday financial data: evidence from the American index. Appl. Math. Comput. 226, 258–265 (2014). https://doi.org/10.1016/j.amc.2013.10.064

    Article  MathSciNet  Google Scholar 

  8. Burns, A.F., Mitchell, W.C.: Working plans. In: Measuring Business Cycles, pp. 3–22. NBER (1946). http://www.nber.org/chapters/c2980

  9. Caraiani, P.: Nonlinear dynamics in CEE stock markets indices. Econ. Lett. 114(3), 329–331 (2012). https://doi.org/10.1016/j.econlet.2011.11.010

    Article  Google Scholar 

  10. Chang, W.W., Smyth, D.J.: The existence and persistence of cycles in a non-linear model: Kaldor’s 1940 model re-examined. Rev. Econ. Stud. 38(1), 37–44 (1971). https://doi.org/10.2307/2296620

    Article  MATH  Google Scholar 

  11. Chian, A.C.: Complex Systems Approach to Economic Dynamics. Springer, Berlin (2007)

    MATH  Google Scholar 

  12. Chiarella, C., Flaschel, P., Franke, R.: Foundations for a disequilibrium theory of the business cycle: qualitative analysis and quantitative assessment. Cambridge University Press, Cambridge (2005). https://doi.org/10.1017/CBO9780511492402

  13. De Paula, A.S., Inman, D.J., Savi, M.A.: Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation. Mech. Syst. Signal Process. 54–55, 405–416 (2015). https://doi.org/10.1016/J.YMSSP.2014.08.020

    Article  Google Scholar 

  14. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Transactions on Mathematical Software (2003). https://doi.org/10.1145/779359.779362

  15. Egami, C.: Criterion of hopf bifurcations without using eigenvalues. Journal of Mathematical Analysis and Applications (1994). https://doi.org/10.1006/jmaa.1994.1079

  16. Gabisch, G., Lorenz, H.W.: Business Cycle Theory, 2nd edn. Springer, Berlin (1989). https://doi.org/10.1007/978-3-642-74715-1

    Book  MATH  Google Scholar 

  17. Gao, L., Grebogi, C., Lai, Y.C., Stephen, J., Zhang, T., Li, Y., Ren, H., Li, D., Wang, J., Schelter, B., Sommerlade, L.: Quantitative assessment of cerebral connectivity deficiency and cognitive impairment in children with prenatal alcohol exposure. Chaos Interdiscip. J. Nonlinear Sci. 29(4), 041101 (2019). https://doi.org/10.1063/1.5089527

    Article  Google Scholar 

  18. Goldberger, A.L., Rigney, D.R., West, B.J.: Chaos and fractals in human physiology. Sci. Am. 262(2), 42–49 (1990)

    Article  Google Scholar 

  19. Gomes, O.: Routes to chaos in macroeconomic theory. J. Econ. Stud. 33(6), 437–468 (2006). https://doi.org/10.1108/01443580610710406

    Article  Google Scholar 

  20. Goodwin, R.M.: The nonlinear accelerator and the persistence of business cycles. Econometrica 19(1), 1 (1951). https://doi.org/10.2307/1907905

    Article  MathSciNet  MATH  Google Scholar 

  21. Goodwin, R.M.: A growth cycle. In: Feinstein, C.H. (ed.) Socialism, Capitalism and Economic Growth, pp. 54–58. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  22. Guégan, D.: Chaos in economics and finance. Ann. Rev. Control 33(1), 89–93 (2009). https://doi.org/10.1016/j.arcontrol.2009.01.002

    Article  Google Scholar 

  23. Harriff, R.B.: Chaos and nonlinear dynamics in the financial markets: theory, evidence, and applications. Int. J. Forecast. 13(1), 146–147 (1997). https://doi.org/10.1016/S0169-2070(96)00727-3

    Article  Google Scholar 

  24. Henon, M.: On the numerical computation of Poincaré maps. Phys. D Nonlinear Phenom. 5(2–3), 412–414 (1982). https://doi.org/10.1016/0167-2789(82)90034-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, S.C., Chuang, P.J., Wu, C.F., Lai, H.J.: Chaos-based support vector regressions for exchange rate forecasting. Expert Syst. Appl. 37(12), 8590–8598 (2010). https://doi.org/10.1016/j.eswa.2010.06.001

    Article  Google Scholar 

  26. Invernizzi, S., Medio, A.: On lags and chaos in economic dynamic models. J. Math. Econ. 20(6), 521–550 (1991). https://doi.org/10.1016/0304-4068(91)90025-O

