Skip to main content
Log in

Dynamic output feedback control for nonlinear networked control systems with a two-terminal event-triggered mechanism

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is mainly concerned with the stabilization problem for nonlinear networked control systems (NCSs) with a two-terminal event-triggered mechanism. Firstly, Takagi–Sugeno (T–S) fuzzy models are introduced as the presentation of the nonlinear object. A two-terminal event-triggered mechanism, which adopts the relative event-triggered conditions as the communication mode of data transmission, is distributed in the controller-to-actuator link besides sensor-to-controller link in order to reduce congestion on network servers. By taking different membership function information from the T–S fuzzy model into account, the dynamic output feedback controller is designed under imperfect premise matching to construct closed-loop model. Secondly, to ensure the asymptotic stability of NCSs, valuable theorems are derived by defining Lyapunov functions which involve time-delay information. Thirdly, using boundary information of membership functions, LMI-based membership-function-dependent stability conditions are developed to reduce the conservativeness of the imperfect premise matching, from which the explicit form of controller gain matrices is obtained. Finally, one practical example illustrates the reliability of derived results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Zhang, W., Branicky, M.-S., Phillips, S.-M.: Stability of networked control systems. IEEE Control Syst. 21(1), 84–99 (2001)

    Google Scholar 

  2. Zhivoglyadov, P.-V., Middleton, R.-H.: Networked control design for linear systems. Automatica 39(4), 743–750 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Montestruque, L.-A., Antsaklis, P.: Stability of model-based networked control systems with time-varying transmission times. IEEE Trans. Autom. Control. 49(9), 1562–1572 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Elahi, A., Alfi, A.: Finite-time \({H_\infty }\) stability analysis of uncertain network-based control systems under random packet dropout and varying network delay. Nonlinear Dyn. 91(1), 713–731 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Liu, J.-L., Zha, L.-J., Xie, X.-P., Tian, E.-G.: Resilient observer-based control for networked nonlinear T-S fuzzy systems with hybrid-triggered scheme. Nonlinear Dyn. 91(3), 2049–2061 (2018)

    MATH  Google Scholar 

  6. Yan, S., Shen, M.-Q., Zhang, G.-M.: Extended event-driven observer-based output control of networked control systems. Nonlinear Dyn. 86(3), 1639–1648 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Du, Z.-B., Kao, Y.-G., Karimi, H.-R., Zhao, X.-D.: Interval type-2 fuzzy sampled-data \({H_\infty }\) control for nonlinear unreliable networked control systems. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2911490

    Article  Google Scholar 

  8. Hespanha, J.-P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked control systems. Proc. IEEE 91(1), 713–731 (2018)

    Google Scholar 

  9. Zhang, X.-M., Han, Q.-L.: A delay decomposition approach to \({H_\infty }\) control of networked control systems. Eur. J. Control 15(5), 523–533 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Jiang, X., Han, Q.-L., Liu, S., Xue, A.: A new \({H_\infty }\) stabilization criterion for networked control systems. IEEE Trans. Autom. Control 53(4), 1025–1032 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Bauer, N.-W., Maas, P.-J., Heemels, W.: Stability analysis of networked control systems: a sum of squares approach. Automatica 48(8), 1514–1524 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Zhao, T., Dian, S.-Y.: State feedback control for interval type-2 fuzzy systems with time-varying delay and unreliable communication links. IEEE Trans. Fuzzy Syst. 26(2), 951–965 (2018)

    Google Scholar 

  13. Huang, S.-J., Yang, G.-H.: Input-output based fault estimation for T–S fuzzy systems with local nonlinear parts. IEEE Trans. Fuzzy Syst. 25(5), 1320–1328 (2017)

    Google Scholar 

  14. Aslam, M.-S., Chen, Z.: Observer-based dissipative output feedback control for network T–S fuzzy systems under time delays with mismatch premise. Nonlinear Dyn. 95(4), 2923–2941 (2019)

