Skip to main content
Log in

Vibration suppression and angle tracking of a fire-rescue ladder

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper mainly considers vibration suppression and angle tracking of a fire-rescue ladder system. The dynamical model is regarded as a segmented Euler–Bernoulli beam with gravity and tip mass, described by a set of motion equations and boundary conditions. Based on the nonlinear Euler–Bernoulli beam model, two active boundary controllers are proposed to achieve the control objectives. The elastic deflection and the angular error in the closed-loop system are proven to converge exponentially to a small neighborhood of zero. Numerical simulations based on finite difference method verify the effectiveness and the ascendancy of active boundary controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Andrianov, I.V., Danishevs’ kyy, V.V., Topol, H., Weichert, D.: Homogenization of a 1D nonlinear dynamical problem for periodic composites. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 91(6), 523–534 (2011)

    Article  MathSciNet  Google Scholar 

  2. Awrejcewicz, J., Krysko, A., Pavlov, S., Zhigalov, M., Krysko, V.: Chaotic dynamics of size dependent Timoshenko beams with functionally graded properties along their thickness. Mech. Syst. Signal Process. 93, 415–430 (2017)

    Article  Google Scholar 

  3. Awrejcewicz, J., Krysko, A.V., Mrozowski, J., Saltykova, O.A., Zhigalov, M.V.: Analysis of regular and chaotic dynamics of the Euler–Bernoulli beams using finite difference and finite element methods. Acta Mech. Sin. 27(1), 36–43 (2011)

    Article  MathSciNet  Google Scholar 

  4. Awrejcewicz, J., Krysko, A.V., Soldatov, V., Krysko, V.A.: Analysis of the nonlinear dynamics of the Timoshenko flexible beams using wavelets. J. Comput. Nonlinear Dyn. 7(1), 011005 (2012)

    Article  Google Scholar 

  5. Awrejcewicz, J., Krysko, A.V., Zagniboroda, N.A., Dobriyan, V.V., Krysko, V.A.: On the general theory of chaotic dynamics of flexible curvilinear Euler–Bernoulli beams. Nonlinear Dyn. 79(1), 11–29 (2015)

    Article  Google Scholar 

  6. Awrejcewicz, J., Saltykova, O.A., Zhigalov, M.V., Hagedorn, P.: Analysis of non-linear vibrations of single-layered Euler–Bernoulli beams using wavelets. Int. J. Aerospace Lightweight Struct. (IJALS) 1(2), 203–219 (2011)

    Article  Google Scholar 

  7. Do, K.D.: Stochastic boundary control design for extensible marine risers in three dimensional space. Automatica 77, 184–197 (2017). https://doi.org/10.1016/j.automatica.2016.11.032

    Article  MathSciNet  MATH  Google Scholar 

  8. Endo, T., Matsuno, F., Jia, Y.: Boundary cooperative control by flexible Timoshenko arms. Automatica 81, 377–389 (2017). https://doi.org/10.1016/j.automatica.2017.04.017

    Article  MathSciNet  MATH  Google Scholar 

  9. Endo, T., Sasaki, M., Matsuno, F., Jia, Y.: Contact-force control of a flexible timoshenko arm in rigid/soft environment. IEEE Trans. Autom. Control 62(5), 2546–2553 (2017). https://doi.org/10.1109/TAC.2016.2599434

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, H., He, W., Zhou, C., Sun, C.: Neural network control of a two-link flexible robotic manipulator using assumed mode method. IEEE Trans. Ind. Inf. PP(99), 1–1 (2018)

    Article  Google Scholar 

  11. Guo, B.Z., Wang, J., Yang, K.: Dynamic stabilization of an Euler–Bernoulli beam under boundary control and non-collocated observation. Syst. Control Lett. 57(9), 740–749 (2008). https://doi.org/10.1016/j.sysconle.2008.02.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, W., Guo, B.Z.: Performance output tracking for a wave equation subject to unmatched general boundary harmonic disturbance. Automatica 68, 194–202 (2016). https://doi.org/10.1016/j.automatica.2016.01.041

    Article  MathSciNet  MATH  Google Scholar 

  13. He, W., Dong, Y.: Adaptive fuzzy neural network control for a constrained robot using impedance learning. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1174–1186 (2018)

    Article  Google Scholar 

  14. He, W., Gao, H., Zhou, C., Yang, C., Li, Z.: Reinforcement learning control of a flexible manipulator: an experimental investigation. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2020.2975232

    Article  Google Scholar 

  15. He, W., Ge, S.S.: Cooperative control of a nonuniform gantry crane with constrained tension. Automatica 66, 146–154 (2016)

    Article  MathSciNet  Google Scholar 

  16. He, W., Meng, T., Huang, D., Li, X.: Adaptive boundary iterative learning control for an Euler–Bernoulli beam system with input constraint. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1539–1549 (2018)

    Article  MathSciNet  Google Scholar 

  17. He, W., Meng, T., He, X., Sun, C.: Iterative learning control for a flapping Wing micro aerial vehicle under distributed disturbances. IEEE Trans. Cyber. 49(4), 1524–1535 (2019)

    Article  Google Scholar 

  18. He, W., Xue, C., Yu, X., Li, Z., Yang, C.: Admittance-based controller design for physical human–robot interaction in the constrained task space. IEEE Trans. Autom. Sci. Eng. (2020). https://doi.org/10.1109/TASE.2020.2983225

    Article  Google Scholar 

  19. He, X., He, W., Liu, Y., Wang, Y., Li, G., Wang, Y.: Robust adaptive control of an offshore ocean thermal energy conversion system. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2870999

    Article  Google Scholar 

  20. He, X., He, W., Shi, J., Sun, C.: Boundary vibration control of variable length crane systems in two dimensional space with output constraints. IEEE/ASME Trans. Mech. 22(5), 1952–1962 (2017). https://doi.org/10.1109/TMECH.2017.2721553

    Article  Google Scholar 

  21. Huang, D., Xu, J.X., Li, X., Xu, C., Yu, M.: D-type anticipatory iterative learning control for a class of inhomogeneous heat equations. Automatica 49(8), 2397–2408 (2013). https://doi.org/10.1016/j.automatica.2013.05.005

    Article  MathSciNet  MATH  Google Scholar 

  22. Ji, N., Liu, Z., Liu, J., He, W.: Vibration control for a nonlinear three-dimensional Euler–Bernoulli beam under input magnitude and rate constraints. Nonlinear Dyn. 91(4), 2551–2570 (2018). https://doi.org/10.1007/s11071-017-4031-y

    Article  Google Scholar 

  23. Krstic, M., Guo, B.Z., Balogh, A., Smyshlyaev, A.: Output-feedback stabilization of an unstable wave equation. Automatica 44(1), 63–74 (2008). https://doi.org/10.1016/j.automatica.2007.05.012

    Article  MathSciNet  MATH  Google Scholar 

  24. Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on Backstepping Designs, vol. 16. Siam, Philadelphia (2008)

