Skip to main content
Log in

On the multi-mode behavior of vibrating rods attached to nonlinear springs

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the harmonic response of vibrating rods with an array of nonlinear springs. The proposed analysis is multi-mode in the sense that the response functions are plotted over wide frequency bands where several resonances can be observed. Particularly, this study aims at investigating the way the vibration modes interact with each other, given the occurrence of local nonlinearities. Also, it aims at investigating the effect of periodic local nonlinearities on the dynamic behavior of the rods, which is closely related to the topic of nonlinear metamaterials. Two approaches are proposed, namely the polynomial method and the perturbation method. The polynomial method uses closed-form solutions of the equation of motion of a rod attached to a small number of springs. This yields a scalar polynomial equation which is well suited for accurately computing the receptance functions at some point of the rod. On the other hand, the proposed perturbation method invokes a subspace projection, which consists in expanding the displacement of the rod on a reduced (finite) basis of vibration modes. This yields a cubic matrix equation which can be easily solved using appropriate solvers. Numerical experiments are carried out which highlight the relevance of both approaches. It is found that the resonance peaks of the rod, once coupled to the nonlinear springs, shift to the high frequencies. This appears to be an interesting feature for the passive control of these systems in the low-frequency range where the vibration levels can be strongly reduced, i.e., compared to the case where purely linear springs are only considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. This is equivalent to multiplying Eq. (2) by \(\cos \left( \omega t\right) \), integrating the resulting expression over a time period and invoking the orthogonality properties between the functions \(\cos \left( \omega t\right) \) and \(\cos \left( 3\omega t\right) \).

  2. In this case, one should consider that \(f_l=F_l~\mathtt{exp}\left( \mathtt{i}\omega t\right) \) and \(u\left( x,t\right) =U(x,\omega )~\mathtt{exp}\left( \mathtt{i}\omega t\right) \) in Eq. (4), where \(F_l\) and \(U(x,\omega )\) are complex scalars.

  3. I.e., the fact that several linear modes of the rod contribute to its dynamic response at a same frequency, and therefore, that several resonance peaks are observed.

  4. In this case, the cubic stiffness will be denoted by \(\epsilon s_3\), instead of \(s_3\).

  5. To derive Eq. (43), the following equality has been considered: \(\sum \limits _{j=0}^{m}X_{js}\alpha _{j}^{0}=\mathbf{X}_s{\varvec{\alpha }}^{0}\).

References

  1. Brennan, M.J., Kovacic, I., Carrella, A., Waters, T.P.: On the jump-up and jump-down frequencies of the duffing oscillator. J. Sound Vib. 318(4–5), 1250–1261 (2008)

    Article  Google Scholar 

  2. Carrella, A., Brennan, M., Waters, T., Lopes Jr., V.: Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 55(1), 22–29 (2012)

    Article  Google Scholar 

  3. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007)

    Article  Google Scholar 

  4. Clewley, R.H., Sherwood, W., LaMar, M., Guckenheimer, J.: Pydstool, a software environment for dynamical systems modeling. http://pydstool.sourceforge.net (2007)

  5. Conn, A.R., Gould, N.I., Toint, P.L.: Trust Region Methods, vol. 1. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  6. Cveticanin, L., Mester, G.: Theory of acoustic metamaterials and metamaterial beams: an overview. Acta Polytech. Hung. 13(7), 43–62 (2016)

    Google Scholar 

  7. Cveticanin, L., Zukovic, M.: Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems. Commun. Nonlinear Sci. Numer. Simul. 51, 89–104 (2017)

    Article  MathSciNet  Google Scholar 

  8. Cveticanin, L., Zukovic, M., Cveticanin, D.: Influence of nonlinear subunits on the resonance frequency band gaps of acoustic metamaterial. Nonlinear Dyn. 93(3), 1341–1351 (2018)

    Article  Google Scholar 

  9. Cveticanin, L., Zukovic, M., Cveticanin, D.: On the elastic metamaterial with negative effective mass. J. Sound Vib. 436, 295–309 (2018)

    Article  Google Scholar 

  10. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011)

    Article  Google Scholar 

  11. Fahy, F., Walker, J.: Advanced applications in acoustics, noise and vibration. CRC Press, Boca Raton (2004)

    Google Scholar 

  12. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., Rossi, F., Ulerich, R.: GNU scientific library (2017)

  13. Gatti, G., Brennan, M.J., Tang, B.: Some diverse examples of exploiting the beneficial effects of geometric stiffness nonlinearity. Mech. Syst. Signal Process. 125, 4–20 (2019)

    Article  Google Scholar 

  14. Graff, K.G.: Wave Motion in Elastic Solids. Oxford University Press, London (1991)

    MATH  Google Scholar 

  15. Holmes, C., Holmes, P.: Second order averaging and bifurcations to subharmonics in Duffing’s equation. J. Sound Vib. 78(2), 161–174 (1981)

    Article  MathSciNet  Google Scholar 

  16. Hu, H., Tang, J.: Solution of a Duffing-harmonic oscillator by the method of harmonic balance. J. Sound Vib. 294(3), 637–639 (2006)

    Article  MathSciNet  Google Scholar 

  17. Huang, H.H., Lin, C.K., Tan, K.T.: Attenuation of transverse waves by using a metamaterial beam with lateral local resonators. Smart Mater. Struct. 25(8), 085027 (2016)