    Google Scholar 

  15. Chang, X.-H.: Robust nonfragile \({H_\infty }\) filtering of fuzzy systems with linear fractional parametric uncertainties. IEEE Trans. Fuzzy Syst. 20(6), 1001–1011 (2012)

    Google Scholar 

  16. Xie, X.-P., Yue, D., Peng, C.: Relaxed real-time scheduling stabilization of discrete-time Takagi–Sugeno fuzzy systems via a alterable-weights-based ranking switching mechanism. IEEE Trans. Fuzzy Syst. 26(6), 3808–3819 (2018)

    Google Scholar 

  17. Xie, X.-P., Yue, D., Park, J.-H.: Observer-based state estimation of discrete-time fuzzy systems based on a joint switching mechanism for adjacent instants. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2917929

    Article  Google Scholar 

  18. Xie, X.-P., Yue, D., Zhang, H., Xue, Y.: Control synthesis of discrete-time T–S fuzzy systems via a multi-instant homogenous polynomial approach. IEEE Trans. Cybern. 46(3), 630–640 (2016)

    Google Scholar 

  19. Li, X.-J., Yang, G.-H.: Fault detection in finite frequency domain for Takagi–Sugeno fuzzy systems with sensor faults. IEEE Trans. Cybern. 44(8), 1446–1458 (2013)

    Google Scholar 

  20. Li, C.-D., Gao, J.-L., Yi, J.-Q., Zhang, G.-Q.: Analysis and design of functionally weighted single-input-rule-modules connected fuzzy inference systems. IEEE Trans. Fuzzy Syst. 26(1), 56–71 (2016)

    Google Scholar 

  21. Wang, L.-K., Lam, H.-K.: A new approach to stability and stabilization analysis for continuous-time Takagi–Sugeno fuzzy systems with time delay. IEEE Trans. Fuzzy Syst. 26(4), 2460–2465 (2017)

    Google Scholar 

  22. Zhao, T., Chen, C.-S., Dian, S.-Y.: Local stability and stabilization of uncertain nonlinear systems with two additive time-varying delays. Commun. Nonlinear Sci. Numer. Simulat. (2019). https://doi.org/10.1016/j.cnsns.2019.105097

    Article  Google Scholar 

  23. Zhao, T., Huang, M.-B., Dian, S.-Y.: Robust stability and stabilization conditions for nonlinear networked control systems with network-induced delay via T–S fuzzy model. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/tfuzz.2019.2955054

    Article  Google Scholar 

  24. Zhao, T., Liu, J.-H., Dian, S.-Y.: Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity. Inf. Sci. 483, 153–173 (2019)

    MathSciNet  Google Scholar 

  25. Lin, C., Wang, Q.-G., Lee, T.-H., Chen, B.: \({H_\infty }\) filter design for nonlinear systems with time-delay through T–S fuzzy model approach. IEEE Trans. Fuzzy Syst. 16(3), 739–746 (2008)

    Google Scholar 

  26. Liu, J.-L., Wei, L.-L., Xie, X.-P., Tian, E.-G., Fei, S.-M.: Quantized stabilization for T–S fuzzy systems with hybrid-triggered mechanism and stochastic cyber-attacks. IEEE Trans. Fuzzy Syst. 26, 3820–3834 (2018)

    Google Scholar 

  27. Zhao, T., Huang, M.-B., Dian, S.-Y.: Stability and stabilization of T–S fuzzy systems with two additive time-varying delays. Inf. Sci. 494, 174–192 (2019)

    Google Scholar 

  28. Li, X., Zhou, Q., Li, P., Li, H., Lu, R.: Event-triggered consensus control for multi-agent systems against false data injection attacks. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2937951

    Article  Google Scholar 

  29. Cao, L., Li, H., Dong, G., Lu, R.: Event-triggered control for multi-agent systems with sensor faults and input saturation. IEEE Trans. Syst. Man Cybern. Syst. 1, 2 (2019). https://doi.org/10.1109/TSMC.2019.2938216