    Book  Google Scholar 

  25. Lambeck, S., Sawodny, O., Arnold, E.: Trajectory tracking control for a new generation of fire rescue turntable ladders. In: 2006 IEEE Conference on Robotics, Automation and Mechatronics, pp. 1–6. Bangkok, Thailand (2006)

  26. Liu, Y., Fu, Y., He, W., Hui, Q.: Modeling and observer-based vibration control of a flexible spacecraft with external disturbances. IEEE Trans. Ind. Electron. 66(11), 8648–8658 (2019)

    Article  Google Scholar 

  27. Liu, Z., Liu, J., He, W.: Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint. Automatica 77, 302–310 (2017)

    Article  MathSciNet  Google Scholar 

  28. Liu, Z., Zhao, Z., Ahn, C.K.: Boundary constrained control of flexible string systems subject to disturbances. IEEE Trans. Circuits Syst. II Express Briefs 67(1), 112–116 (2020)

    Article  Google Scholar 

  29. Luo, Z.H., Guo, B.Z., Morgül, O.: Stability and Stabilization of Infinite Dimensional Systems with Applications. Springer, London (1999)

    Book  Google Scholar 

  30. Mu, C., Ni, Z., Sun, C., He, H.: Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 584–598 (2016)

    Article  MathSciNet  Google Scholar 

  31. Mu, C., Zhang, Y.: Learning-based robust tracking control of quadrotor with time-varying and coupling uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 31(1), 259–273 (2020)

    Article  Google Scholar 

  32. Pertsch, A., Zimmert, N., Sawodny, O.: Modeling a fire-rescue turntable ladder as piecewise Euler–Bernoulli beam with a tip mass. In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009 Held Jointly with the 2009 28th Chinese Control Conference (CDC/CCC 2009), pp. 7321–7326. Shanghai, China (2009). https://doi.org/10.1109/CDC.2009.5399815

  33. Rahn, C.D.: Mechatronic control of distributed noise and vibration. Automatica 39(9), 1664–1666 (2003)

    Article  Google Scholar 

  34. Sawodny, O., Lambeck, S., Hildebrandt, A.: Trajectory generation for the trajectory tracking control of a fire rescue turntable ladder. In: International Workshop on Robot Motion and Control, pp. 411–416. Poland (2002). https://doi.org/10.1109/ROMOCO.2002.1177141

  35. Sun, C., He, W., Hong, J.: Neural network control of a flexible robotic manipulator using the lumped spring-mass model. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 1863–1874 (2017)

    Article  Google Scholar 

  36. Sun, N., Fang, Y.: Nonlinear tracking control of underactuated cranes with load transferring and lowering: theory and experimentation. Automatica 50(9), 2350–2357 (2014)

    Article  MathSciNet  Google Scholar 

  37. Wang, J.M., Ren, B., Krstic, M.: Stabilization and Gevrey regularity of a Schrödinger equation in boundary feedback with a heat equation. IEEE Trans. Autom. Control 57(1), 179–185 (2012). https://doi.org/10.1109/TAC.2011.2164299

    Article  MATH  Google Scholar 

  38. Wu, H.N., Wang, J.W.: Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE-beam systems. Automatica 50(11), 2787–2798 (2014). https://doi.org/10.1016/j.automatica.2014.09.006

    Article  MathSciNet  MATH  Google Scholar 

  39. Wu, X., Xu, L., Wang, J., Yang, D., Li, F., Li, X.: A prognostic-based dynamic optimization strategy for a degraded solid oxide fuel cell. Sustain. Energy Technol. Assess. 39, 100682 (2020)

    Google Scholar 

  40. Yang, K.J., Hong, K.S., Matsuno, F.: Robust adaptive boundary control of an axially moving string under a spatiotemporally varying tension. J. Sound Vib. 273(4), 1007–1029 (2004). https://doi.org/10.1016/S0022-460X(03)00519-4

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, K.J., Hong, K.S., Matsuno, F.: Robust boundary control of an axially moving string by using a PR transfer function. IEEE Trans. Autom. Control 50(12), 2053–2058 (2005)

    Article  MathSciNet  Google Scholar 

  42. Zhao, Z., Ahn, C.K., Li, H.X.: Boundary anti-disturbance control of a spatially nonlinear flexible string system. IEEE Trans. Ind. Electron. 67(6), 4846–4856 (2020)

    Article  Google Scholar 

  43. Zhao, Z., Lin, S., Zhu, D., Wen, G.: Vibration control of a riser-vessel system subject to input backlash and extraneous disturbances. IEEE Trans. Circuits Syst II. Express Briefs 67(3), 516–520 (2020)

    Article  Google Scholar 

  44. Zhou, Q., Li, H., Wang, L., Lu, R.: Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1747–1758 (2017)

    Article  Google Scholar 

  45. Zimmert, N., Pertsch, A., Sawodny, O.: 2-DOF control of a fire-rescue turntable ladder. IEEE Trans. Control Syst. Technol. 20(2), 438–452 (2012). https://doi.org/10.1109/TCST.2011.2116021

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the useful comments and constructive suggestions from the handing editor and anonymous reviewers. This work was supported in part by the National Key Research and Development Program of China under Grant 2019YFB1703600, the National Natural Science Foundation of China under Grant 61873297, Joint Funds of Equipment Pre-Research and Ministry of Education of China under Grant 6141A02033339, the Fundamental Research Funds for the China Central Universities under Grant FRF-TP-19-001B2, the China Postdoctoral Science Foundation under Grant 2019TQ0029, the Scientific and Technological Innovation Foundation of Shunde Graduate School of University of Science and Technology Beijing under Grant BK19BE015 and this work was supported by Beijing Top Discipline for Artificial Intelligent Science and Engineering, University of Science and Technology Beijing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyu He.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Proof of step 1

Proof

Using the Young’s inequality and (10)–(12) to \(V_{III}(t)\), we have

$$\begin{aligned} |V_{III}(t)|\le & {} \alpha \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-} \rho _n|w(z,t)||{\dot{P}}(z,t)|\hbox {d}z\nonumber \\&+\xi \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}\rho _nz|{w}'(z,t)||{\dot{P}}(z,t)|\hbox {d}z\nonumber \\&+\zeta \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}\rho _n(L-z)|{w}'(z,t)||{\dot{P}}(z,t)|\hbox {d}z\nonumber \\\le & {} \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}L\rho _{\max }[2L\alpha {\delta _1}+(\zeta +\xi ){\delta _2}]\nonumber \\&\times [w''(z,t)]^2\hbox {d}z +\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}\Big [\frac{(\zeta +\xi )\rho _n}{2\delta _2}\nonumber \\&+\frac{\alpha \rho _n}{2\delta _1}\Big ][{\dot{P}}(z,t)]^2\hbox {d}z\nonumber \\\le & {} {\mu _1}V_1(t), \end{aligned}$$
(A.1)

where \(\delta _1\) and \(\delta _2\) are positive constants, \(\rho _{\max }\) is the maximum value of \(\rho _n,~n\in \{1,2,\ldots ,S\}\) and

$$\begin{aligned} {\mu _1}= & {} \max \Big \{\frac{2L\rho _{\max }[2L\alpha {\delta _1}+(\zeta +\xi ){\delta _2}]}{{\beta }EI_{\min }},\nonumber \\&\quad \frac{(\zeta +\xi )}{\beta \delta _2}+\frac{\alpha }{\beta \delta _1}\Big \} \end{aligned}$$
(A.2)

where \(EI_{\min }\) is the minimum value of \(EI_n,~n\in \{1,2,\)\(\ldots ,S\}.\) Therefore, we obtain

$$\begin{aligned} -{\mu _1}V_1(t){\le }V_3(t){\le }{\mu _1}V_1(t) \end{aligned}$$
(A.3)