    Article  MathSciNet  MATH  Google Scholar 

  27. Ishiyama, K., Saiki, Y.: Unstable periodic orbits and chaotic economic growth. Chaos Solitons Fractal 26(1), 33–42 (2005). https://doi.org/10.1016/j.chaos.2004.12.012

    Article  MATH  Google Scholar 

  28. Ishiyama, Ki, Saiki, Y.: Unstable periodic orbits embedded in a chaotic economic dynamics model. Appl. Econ. Lett. 12(12), 749–753 (2005). https://doi.org/10.1080/13504850500120318

    Article  MATH  Google Scholar 

  29. Kaldor, N.: A model of the trade cycle. Econ. J. 50(197), 78–92 (1940)

    Article  Google Scholar 

  30. Kyrtsou, C., Labys, W.C.: Evidence for chaotic dependence between US inflation and commodity prices. J. Macroecon. 28(1), 256–266 (2006). https://doi.org/10.1016/j.jmacro.2005.10.019

    Article  Google Scholar 

  31. Lisi, F., Schiavo, R.A.: A comparison between neural networks and chaotic models for exchange rate prediction. Comput. Stat. Data Anal. 30(1), 87–102 (1999). https://doi.org/10.1016/S0167-9473(98)00067-X

    Article  MATH  Google Scholar 

  32. Mandal, S., Ray, S., Roy, S., Jørgensen, S.E.: Order to chaos and vice versa in an aquatic ecosystem. Ecol. Modell. 197(3–4), 498–504 (2006). https://doi.org/10.1016/j.ecolmodel.2006.03.020

    Article  Google Scholar 

  33. Mankiw, N.G.: The macroeconomist as scientist and engineer. J. Econ. Perspect. 20(4), 29–46 (2006). https://doi.org/10.1257/jep.20.4.29

    Article  Google Scholar 

  34. Medio, A.: Continuous-time models of chaos in economics. J. Econ. Behav. Organ. 16(1–2), 115–151 (1991). https://doi.org/10.1016/0167-2681(91)90046-Z

    Article  Google Scholar 

  35. Molz, F., Faybishenko, B.: Increasing Evidence for chaotic dynamics in the soil-plant-atmosphere system: a motivation for future research. Proc. Environ. Sci. 19, 681–690 (2013). https://doi.org/10.1016/J.PROENV.2013.06.077

    Article  Google Scholar 

  36. de Moraes, L.P.P., Savi, M.A.: Drill-string vibration analysis considering an axial–torsional–lateral nonsmooth model. J. Sound Vib. 438, 220–237 (2019). https://doi.org/10.1016/j.jsv.2018.08.054

    Article  Google Scholar 

  37. Palaniyandi, P.: On computing Poincaré map by Hénon method. Chaos Solitons Fractals 39(4), 1877–1882 (2009). https://doi.org/10.1016/j.chaos.2007.06.118

    Article  MathSciNet  MATH  Google Scholar 

  38. Panas, E., Ninni, V.: Are oil markets chaotic? A non-linear dynamic analysis. Energy Econ. 22(5), 549–568 (2000). https://doi.org/10.1016/S0140-9883(00)00049-9

    Article  Google Scholar 

  39. Potgieter, P.H.: Fractal asset returns, arbitrage and option pricing. Chaos Solitons Fractals 42(3), 1792–1795 (2009). https://doi.org/10.1016/j.chaos.2009.03.095

    Article  Google Scholar 

  40. Purica, I.: Nonlinear effects in market penetration—deterministic chaos. In: Nonlinear Dynamics of Financial Crises, pp. 75–87. Elsevier (2015). https://doi.org/10.1016/B978-0-12-803275-6.00006-9

  41. Puu, T.O.: Attractors, Bifurcations, & Chaos: Nonlinear Phenomena in Economics, second, edi edn. Springer, Berlin (2003)

    Book  Google Scholar 

  42. Puu, T.O., Sushko, I. (eds.): Business Cycle Dynamics: Models and Tools. Springer, Berlin (2006)

    MATH  Google Scholar 

  43. Rosser, J., Rosser, M.V.: Endogenous chaotic dynamics in transitional economies. Chaos Solitons Fractals 7(12), 2189–2197 (1996). https://doi.org/10.1016/S0960-0779(96)00079-3

    Article  Google Scholar 

  44. Saiki, Y., Chian, A.C., Yoshida, H.: Economic intermittency in a two-country model of business cycles coupled by investment. Chaos Solitons Fractals 44(6), 418–428 (2011). https://doi.org/10.1016/j.chaos.2011.02.010