    Article  Google Scholar 

  30. Yan, H.-C., Xu, X.-L., Zhang, H., Yang, F.-W.: Distributed event-triggered \({H_\infty }\) state estimation for T–S fuzzy systems over filtering networks. J. Frankl. Inst. 354(9), 3760–3779 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Pan, Y., Yang, G.: Event-triggered fuzzy control for nonlinear networked control systems. Fuzzy Set. Syst. 329, 91–107 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Peng, C., Yang, M., Zhang, J., Fei, M., Hu, S.: Network-based \({H_\infty }\) control for T–S fuzzy systems with an adaptive event-triggered communication scheme. Fuzzy Set. Syst. 329, 61–76 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Shen, H., Li, F., Yan, H.-C.: Finite-time event-triggered \({H_\infty }\) control for T–S fuzzy markov jump systems. IEEE Trans. Fuzzy Syst. 26(5), 3122–3135 (2018)

    Google Scholar 

  34. Wu, Z.-G., Xu, Y., Pan, Y.-J.: Event-triggered control for consensus problem in multi-agent systems with quantized relative state measurements and external disturbance. IEEE Trans. Circuits-I 65(7), 2232–2242 (2018)

    MathSciNet  Google Scholar 

  35. Gu, Z., Shi, P., Yue, D., Ding, Z.-T.: Decentralized adaptive event-triggered \({H_\infty }\) filtering for a class of networked nonlinear interconnected systems. IEEE Trans. Cybern. 49(5), 1570–1579 (2019)

    Google Scholar 

  36. Qiu, J.-B., Sun, K.-K., Wang, T., Gao, H.-J.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. 27(11), 2152–2162 (2019)

    Google Scholar 

  37. Nowzari, C., Garcia, E., Cortes, J.: Event-triggered communication and control of networked systems for multi-agent consensus. Automatica 105, 1–27 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Li, Y.-M., Tong, S.-C., Li, T.-S.: Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation. IEEE Trans. Fuzzy Syst. 24(4), 841–853 (2016)

    Google Scholar 

  39. Li, H.-Y., Gao, Y.-B., Shi, P.: Output-feedback control for T–S fuzzy delta operator systems with time-varying delays via an input-output approach. IEEE Trans. Fuzzy Syst. 23(4), 1100–1112 (2014)

    Google Scholar 

  40. Liu, Y., Wu, F., Ban, X.-J.: Dynamic output feedback control for continuous-time T–S fuzzy systems using fuzzy Lyapunov functions. IEEE Trans. Fuzzy Syst. 25(5), 1155–1167 (2017)

    Google Scholar 

  41. Guelton, K., Bouarar, T., Manamanni, N.: Robust dynamic output feedback fuzzy Lyapunov stabilization of Takagi–Sugeno systems—a descriptor redundancy approach. Fuzzy Sets Syst. 160(19), 2796–2811 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Dong, J., Yang, G.-H.: Dynamic output feedback control synthesis for continuous-time T–S fuzzy systems via a switched fuzzy control scheme. IEEE Trans. Cybern. 38(4), 1166–1175 (2008)

    Google Scholar 

  43. Wang, H.-O., Tanaka, K., Griffin, M.-F.: An approach to fuzzy control of nonlinear systems: stability and the design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)

    Google Scholar 

  44. Lam, H.-K., Leung, F.H.F.: LMI-based stability and performance design of fuzzy control systems: fuzzy models and controllers with different premises. Neurocomputing 2006, 2027–2034 (2006)

    Google Scholar 

  45. Lam, H.-K., Narimani, M.: Stability analysis and performance design for fuzzy-model-based control system under imperfect premise matching. IEEE Trans. Fuzzy Syst. 17(4), 949–961 (2009)

    Google Scholar 

  46. Peng, C., Xie, X.-P., Wang, Y.-L.: Event-triggered predictive control for networked nonlinear systems with imperfect premise matching. IEEE Trans. Fuzzy Syst. 26(5), 2797–2806 (2018)