When \({\mu _1}\) satisfies \(0<{\mu _1}<1\), we have

$$\begin{aligned} 0\le \lambda _1(V_1(t)+V_2(t)){\le }V(t)\le \lambda _2(V_{I}(t)+V_{II}(t)). \end{aligned}$$
(A.4)

where \(\lambda _1=1-\mu _1\) and \(\lambda _2=1+\mu _1\).

Proof of step 2

Proof

Taking the derivative of (15) with respect to time, we have

$$\begin{aligned} {\dot{V}}(t) = {\dot{V}}_{I}(t) + {\dot{V}}_{II}(t) + {\dot{V}}_{III}(t). \end{aligned}$$
(B.1)

Using the motion equation (2), the first term of (B.1) can be written as

$$\begin{aligned} {\dot{V}}_{I}(t)= & {} -{\beta }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-} \rho _ng{\dot{P}}(z,t)\cos \theta (t)\hbox {d}z\nonumber \\&-{\beta }{EI_S}{\dot{P}}(L,t)P'''(L,t)-{\beta }EI_1P''(0,t){\dot{\theta }}(t)\nonumber \\&-{\beta }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}c[{\dot{P}}(z,t)]^2\hbox {d}z. \end{aligned}$$
(B.2)

We define

$$\begin{aligned} B_1(t)= & {} -{\beta }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}\rho _ng{\dot{P}}(z,t)\cos \theta (t)\hbox {d}z, \end{aligned}$$
(B.3)
$$\begin{aligned} B_2(t)= & {} -{\beta }EI_1P''(0,t){\dot{\theta }}(t). \end{aligned}$$
(B.4)

Using the Young’s inequality, we have

$$\begin{aligned} |B_1|\le & {} {\beta }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}\rho _ng\frac{{\delta }_3}{2}[{\dot{P}}(z,t)]^2\hbox {d}z\nonumber \\&+{\beta }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}\rho _ng\frac{1}{2\delta _3}[\cos \theta (t)]^2\hbox {d}z\nonumber \\\le & {} {\beta }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}\rho _ng\frac{\delta _3}{2}[{\dot{P}}(z,t)]^2\hbox {d}z+\frac{{\beta }gL\rho _{\max }}{2\delta _3}\nonumber \\ \end{aligned}$$
(B.5)
$$\begin{aligned} |B_2|\le & {} {\beta }EI_1\frac{\delta _4}{2}[P''(0,t)]^2+{\beta }EI_1\frac{1}{2\delta _4}[{\dot{\theta }}(t)]^2,\nonumber \\ \end{aligned}$$
(B.6)

where \(\delta _3\) and \(\delta _4\) are positive constants. As a result, we obtain

$$\begin{aligned} {\dot{V}}_{I}(t)\le & {} {\beta }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}\rho _ng\frac{\delta _3}{2} [{\dot{P}}(z,t)]^2\hbox {d}z +{\beta }EI_1\frac{1}{2\delta _4}[{\dot{\theta }}]^2\nonumber \\&+{\beta }EI_1\frac{\delta _4}{2}[P''(0,t)]^2 \nonumber \\&-\,{\beta }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}c[{\dot{P}}(z,t)]^2\hbox {d}z\nonumber \\&-{\beta }{EI_S}{\dot{P}}(L,t)P'''(L,t)+\frac{{\beta }gL\rho _{\max }}{2\delta _3}. \end{aligned}$$
(B.7)

Using the motion equation (3), the second term of (B.1) can be written as

$$\begin{aligned} {\dot{V}}_{II}(t)= & {} {\gamma }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}\rho _ngw(z,t)[{\dot{\theta }}(t)+\theta _e(t)]\sin \theta (t)\hbox {d}z\nonumber \\&+ {\gamma }[{\dot{\theta }}(t)+\theta _e(t)][M(t)+EI_1P''(0,t)\nonumber \\&+\, m_cgw(L,t)\sin \theta (t)+J_A{\dot{\theta }}(t)]\nonumber \\&+\,\beta \alpha ^2{m_c}u_a(t)\dot{u}_a(t) + k\theta _e(t){\dot{\theta }}(t). \end{aligned}$$
(B.8)

Using perfect square formula, we have

$$\begin{aligned} k\theta _e(t){\dot{\theta }}(t) = \frac{k}{2}[\theta _e(t)+{\dot{\theta }}(t)]^2-\frac{k}{2} [\theta _e(t)]^2-\frac{k}{2}[{\dot{\theta }}(t)]^2 \end{aligned}$$
(B.9)

Using the definition of \(u_a(t)\) and the boundary condition (9), we have

$$\begin{aligned}&\nonumber \beta \alpha {m_c}u_a(t)\dot{u}_a(t) = \beta \alpha {m_c}u_a(t)[\ddot{P}(L,t)+\frac{\alpha -{\xi }L}{\beta }\dot{w}(L,t)]\\&\quad \nonumber = \beta \alpha {u_a}(t)[N(t)+EI_SP'''(L,t)\\&\quad -m_cg\cos \theta (t)+m_c\frac{\alpha -{\xi }L}{\beta }\dot{w}(L,t)].\end{aligned}$$
(B.10)