    Article  MathSciNet  MATH  Google Scholar 

  45. Santos, M.S., Protachevicz, P.R., Iarosz, K.C., Caldas, I.L., Viana, R.L., Borges, F.S., Ren, H.P., Szezech, J.D., Batista, A.M., Grebogi, C.: Spike-burst chimera states in an adaptive exponential integrate-and-fire neuronal network. Chaos Interdiscip. J. Nonlinear Sci. 29(4), 043106 (2019). https://doi.org/10.1063/1.5087129

    Article  MathSciNet  MATH  Google Scholar 

  46. Sarbadhikari, S., Chakrabarty, K.: Chaos in the brain: a short review alluding to epilepsy, depression, exercise and lateralization. Med. Eng. Phys. 23(7), 447–457 (2001). https://doi.org/10.1016/S1350-4533(01)00075-3

    Article  Google Scholar 

  47. Savi, M.A.: Nonlinear dynamics and chaos in shape memory alloy systems. Int. J. Non-Linear Mech. 70, 2–19 (2015). https://doi.org/10.1016/j.ijnonlinmec.2014.06.001

    Article  Google Scholar 

  48. Scharth, M., Medeiros, M.C.: Asymmetric effects and long memory in the volatility of Dow Jones stocks. Int. J. Forecast. 25(2), 304–327 (2009). https://doi.org/10.1016/j.ijforecast.2009.01.008

    Article  Google Scholar 

  49. Semmler, W. (ed.): Business Cycles: Theory and Empirical Methods. Springer, Berlin (1994)

    Google Scholar 

  50. Serletis, A., Shintani, M.: Chaotic monetary dynamics with confidence. J. Macroecon. 28(1), 228–252 (2006). https://doi.org/10.1016/j.jmacro.2005.10.017

    Article  Google Scholar 

  51. Sportelli, M.C.: A Kolmogoroff generalized predator-prey model of Goodwin’s growth cycle. J. Econ. Z. Nationalkon. 61(1), 35–64 (1995). https://doi.org/10.1007/BF01231483

    Article  MATH  Google Scholar 

  52. Storch, L.S., Pringle, J.M., Alexander, K.E., Jones, D.O.: Revisiting the logistic map: a closer look at the dynamics of a classic chaotic population model with ecologically realistic spatial structure and dispersal. Theor. Popul. Biol. 114, 10–18 (2017). https://doi.org/10.1016/J.TPB.2016.11.004

    Article  Google Scholar 

  53. Sushko, I., Gardini, L., Matsuyama, K.: Coupled chaotic fluctuations in a model of international trade and innovation: some preliminary results. Commun. Nonlinear Sci. Numer. Simul. 58, 287–302 (2018). https://doi.org/10.1016/j.cnsns.2017.06.020

    Article  MathSciNet  MATH  Google Scholar 

  54. Vialar, T.: Complex and Chaotic Nonlinear Dynamics: Advances in Economics and Finance. Mathematics and Statistics. Springer, Berlin (2009)

    Book  Google Scholar 

  55. Webel, K.: Chaos in German stock returns: new evidence from the 0–1 test. Economics Letters 115(3), 487–489 (2012). https://doi.org/10.1016/j.econlet.2011.12.110

    Article  Google Scholar 

  56. West, B.J.: Fractal physiology and chaos in medicine. In: Studies of Nonlinear Phenomena in Life Science, vol. 16, 2nd edn. World scientific, Singapore (2013). https://doi.org/10.1142/8577

  57. Xingyuan, W., Chao, L.: Researches on chaos phenomenon of EEG dynamics model. Appl. Math. Comput. 183(1), 30–41 (2006). https://doi.org/10.1016/j.amc.2006.04.025

    Article  MathSciNet  MATH  Google Scholar 

  58. Yoshida, H., Asada, T.: Dynamic analysis of policy lag in a Keynes-Goodwin model: stability, instability, cycles and chaos. J. Econ. Behav. Organ. 62(3), 441–469 (2007). https://doi.org/10.1016/j.jebo.2004.10.014

    Article  Google Scholar 

  59. Yu, H., Jiang, M., Li, C.: Chaos theory perspective for industry clusters development. Mod. Phys. Lett. B 30(08), 1650112 (2016). https://doi.org/10.1142/S0217984916501128

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of the Brazilian Research Agencies CNPq, CAPES and FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Amorim Savi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira-Pinto, F.H.I., Savi, M.A. Complex dynamics of multi-regional economic interactions. Nonlinear Dyn 102, 1151–1171 (2020). https://doi.org/10.1007/s11071-020-05658-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05658-8

Keywords

Navigation