    Google Scholar 

  47. Postoyan, R., Tabuada, P.: A framework for the event-triggered stabilization of nonlinear systems. IEEE Trans. Autom. Control 60(4), 982–996 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Yan, H., Xu, X., Zhang, H., Yang, F.: Distributed event-triggered \({H_\infty }\) state estimation for T–S fuzzy systems over filtering networks. J. Frankl. Inst. 354(9), 3760–3779 (2017)

    MathSciNet  MATH  Google Scholar 

  49. Wang, Y., Xie, L., Souza, C.E.D.: Robust control of a class of uncertain nonlinear systems. Syst. Control Lett. 19(2), 139–149 (1997)

    MathSciNet  MATH  Google Scholar 

  50. Yue, D., Tian, E., Zhang, Y., Peng, C.: Delay-distribution-dependent stability and stabilization of T–S fuzzy systems with probabilistic interval delay. IEEE Trans. Cybern. 39(2), 503–516 (2009)

    Google Scholar 

  51. Tian, E., Yue, D.: Reliable \({H_\infty }\) filter design for T–S fuzzy model-based networked control;systems with random sensor failure. Int. J. Robust Nonlinear 23(1), 15–32 (2013)

    MathSciNet  MATH  Google Scholar 

  52. Peng, C., Ma, S., Xie, X.-P.: Observer-based non-PDC control for networked T–S fuzzy systems with an event-triggered communication. IEEE Trans. Cybern. 47(8), 2279–2287 (2017)

    Google Scholar 

  53. Li, H.-Y., Pan, Y.-N., Shi, P., Shi, Y.: Switched fuzzy output feedback control and its application to a mass-spring-damping system. IEEE Trans. Fuzzy Syst. 24(6), 1259–1264 (2016)

    Google Scholar 

  54. Zhao, T., Dian, S.-Y.: Fuzzy dynamic output feedback \({H_\infty }\) control for continuous-time T–S fuzzy systems under imperfect premise matching. ISA Trans. 70, 248–259 (2017)

    Google Scholar 

  55. Tian, E., Yue, D., Gu, Z.: Robust \({H_\infty }\) control for nonlinear system over network: a piecewise analysis method. Fuzzy Sets Syst. 161(21), 2731–2745 (2010)

    MathSciNet  MATH  Google Scholar 

  56. Jiang, X., Han, Q.-L.: On designing fuzzy controllers for a class of nonlinear networked control systems. IEEE Trans. Fuzzy Syst. 16(4), 1050–1060 (2008)

    Google Scholar 

  57. Shi, K.-B., Wang, J., Tang, Y.-Y., Zhong, S.-M.: Reliable asynchronous sampled-data filtering of T–S fuzzy uncertain delayed neural networks with stochastic switched topologies. Fuzzy Sets Syst. (2018). https://doi.org/10.1016/j.fss.2018.11.017

    Article  Google Scholar 

  58. Shi, K.-B., Wang, J., Tang, Y.-Y., Zhong, S.-M.: Non-fragile memory filtering of T–S fuzzy delayed neural networks based on switched fuzzy sampled-data control. Fuzzy Sets Syst. (2019). https://doi.org/10.1016/j.fss.2019.09.001

    Article  Google Scholar 

  59. Mathiyalagan, K., Park, J.-H., Sakthivel, R.: Observer-based dissipative control for networked control systems: a switched system approach. Complexity 21(2), 297–308 (2015)

    MathSciNet  Google Scholar 

  60. Mathiyalagan, K., Park, J.-H., Sakthivel, R.: New results on passivity-based H control for networked cascade control systems with application to power plant boiler-turbine system. Nonlinear Anal. Hybrid Syst. 17, 56–69 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61703291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhao.