Defining \(B_3={\gamma }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}\rho _ngw(z,t)[{\dot{\theta }}(t)+\theta _e(t)] \times \sin \theta (t)\hbox {d}z\) and using the Young’s inequality and (10)–(12), we have

$$\begin{aligned} |B_3|\le & {} {\gamma }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}\rho _ng|w(z,t)||[{\dot{\theta }}(t)+\theta _e(t)]|\hbox {d}z\nonumber \\\le & {} {\gamma }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}\rho _ng\frac{\delta _5}{2}[w(z,t)]^2\hbox {d}z\nonumber \\&+{\gamma }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}\rho _ng\frac{1}{2\delta _5}[{\dot{\theta }}(t)+\theta _e(t)]^2\hbox {d}z\nonumber \\\le & {} {\gamma }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}2L^2\rho _ng{\delta _5}[w''(z,t)]^2\hbox {d}z\nonumber \\&+\frac{{\gamma }g\rho _{\max }L}{2\delta _5}[{\dot{\theta }}(t)+\theta _e(t)]^2, \end{aligned}$$
(B.11)

where \(\delta _5\) is positive constant. Substituting (B.9)–(B.11) and the boundary control laws (13) and (14) to (B.8), we further have

$$\begin{aligned}&{\dot{V}}_{II}(t)\nonumber \\&\quad \le {\gamma }\sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}2L^2\rho _ng{\delta _5}[w''(z,t)]^2\hbox {d}z -\frac{k}{2}[\theta _e(t)]^2\nonumber \\&\qquad -\,\frac{k}{2}[{\dot{\theta }}(t)]^2 -k_u[u_a(t)]^2 \nonumber \\&\qquad +\,\sqrt{\beta }u_a(t)EI_SP'''(L,t)\nonumber \\&\qquad -\,\Big ({k_{\theta }}-\frac{{\gamma }g\rho _{max}L}{2\delta _5} \Big )[{\dot{\theta }}(t)+\theta _e(t)]^2. \end{aligned}$$
(B.12)

The third term of (B.1) can be written as

$$\begin{aligned} {\dot{V}}_{III}(t)= & {} B_4+B_5+B_6+B_7+B_8+B_9, \end{aligned}$$
(B.13)

where

$$\begin{aligned} B_4= & {} \alpha \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _n{\dot{w}}(z,t){\dot{P}}(z,t)\hbox {d}z\\ B_5= & {} \alpha \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _nw(z,t){\ddot{P}}(z,t)\hbox {d}z\\ B_6= & {} \zeta \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _n(L-z){\dot{w}}'(z,t){\dot{P}}(z,t)\hbox {d}z\\ B_7= & {} \zeta \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _n(L-z)w'(z,t){\ddot{P}}(z,t)\hbox {d}z\\ B_8= & {} -\xi \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _nz{\dot{w}}'(z,t){\dot{P}}(z,t)\hbox {d}z\\ B_9= & {} -\xi \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _nzw'(z,t){\ddot{P}}(z,t)\hbox {d}z \end{aligned}$$

Using the definition of P(zt), \(B_4\) can be written as

$$\begin{aligned} B_4= & {} \alpha \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}\rho _n[{\dot{P}}(z,t)]^2\hbox {d}z\nonumber \\&-\,\alpha \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}\rho _nz{\dot{P}}(z,t){\dot{\theta }}(t)\hbox {d}z. \end{aligned}$$
(B.14)

Using the Young’s inequality, the seconde term of \(B_4\) satisfies following inequality.

$$\begin{aligned}&|\alpha \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}{\rho _n}z{\dot{P}}(z,t){\dot{\theta }}(t)\hbox {d}z|\nonumber \\&\quad \le \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}\frac{\delta _{6}\alpha \rho _n}{2}z[{\dot{P}}(z,t)]^2\hbox {d}z\nonumber \\&\qquad + \frac{\alpha }{2\delta _{6}}\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}{\rho _n}z[{\dot{\theta }}(t)]^2\hbox {d}z\nonumber \\&\quad \le \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}\frac{\delta _{6}\alpha \rho _nL}{2}[{\dot{P}}(z,t)]^2\hbox {d}z \nonumber \\&\qquad \frac{\alpha {\rho _{\max }}L^2}{4\delta _{6}}[{\dot{\theta }}(t)]^2, \end{aligned}$$
(B.15)

where \(\delta _{6}\) is a positive constant. So that \(B_4\) satisfies

$$\begin{aligned} B_4\le & {} \alpha \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}\rho _n(1+\frac{\delta _{6}L}{2})[{\dot{P}}(z,t)]^2\hbox {d}z\nonumber \\&+ \,\frac{\alpha {\rho _{\max }}L^2}{4\delta _{6}}[{\dot{\theta }}(t)]^2. \end{aligned}$$
(B.16)

Using the motion equation (2), \(B_5\) can be written as

$$\begin{aligned} B_5= & {} -\alpha \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}{\rho _n}gw(z,t)\cos \theta (t)\hbox {d}z -\alpha {EI_S}w(L,t)\nonumber \\&\times P'''(L,t) -\alpha \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}{EI_n}[w''(z,t)]^2\hbox {d}z\nonumber \\&-\,{\alpha }c\sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}w(z,t){\dot{P}}(z,t)\hbox {d}z \end{aligned}$$
(B.17)

Using the Young’s inequality, (10) and (11), the first term of \(B_5\) satisfies following inequality.

$$\begin{aligned}&|\alpha \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}{\rho _n}gw(z,t)\cos \theta (t)\hbox {d}z|\nonumber \\&\quad \le \alpha \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}{\rho _n}g\frac{\delta _7}{2}[w(z,t)]^2\hbox {d}z +\frac{\alpha }{2\delta _7}\sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}{\rho _n}g\hbox {d}z\nonumber \\&\quad \le 2L^2{\delta _7}g\alpha \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}\rho _{\max }[w''(z,t)]^2\hbox {d}z\nonumber \\&\qquad +\frac{\alpha \rho _{\max }Lg}{2\delta _7}, \end{aligned}$$
(B.18)

where \(\delta _{7}\) is a positive constant. Using the Young’s inequality and (10), the forth term of \(B_5\) satisfies following inequality.

$$\begin{aligned}&|{\alpha }c\sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}w(z,t){\dot{P}}(z,t)\hbox {d}z|\nonumber \\&\quad \le \alpha \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}2cL^2{\delta _8}[w''(z,t)]^2\hbox {d}z\nonumber \\&\qquad +\frac{c\alpha }{2\delta _8}\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}[{\dot{P}}(z,t)]^2\hbox {d}z, \end{aligned}$$
(B.19)

where \(\delta _{8}\) is a positive constant. So that \(B_5\) satisfies

$$\begin{aligned} B_5\le & {} - \alpha {EI_S}w(L,t)P'''(L,t)+\frac{\alpha \rho _{\max }Lg}{2\delta _7}\nonumber \\&+ \,\frac{c\alpha }{2\delta _8}\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}[{\dot{P}}(z,t)]^2\hbox {d}z - \alpha \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}({EI_n}\nonumber \\&-\,2L^2{\delta _7}g\rho _{\max }-2L^2c{\delta _8})[w''(z,t)]^2\hbox {d}z\nonumber \\ \end{aligned}$$
(B.20)