    Article  Google Scholar 

  18. Kargarnovin, M., Younesian, D., Thompson, D., Jones, C.: Response of beams on nonlinear viscoelastic foundations to harmonic moving loads. Comput. Struct. 83(23–24), 1865–1877 (2005)

    Article  Google Scholar 

  19. Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics, vol. 34. Springer, Berlin (2013)

    MATH  Google Scholar 

  20. Kovacic, I., Brennan, M.J.: The Duffing Equation: Nonlinear Oscillators and Their Behaviour. Wiley, Hoboken (2011)

    Book  Google Scholar 

  21. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71(13), 2022 (1993)

    Article  Google Scholar 

  22. Mickens, R.: Mathematical and numerical study of the duffing-harmonic oscillator. J. Sound Vib. 244, 563–567 (2001)

    Article  MathSciNet  Google Scholar 

  23. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, Hoboken (1993)

    MATH  Google Scholar 

  24. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  25. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  26. Santo, D.R., Balthazar, J.M., Tusset, A.M., Piccirilo, V., Brasil, R.M.L.R.F., Silveira, M.: On nonlinear horizontal dynamics and vibrations control for high-speed elevators. J. Vib. Control 24(5), 825–838 (2018)

    Article  MathSciNet  Google Scholar 

  27. Shaw, A., Hill, T., Neild, S., Friswell, M.: Periodic responses of a structure with 3:1 internal resonance. Mech. Syst. Signal Process. 81, 19–34 (2016)

    Article  Google Scholar 

  28. Tabaddor, M.: Influence of nonlinear boundary conditions on the single-mode response of a cantilever beam. Int. J. Solids Struct. 37(36), 4915–4931 (2000)

    Article  Google Scholar 

  29. Tang, B., Brennan, M.J., Manconi, E.: On the use of the phase closure principle to calculate the natural frequencies of a rod or beam with nonlinear boundaries. J. Sound Vib. 433, 461–475 (2018)

    Article  Google Scholar 

  30. Wang, Y.Z., Li, F.M., Wang, Y.S.: Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain. Int. J. Mech. Sci. 106, 357–362 (2016)

    Article  Google Scholar 

  31. Worden, K., Tomlinson, G.: Nonlinearity in structural dynamics (2001)

  32. Younesian, D., Hosseinkhani, A., Askari, H., Esmailzadeh, E.: Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modeling and applications. Nonlinear Dyn. 97, 853–895 (2019)

    Article  Google Scholar 

  33. Younesian, D., Marjani, S., Esmailzadeh, E.: Nonlinear vibration analysis of harmonically excited cracked beams on viscoelastic foundations. Nonlinear Dyn. 71(1–2), 109–120 (2013)

    Article  MathSciNet  Google Scholar 

  34. Zhu, R., Liu, X., Hu, G., Sun, C., Huang, G.: A chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333(10), 2759–2773 (2014)

    Article  Google Scholar 

  35. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. 1, 5th edn. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

D.R. Santo would like to thank the financial support provided by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code No. 8882.432839/2018-01 and 88881.190066/2018-01. Authors would like to thank the financial support process no 2018/15894-0, The São Paulo Research Foundation, FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Roca Santo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Expressions of the coefficients of the polynomial equation (20)

A Expressions of the coefficients of the polynomial equation (20)

$$\begin{aligned} \alpha _{0}=&\frac{{D_2} F}{{D_1}}, \end{aligned}$$
(49)
$$\begin{aligned} \alpha _{1} =&-\frac{\left( {s_1}+2 {D_1}\right) \left( {D_1} {s_1}-{{{D_2}}^{2}}+{{{D_1}}^{2}}\right) }{{D_1} {D_2}}, \end{aligned}$$
(50)
$$\begin{aligned} \alpha _{3} =&-3\frac{{D_1} {{{s_1}}^{3}}+3 {{{D_1}}^{2}} {{{s_1}}^{2}}+3 {{{D_1}}^{3}} {s_1}-{{{D_2}}^{4}}}{4D_{1}D_{2}^{3}}\nonumber \\&-\,3\frac{2 {{{D_1}}^{2}} {{{D_2}}^{2}}+{D_1} {{{D_2}}^{2}}s_1+{{{D_1}}^{4}}}{4D_{1}D_{2}^{3}}, \end{aligned}$$
(51)
$$\begin{aligned} \alpha _{5} =&-\frac{27 {{\left( {s_1}+{D_1}\right) }^{2}} {{{s_3}}^{2}}}{16 {{{D_2}}^{3}}}, \end{aligned}$$
(52)
$$\begin{aligned} \alpha _{7} =&-\frac{81 \left( {s_1}-{D_1}\right) {{{s_3}}^{3}}}{64 {{{D_2}}^{3}}}, \end{aligned}$$
(53)
$$\begin{aligned} \alpha _{9} =&-\frac{81 {{{s_3}}^{4}}}{256 {{{D_2}}^{3}}}. \end{aligned}$$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santo, D.R., Mencik, JM. & Gonçalves, P.J.P. On the multi-mode behavior of vibrating rods attached to nonlinear springs. Nonlinear Dyn 100, 2187–2203 (2020). https://doi.org/10.1007/s11071-020-05647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05647-x

Keywords

Navigation