Ethics declarations

Conflicts of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Choose the following Lyapunov functional candidate as

$$\begin{aligned} V\left( t \right) = {V_1}\left( t \right) + {V_2}\left( t \right) + {V_3}\left( t \right) \end{aligned}$$
(23)

where

$$\begin{aligned} {V_1}\left( t \right)&= {\xi ^T}\left( t \right) P\xi \left( t \right) \\ {V_2}\left( t \right)&= \int \limits _{t - {\tau _M}}^t {{\xi ^T}\left( s \right) {Q_1}\xi \left( s \right) ds }\\&\quad + \int \limits _{t - {d_M}}^t {{\xi ^T}\left( s \right) {Q_2}\xi \left( s \right) ds}\\ {V_3}\left( t \right)&= \int \limits _{t - {\tau _M}}^t {\int \limits _s^t {{{\dot{\xi } }^T}\left( v \right) {R_1}\dot{\xi } \left( v \right) dvds} } \\&\quad +\int \limits _{t - {d_M}}^t {\int \limits _s^t {{{\dot{\xi } }^T}\left( v \right) {R_2}\dot{\xi } \left( v \right) dvds} } \end{aligned}$$

and \(P > 0\), \({Q_m} > 0\), \({R_m} > 0\left( {m = 1,2} \right) \).

We obtain (24) as follow by taking the derivative of equations above

$$\begin{aligned} \dot{V}\left( t \right) \mathrm{{ }} = {\dot{V}_1}\left( t \right) + {\dot{V}_2}\left( t \right) + {\dot{V}_3}\left( t \right) \end{aligned}$$
(24)
$$\begin{aligned} {\dot{V}_1}\left( t \right)&= 2{\xi ^T}\left( t \right) P\dot{\xi } \left( t \right) \\&= \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau } } } } 2{\xi ^T}\left( t \right) P\Lambda \\ {\dot{V}_2}\left( t \right)&= {\xi ^T}\left( t \right) \left( {{Q_1} + {Q_2}} \right) \xi \left( t \right) \\&\quad - {\xi ^T}\left( {t - {\tau _M}} \right) {Q_1}\xi \left( {t - {\tau _M}} \right) \\&\quad - {\xi ^T}\left( {t - {d_M}} \right) {Q_2}\xi \left( {t - {d_M}} \right) \\ {{\dot{V}}_3}\left( t \right)&= \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau } } } } {{\dot{\xi } }^T}\left( t \right) \left( {{\tau _M}{R_1}} \right. \\&\quad \left. { + {d_M}{R_2}} \right) \dot{\xi } \left( t \right) - \int \limits _{t - {\tau _M}}^t {{{\dot{\xi } }^T}\left( s \right) {R_1}\dot{\xi } \left( s \right) } ds\\&\quad -\int \limits _{t - {d_M}}^t {{{\dot{\xi } }^T}\left( s \right) {R_2}\dot{\xi } \left( s \right) } ds \end{aligned}$$

where

$$\begin{aligned} \Lambda&= {\bar{A}_{ij}}\xi \left( t \right) + {\bar{A}_{{d_{ijm}}}}\xi \left( {t - d\left( t \right) } \right) + {\bar{A}_{{\tau _{ijn}}}}\xi \left( {t - \tau \left( t \right) } \right) \\&\quad + {\bar{B}_{{u_i}}}{e_u}\left( t \right) + {\bar{B}_{{y_j}}}{e_y}\left( t \right) . \end{aligned}$$

Notice that from \({{\dot{V}}_3}\left( t \right) \)

$$\begin{aligned}&{\dot{\xi } ^T}\left( t \right) \left( {{\tau _M}{R_1} + {d_M}{R_2}} \right) \dot{\xi } \left( t \right) \\&\quad = \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau } } } } {\Lambda ^T}\left( {{\tau _M}{R_1} + {d_M}{R_2}} \right) \Lambda . \end{aligned}$$

To unify the communication mechanism and the network mechanism under the same frame, \(\dot{V}\left( t \right) \mathrm{{ }}\) can be managed as follows.