Using the definition of P(zt) and integrating by part, \(B_6\) can be written as

$$\begin{aligned} B_6= & {} \zeta \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _n(L-z) {\dot{P}}'(z,t){\dot{P}}(z,t)\hbox {d}z\nonumber \\&-\zeta \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _n(L-z){\dot{\theta }}(t){\dot{P}}(t)\hbox {d}z \nonumber \\= & {} \zeta \sum _{n=1}^{S-1}(\rho _n-\rho _{n+1})(L-{z_n^-}) [{\dot{P}}({z_n^-},t)]^2\nonumber \\&-\zeta \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _n(L-z) {\dot{\theta }}(t){\dot{P}}(z,t)\hbox {d}z\nonumber \\&+\frac{\zeta }{2}\sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _n[{\dot{P}}(z,t)]^2\hbox {d}z \end{aligned}$$
(B.21)

Using the Young’s inequality, the term \(\zeta \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _n \times (L-z){\dot{\theta }}(t){\dot{P}}(z,t)\hbox {d}z\) in \(B_6\) satisfies following inequality:

$$\begin{aligned}&|\zeta \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _n(L-z){\dot{\theta }}(t) {\dot{P}}(z,t)\hbox {d}z|\nonumber \\&\quad \le \frac{L\zeta \delta _9}{2}\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-} \rho _n[{\dot{P}}(z,t)]^2\hbox {d}z \nonumber \\&\qquad +\,\frac{\zeta \rho _{\max }L^2}{2\delta _9}[{\dot{\theta }}(t)]^2\hbox {d}z \end{aligned}$$
(B.22)

where \(\delta _{9}\) is a positive constant. So that \(B_6\) satisfies

$$\begin{aligned} B_6\le & {} \zeta \sum _{n=1}^{S-1}(\rho _n-\rho _{n+1})(L-{z_n^-})[{\dot{P}}({z_n^-},t)]^2 \nonumber \\&\quad +\,\frac{\zeta \rho _{\max }L^2}{2\delta _9} \times [{\dot{\theta }}(t)]^2\hbox {d}z \nonumber \\&\quad +\,\frac{\zeta +L\zeta \delta _9}{2}\sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-} \rho _n[{\dot{P}}(z,t)]^2\hbox {d}z \end{aligned}$$
(B.23)

Using the motion equation (2), \(B_7\) can be written as

$$\begin{aligned} B_7= & {} -\frac{\zeta }{2}L{EI_1}[w''(0,t)]^2 -\zeta \sum _{n=1}^{S-1}({\rho _n}-\rho _{n+1})g(L\nonumber \\&-\,{z_n^-})w({z_n^-},t)\cos \theta (t) -\zeta \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}w(z,t){\rho _n}g\nonumber \\&\times \cos \theta (t)\hbox {d}z +\frac{3\zeta }{2}\sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}{EI_n}[w''(z,t)]^2\nonumber \\&-\,\zeta \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}(L-z)w'(z,t)c{\dot{P}}(z,t)\hbox {d}z \end{aligned}$$
(B.24)

Considering \({\rho _n}>\rho _{n+1}\) and using the Young’s inequality and (12), we have the first term of \(B_7\) satisfies

$$\begin{aligned}&|\zeta \sum _{n=1}^{S-1}({\rho _n}-\rho _{n+1})g(L-{z_n^-})w({z_n^-},t)\cos \theta (t)|\nonumber \\&\quad \le \zeta \rho _{\max }gL\sum _{n=1}^{S-1}|w({z_n^-},t)\cos \theta (t)|\nonumber \\&\quad \le \frac{\delta _{10}8gL^2(S-1)\zeta \rho _{\max }}{2}\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}[w''(z,t)]^2\hbox {d}z\nonumber \\&\qquad + \frac{gL(S-1)\zeta \rho _{\max }}{2\delta _{10}} \end{aligned}$$
(B.25)

where \(\delta _{10}\) is a positive constant. Similar with (B.18), the second term in \(B_7\) satisfies

$$\begin{aligned}&|\zeta \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}w(z,t){\rho _n}g\cos \theta (t)\hbox {d}z|\nonumber \\&\quad \le 2L^2{\delta _7}g\varsigma \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}\rho _{\max }[w''(z,t)]^2\hbox {d}z \nonumber \\&\qquad +\,\frac{\zeta \rho _{\max }Lg}{2\delta _7} \end{aligned}$$
(B.26)

Using the Young’s inequality and (11), the third term of \(B_7\) satisfies following inequality.

$$\begin{aligned}&|\zeta \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}(L-z)w'(z,t)c{\dot{P}}(z,t)\hbox {d}z|\nonumber \\&\quad \le cL^2{\delta _{11}}\zeta \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}[w''(z,t)]^2\hbox {d}z\nonumber \\&\qquad +\frac{cL\zeta }{2\delta _{11}}\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}[{\dot{P}}(z,t)]^2\hbox {d}z \end{aligned}$$
(B.27)

where \(\delta _{11}\) is a positive constant. So that \(B_7\) satisfies

$$\begin{aligned} B_7\le & {} \zeta \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-} \Big (2L^2{\delta _7}g\rho _{\max }+\frac{8(S-1)\rho _{\max }\delta _{10}gL^2}{2}\nonumber \\&+\frac{3}{2}{EI_n}+cL^2{\delta _{11}}\Big )[w''(z,t)]^2\hbox {d}z +\frac{\zeta \rho _{\max }Lg}{2\delta _7}\nonumber \\&+ \frac{(S-1)\zeta \rho _{\max }gL}{2\delta _{10}} +\frac{cL\zeta }{2\delta _{11}}\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-} [{\dot{P}}(z,t)]^2\hbox {d}z\nonumber \\&-\frac{\zeta }{2}L{EI_1}[w''(0,t)]^2 \end{aligned}$$
(B.28)

Using the definition of P(zt) and integrating by part, \(B_8\) can be written as

$$\begin{aligned} B_8= & {} -\xi \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _nz{\dot{P}}'(z,t){\dot{P}}(z,t)\hbox {d}z\nonumber \\&+\xi \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _nz{\dot{\theta }}(t){\dot{P}}(t)\hbox {d}z \nonumber \\= & {} -\frac{\xi }{2}\sum _{n=1}^{S-1}(\rho _n-\rho _{n+1}){z_n^-}[{\dot{P}}({z_n^-},t)]^2\nonumber \\&-\,\frac{\xi }{2}\sum _{n=1}^S\rho _SL[{\dot{P}}(L,t)]^2 \nonumber \\&+\,\frac{\xi }{2}\sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _n[{\dot{P}}(z,t)]^2\hbox {d}z\nonumber \\&+\,\xi \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _nz{\dot{\theta }}(t){\dot{P}}(z,t)\hbox {d}z \end{aligned}$$
(B.29)

Using the Young’s inequality, the forth term of \(B_8\) satisfies following inequality.

$$\begin{aligned}&|\xi \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}{\rho _n}z {\dot{P}}(z,t){\dot{\theta }}(t)\hbox {d}z|\nonumber \\&\quad \le \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}\frac{\delta _{12}\xi \rho _nL}{2} [{\dot{P}}(z,t)]^2\hbox {d}z \nonumber \\&\qquad +\, \frac{\xi {\rho _{\max }}L^2}{4\delta _{12}}[{\dot{\theta }}(t)]^2 \end{aligned}$$
(B.30)

where \(\delta _{12}\) is a positive constant. So that \(B_8\) satisfies

$$\begin{aligned} B_8\le & {} \frac{\xi }{2}\sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\rho _n (1+\delta _{12}L)[{\dot{P}}(z,t)]^2\hbox {d}z \nonumber \\&-\,\frac{\xi }{2}\sum _{n=1}^S\rho _SL [{\dot{P}}(L,t)]^2 -\frac{\xi }{2}\sum _{n=1}^{S-1}(\rho _n-\rho _{n+1}){z_n^-}\nonumber \\&\times [{\dot{P}}({z_n^-},t)]^2 +\, \frac{\xi {\rho _{\max }}L^2}{4\delta _{12}}[{\dot{\theta }}(t)]^2 \end{aligned}$$
(B.31)

Using the motion equation (2) and integrating by part, \(B_9\) can be written as

$$\begin{aligned} B_9= & {} \xi \sum _{n=1}^{S-1}(\rho _n-\rho _{n+1}){z_{n}^-}w({z_n^-},t)\cos \theta (t) \nonumber \\&-\,\sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\xi \times {\rho _n}gw(z,t)\cos \theta (t)\hbox {d}z \nonumber \\&+\,\xi \rho _SLw(L,t)\cos \theta (t)\nonumber \\&+\,\xi {EI_S}Lw(L,t)P'''(L,t)\nonumber \\&+\,\xi \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}c zw'(z,t) {\dot{P}}(z,t)\hbox {d}z\nonumber \\&+\frac{3\xi }{2}\sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}{EI_n}[w''(z,t)]^2\hbox {d}z\nonumber \\ \end{aligned}$$
(B.32)

Similar with (B.25), (B.18) and (B.27), the first, third and sixth terms of \(B_9\) satisfy respectively following inequalities:

$$\begin{aligned}&|\xi \sum _{n=1}^{S-1}(\rho _n-\rho _{n+1}){z_{n}^-}w({z_n^-},t) \cos \theta (t)|\nonumber \\&\quad \le \frac{8(S-1)\delta _{10}\xi \rho _{\max }gL^2}{2} \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}[w''(z,t)]^2\hbox {d}z\nonumber \\&\qquad + \frac{(S-1)\xi \rho _{\max }gL}{2\delta _{10}} \end{aligned}$$
(B.33)
$$\begin{aligned}&|\xi \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}{\rho _n}gw(z,t)\cos \theta (t)\hbox {d}z|\nonumber \\&\quad \le 2L^2{\delta _7}g\xi \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}\rho _{\max }[w''(z,t)]^2\hbox {d}z +\frac{\xi \rho _{\max }Lg}{2\delta _7}\nonumber \\ \end{aligned}$$
(B.34)
$$\begin{aligned}&|\xi \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}zw'(z,t)c{\dot{P}}(z,t)\hbox {d}z|\nonumber \\&\quad \le cL^2{\delta _{11}}\xi \sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}[w''(z,t)]^2\hbox {d}z\nonumber \\&\qquad +\frac{cL\xi }{2\delta _{11}}\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}[{\dot{P}}(z,t)]^2\hbox {d}z \end{aligned}$$
(B.35)

Using the Young’s inequality and (12), the second term of \(B_9\) satisfies following inequality:

$$\begin{aligned}&|\xi \rho _SLw(L,t)\cos \theta (t)|\nonumber \\\le & {} \frac{8\delta _{13}\xi \rho _{S}gL^2}{2}\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}[w''(z,t)]^2\hbox {d}z + \frac{\xi \rho _{S}gL}{2\delta _{13}}\nonumber \\ \end{aligned}$$
(B.36)

So that \(B_9\) satisfies

$$\begin{aligned} B_9\le & {} \xi \sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\Big (\frac{8(S-1)\delta _{10}\rho _{\max }gL^2}{2} +\frac{8\delta _{13}\rho _{S}gL^2}{2}\nonumber \\&+\,\frac{3{EI_n}}{2}+2L^2{\delta _7}g\rho _{\max }+cL^2{\delta _{11}}\Big )[w''(z,t)]^2\hbox {d}z\nonumber \\&+\,\xi {EI_S}Lw(L,t)P'''(L,t) + \frac{\xi \rho _{S}gL}{2\delta _{13}} +\frac{\xi \rho _{\max }Lg}{2\delta _7}\nonumber \\&+\,\frac{cL\xi }{2\delta _{11}}\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-}[{\dot{P}}(z,t)]^2\hbox {d}z + \frac{(S-1)\xi \rho _{\max }gL}{2\delta _{10}}\nonumber \\ \end{aligned}$$
(B.37)

Using (B.16), (B.20), (B.23), (B.28), (B.31) and (B.37) for (B.13), we obtain

$$\begin{aligned}&{\dot{V}}_{III}(t) \nonumber \\&\quad \le -\sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\Big [\alpha {EI_n} -2L^2(\alpha +\zeta +\xi ){\delta _7}g\rho _{\max }\nonumber \\&\quad -\frac{3(\zeta +\xi )}{2}{EI_n} -\frac{8(S-1)(\zeta +\xi )\delta _{10}\rho _{\max }gL^2}{2}\nonumber \\&\quad -2L^2{\alpha }c{\delta _8} -\frac{8\xi \delta _{13}\rho _{S}gL^2}{2} -cL^2(\zeta +\xi ){\delta _{11}}\Big ]\nonumber \\&\quad \times [w''(z,t)]^2\hbox {d}z - (\alpha -{\xi }L){EI_S}w(L,t)P'''(L,t)\nonumber \\&\quad +\,\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-} \Big [\frac{c\alpha }{2\delta _8} +\frac{cL(\zeta +\xi )}{2\delta _{11}} +\alpha \rho _n(1+\frac{\delta _{6}L}{2})\nonumber \\&\quad +\,\frac{\xi }{2}\rho _n(1+\delta _{12}L) +\frac{\zeta }{2}\rho _n+\frac{L\zeta \delta _9}{2}\rho _n\Big ] [{\dot{P}}(z,t)]^2\hbox {d}z\nonumber \\&\quad -\,\frac{\xi }{2}\sum _{n=1}^S\rho _SL[{\dot{P}}(L,t)]^2 + \Big (\frac{\xi {\rho _{\max }}L^2}{4\delta _{12}}+\frac{\zeta \rho _{\max }L^2}{2\delta _9}\nonumber \\&\quad +\, \frac{\alpha {\rho _{\max }}L^2}{4\delta _{6}}\Big ) [{\dot{\theta }}(t)]^2 -\frac{\zeta }{2}L{EI_1}[w''(0,t)]^2 \nonumber \\&\quad -\sum _{n=1}^{S-1}(\rho _n-\rho _{n+1})\Big [\frac{\xi }{2}{z_n^-}-\zeta (L-{z_n^-})\Big ][{\dot{P}}({z_n^-},t)]^2\nonumber \\&\quad +\frac{(\alpha +\zeta +\xi )\rho _{\max }Lg}{2\delta _7} + \frac{\xi \rho _{S}gL}{2\delta _{13}}\nonumber \\&\quad + \frac{(S-1)(\zeta +\xi )\rho _{\max }gL}{2\delta _{10}} \end{aligned}$$
(B.38)

Using (B.7), (B.12) and (B.38), we can obtain

$$\begin{aligned} {\dot{V}}(t)\le & {} -\sum _{n=1}^S\int _{z_{n-1}^+}^{z_n^-}\Big [\alpha {EI_n} -2L^2(\alpha +\zeta +\xi ){\delta _7}g\rho _{\max }\nonumber \\&-\,\frac{8(S-1)(\zeta +\xi )\delta _{10}\rho _{\max }gL^2}{2} -\frac{8\xi \delta _{13}\rho _{S}gL^2}{2}\nonumber \\&-\,\frac{3(\zeta +\xi )}{2}{EI_n} -2L^2{\alpha }c{\delta _8} -cL^2(\zeta +\xi ){\delta _{11}}\nonumber \\&-\,2L^2{\gamma }\rho _ng{\delta _5}\Big ][w''(z,t)]^2\hbox {d}z -\sum _{n=1}^{S}\int _{z_{n-1}^{+}}^{z_n^-} \Big [{\beta }c \nonumber \\&-\frac{c\alpha }{2\delta _8}-\alpha \rho _n(1+\frac{\delta _{6}L}{2}) -\frac{cL(\zeta +\xi )}{2\delta _{11}} -\frac{L\zeta \delta _9}{2}\rho _n\nonumber \\&-\frac{\zeta }{2}\rho _n -\frac{{\beta }\delta _3\rho _ng}{2} -\frac{\xi }{2}\rho _n(1+\delta _{12}L)\Big ] [{\dot{P}}(z,t)]^2\hbox {d}z\nonumber \\&-\sum _{n=1}^{S-1}(\rho _n-\rho _{n+1})\Big [\frac{\xi }{2}{z_n^-}-\zeta (L-{z_n^-})\Big ][{\dot{P}}({z_n^-},t)]^2\nonumber \\&-\, \Big (\frac{k}{2} -\frac{\xi {\rho _{\max }}L^2}{4\delta _{12}} -\frac{\zeta \rho _{\max }L^2}{2\delta _9} - \frac{\alpha {\rho _{\max }}L^2}{4\delta _{6}}\nonumber \\&-\frac{{\beta }EI_1}{2\delta _4}\Big )[{\dot{\theta }}(t)]^2 -\frac{\xi }{2}\sum _{n=1}^S\rho _SL[{\dot{P}}(L,t)]^2\nonumber \\&-\frac{EI_1}{2}({\zeta }L-{\beta }{\delta _4})[P''(0,t)]^2 -\Big ({k_{\theta }}-\frac{{\gamma }g\rho _{max}L}{2\delta _5}\Big )\nonumber \\&\times [{\dot{\theta }}(t)+\theta _e(t)]^2 -k_u[u_a(t)]^2 -\frac{k}{2}[\theta _e(t)]^2\nonumber \\&+ \frac{(S-1)(\zeta +\xi )\rho _{\max }gL}{2\delta _{10}} + \frac{\xi \rho _{S}gL}{2\delta _{13}}\nonumber \\&+\frac{(\alpha +\zeta +\xi )\rho _{\max }Lg}{2\delta _7} +\frac{{\beta }gL\rho _{\max }}{2\delta _3}\nonumber \\\le & {} -\lambda _3(V_{I}(t)+V_{II}(t))+\varepsilon , \end{aligned}$$
(B.39)

where

$$\begin{aligned} \varepsilon= & {} \frac{(S-1)(\zeta +\xi )\rho _{\max }gL}{2\delta _{10}} + \frac{\xi \rho _{S}gL}{2\delta _{13}}\nonumber \\&+\,\frac{(\alpha +\zeta +\xi )\rho _{\max }Lg}{2\delta _7} +\frac{{\beta }gL\rho _{\max }}{2\delta _3} \end{aligned}$$
(B.40)

and the positive constants \(\alpha \), \(\beta \), \(\gamma \), \(\zeta \), \(\xi \), c, k, \(k_u\), \(k_{\theta }\), \(\delta _1\)-\(\delta _{13}\) are chosen under the following conditions.

$$\begin{aligned} \beta&{>}&\max \Big \{\frac{2L\rho _{\max }(2L\alpha {\delta _1}{+}\zeta {\delta _2})}{EI_{\min }},\frac{\zeta }{\delta _2}{+}\frac{\alpha }{\delta _1}\Big \} \end{aligned}$$
(B.41)
$$\begin{aligned} \kappa _n= & {} \alpha {EI_n} -2L^2(\alpha +\zeta +\xi ){\delta _7}g\rho _{\max } -2L^2{\alpha }c{\delta _8}\nonumber \\&-\,\frac{8(S-1)(\zeta +\xi )\delta _{10}\rho _{\max }gL^2}{2} -2L^2{\gamma }\rho _ng{\delta _5}\nonumber \\&-\,\frac{3(\zeta +\xi )}{2}{EI_n} -\frac{8\xi \delta _{13}\rho _{S}gL^2}{2}\nonumber \\&-\,cL^2(\zeta +\xi ){\delta _{11}}>0,~n\in \{1,2,\ldots ,S\} \end{aligned}$$
(B.42)
$$\begin{aligned} \nu _n= & {} {\beta }c-\frac{c\alpha }{2\delta _8} -\frac{{\beta }\delta _3\rho _ng}{2} -\frac{cL(\zeta +\xi )}{2\delta _{11}} -\frac{L\zeta \delta _9}{2}\rho _n\nonumber \\&-\,\alpha \rho _n(1+\frac{\delta _{6}L}{2}) -\frac{\xi }{2}\rho _n(1+\delta _{12}L) -\frac{\zeta }{2}\rho _n>0,\nonumber \\&\quad n\in \{1,2,\ldots ,S\} \end{aligned}$$
(B.43)
$$\begin{aligned} \chi _1= & {} \min \Big \{\frac{2\nu _1}{\beta \rho _1},\ldots ,\frac{2\nu _S}{\beta \rho _S}\Big \}\nonumber \\= & {} -\frac{\delta _{6}{\alpha }L}{{\beta }} -g{\delta _3} -\frac{L\zeta \delta _9}{{\beta }} -\frac{2\alpha +{\zeta }+\xi (1+\delta _{12}L)}{\beta }\nonumber \\&-\,\frac{cL(\zeta +\xi )}{\beta \delta _{11}\rho _{\max }} -\frac{c\alpha }{\delta _8{\beta }\rho _{\max }} \end{aligned}$$
(B.44)
$$\begin{aligned} \chi _2= & {} \min \Big \{\frac{2\kappa _1}{{\beta }EI_1},\ldots ,\frac{2\kappa _S}{{\beta }EI_S}\Big \}\nonumber \\= & {} \frac{2\alpha }{\beta } -\frac{3(\zeta +\xi )}{\beta } -\frac{8(S-1)(\zeta +\xi )\delta _{10}\rho _{\max }gL^2}{{\beta }EI_{\max }}\nonumber \\&-\frac{4L^2{\delta _7}g(\alpha +\zeta +\xi )\rho _{\max }}{{\beta }EI_{\max }} -\frac{2cL^2{\delta _{11}}(\zeta +\xi )}{{\beta }EI_{\max }}\nonumber \\&-\frac{4cL^2{\delta _8}\alpha }{{\beta }EI_{\max }} -\frac{4L^2\rho _ng{\gamma }{\delta _5}}{{\beta }EI_{\max }} -\frac{8\xi \delta _{13}\rho _{S}gL^2}{{\beta }EI_{\max }} \end{aligned}$$
(B.45)
$$\begin{aligned} \sigma _1= & {} \frac{k}{2}-\frac{\rho _{\max }L^2}{2}(\frac{\zeta }{\delta _9}+\frac{2\xi }{\delta _{12}}+\frac{\alpha }{2\delta _{6}})-\frac{{\beta }EI_1}{2\delta _4}>0\nonumber \\ \end{aligned}$$
(B.46)
$$\begin{aligned} \sigma _2= & {} \frac{\xi }{2}{z_n^-}-\zeta (L-{z_n^-})>0\end{aligned}$$
(B.47)
$$\begin{aligned} \sigma _3= & {} {k_{\theta }}-\frac{{\gamma }g\rho _{\max }L}{2\delta _5}>0\end{aligned}$$
(B.48)
$$\begin{aligned} \sigma _4= & {} {\zeta }L-{\beta }{\delta _4}>0 \end{aligned}$$
(B.49)

where \(EI_{\max }\) is the maximum value of \(EI_n,~n\in \{1,2,\)

\(\ldots ,S\}\).

$$\begin{aligned} \lambda _3= & {} \min \Big \{\chi _1,\chi _2,\frac{2\sigma _3}{J_A\gamma },1,\frac{2k_u}{m_c}\Big \}>0. \end{aligned}$$
(B.50)

Combining (A.4) and (B.39), we finally obtain

$$\begin{aligned} {\dot{V}}(t)\le & {} -{\lambda }V(t)+\varepsilon , \end{aligned}$$
(B.51)

where \(\lambda =\lambda _3/\lambda _2>0\).

Proof of step 3

Proof

Multiplying inequation (B.51) by \(e^{{\lambda }t}\) yields

$$\begin{aligned} \frac{\partial }{{\partial }t}[V(t)e^{{\lambda }t}]\le & {} {\varepsilon }e^{{\lambda }t}. \end{aligned}$$
(C.1)

Integrating of the above inequality leads to

$$\begin{aligned} V(t)e^{{\lambda }t}-V(0)\le & {} \frac{\varepsilon }{\lambda }e^{{\lambda }t}-\frac{\varepsilon }{\lambda } \end{aligned}$$
(C.2)

then we can obtain

$$\begin{aligned} V(t) \le \Big [V(0)-\frac{\varepsilon }{\lambda }\Big ]e^{-{\lambda }t}+\frac{\varepsilon }{\lambda }{\le }V(0)e^{-{\lambda }t}+\frac{\varepsilon }{\lambda }{\in }{\mathscr {L}}_{\infty } \end{aligned}$$
(C.3)

which suggests V(t) is bounded. Using (16), (A.4) and (12), we obtain

$$\begin{aligned} \frac{{\beta }EI_n}{16L}[w(z,t)]^2\le & {} \sum _{n=1}^{S}\int _{z_{n-1}^+}^{z_n^-}\frac{{\beta }EI_n}{2}[w''(z,t)]^2\hbox {d}z\nonumber \\\le & {} V_{I}(t){\le }V_{I}(t)+V_{II}(t)\nonumber \\\le & {} \frac{1}{\lambda _1}V(t){\in }{\mathscr {L}}_{\infty } \end{aligned}$$
(C.4)

\(\forall (z,t)\in [{z_{n-1}^+},{z_n^-}]\times [0,\infty ),n\in \{1,2,\ldots ,S\}.\) From (C.3) and (C.4), we have

$$\begin{aligned} |w(z,t)|\le & {} \sqrt{\frac{16L}{\lambda _1{\beta }EI_n}[V(0)e^{-{\lambda }t}+\frac{\varepsilon }{\lambda }]}\nonumber \\\le & {} \sqrt{\frac{16L}{\lambda _1{\beta }EI_n}[V(0)+\frac{\varepsilon }{\lambda }]} \end{aligned}$$
(C.5)

\(\forall (z,t)\in [{z_{n-1}^+},{z_n^-}]\times [0,\infty ),n\in \{1,2,\ldots ,S\}.\) Further more, from (C.5), we have

$$\begin{aligned} \lim \limits _{t\rightarrow \infty }|w(z,t)|\le & {} \sqrt{\frac{16L\varepsilon }{\lambda \lambda _1{\beta }EI_n}} \end{aligned}$$
(C.6)

\(\forall (z,t)\in [{z_{n-1}^+},{z_n^-}]\times [0,\infty ),n\in \{1,2,\ldots ,S\}.\) Using (17) and (A.4), we have

$$\begin{aligned} \frac{k}{2}[\theta _e(t)]^2 \le V_{II}(t){\le }V_{I}(t)+V_{II}(t)\le \frac{1}{\lambda _1}V(t){\in }{\mathscr {L}}_{\infty } \end{aligned}$$
(C.7)

From (C.3) and (C.7), we have

$$\begin{aligned} |\theta _e(t)| \le \sqrt{\frac{2}{k\lambda _1}[V(0)e^{-{\lambda }t}+\frac{\varepsilon }{\lambda }]} \le \sqrt{\frac{2}{k\lambda _1}[V(0)+\frac{\varepsilon }{\lambda }]},\nonumber \\~~\forall t\in [0,\infty )~~~~\nonumber \\ \end{aligned}$$
(C.8)

Further more, from (C.8), we have

$$\begin{aligned} \lim \limits _{t\rightarrow \infty }|\theta _e(t)|\le & {} \sqrt{\frac{2\varepsilon }{k\lambda \lambda _1}},~~\forall t\in [0,\infty ). \end{aligned}$$
(C.9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., He, X., Zhang, S. et al. Vibration suppression and angle tracking of a fire-rescue ladder. Nonlinear Dyn 100, 2365–2380 (2020). https://doi.org/10.1007/s11071-020-05651-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05651-1

Keywords

Navigation