Considering the conditions in event-triggered schemes (5) and (9) distributed in sensor-to-controller and controller-to-actuator respectively, we can obtain

$$\begin{aligned} \dot{V}\left( t \right)&\le {{\dot{V}}_1}\left( t \right) + {{\dot{V}}_2}\left( t \right) + {{\dot{V}}_3}\left( t \right) \nonumber \\&\quad + \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau } } } } \left\{ {} \right. \nonumber \\&\qquad {\sigma _y}{\xi ^T}\left( {t - \tau \left( t \right) } \right) H_2^TC_n^T{\Omega _y}{C_n}{H_2}\xi \left( {t - \tau \left( t \right) } \right) \nonumber \\&\quad - e_y^T\left( t \right) {\Omega _y}{e_y}\left( t \right) \nonumber \\&\quad + {\sigma _u}{\xi ^T}\left( {t {-} d\left( t \right) } \right) H_1^TC_{{c_m}}^T{\Omega _u}{C_{{c_m}}}{H_1}\xi \left( {t {-} d\left( t \right) } \right) \nonumber \\&\quad - e_u^T\left( t \right) {\Omega _u}{e_u}\left( t \right) \left. {} \right\} . \end{aligned}$$
(25)

For the purpose of eliminating the nonlinear integral terms in \({\dot{V}_3}\left( t \right) \), we apply the free-weighting matrix method [51] to obtain

$$\begin{aligned}&2\sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau } } } } {\bar{\xi } ^T}\left( t \right) {M_{ijmn}}\nonumber \\&\quad \left[ {\xi \left( t \right) - \xi \left( {t - \tau \left( t \right) } \right) - \int \limits _{t - \tau \left( t \right) }^t {\dot{\xi } \left( s \right) ds} } \right] = 0 \end{aligned}$$
(26)
$$\begin{aligned}&\quad 2\sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau } } } } {\bar{\xi } ^T}\left( t \right) {N_{ijmn}}\nonumber \\&\quad \left[ {\xi \left( {t - \tau \left( t \right) } \right) - \xi \left( {t - {\tau _M}} \right) - \int \limits _{t - {\tau _M}}^{t - \tau \left( t \right) } {\dot{\xi } \left( s \right) ds} } \right] = 0 \end{aligned}$$
(27)
$$\begin{aligned}&\quad 2\sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau } } } } {\bar{\xi } ^T}\left( t \right) {T_{ijmn}}\nonumber \\&\quad \left[ {\xi \left( t \right) - \xi \left( {t - d\left( t \right) } \right) - \int \limits _{t - d\left( t \right) }^t {\dot{\xi } \left( s \right) ds} } \right] = 0 \end{aligned}$$
(28)
$$\begin{aligned}&\quad 2\sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau } } } } {\bar{\xi } ^T}\left( t \right) {S_{ijmn}}\nonumber \\&\quad \left[ {\xi \left( {t - d\left( t \right) } \right) - \xi \left( {t - {d_M}} \right) - \int \limits _{t - {d_M}}^{t - d\left( t \right) } {\dot{\xi } \left( s \right) ds} } \right] = 0 \end{aligned}$$
(29)

where \({M_{ijmn}}\), \({N_{ijmn}}\), \({T_{ijmn}}\), \({S_{ijmn}}\) are matrices with appropriate dimensions, and

$$\begin{aligned}&{\bar{\xi } ^T}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{{\bar{\xi } }_1}^T\left( t \right) }&{{{\bar{\xi } }_2}^T\left( t \right) } \end{array}} \right] \\&{\bar{\xi } _1}^T\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{\xi ^T}\left( t \right) }&{{\xi ^T}\left( {t - d\left( t \right) } \right) }&{{\xi ^T}\left( {t - {d_M}} \right) } \end{array}} \right] \\&{\bar{\xi } _2}^T\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{\xi ^T}\left( {t - \tau \left( t \right) } \right) }&{{\xi ^T}\left( {t - {\tau _M}} \right) }&{e_u^T\left( t \right) }&{e_y^T\left( t \right) } \end{array}} \right] .\\ \end{aligned}$$

By Lemma 1, we can get

$$\begin{aligned}&\sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau \left\{ {} \right. } } } } - 2{{\bar{\xi } }^T}\left( t \right) {M_{ijmn}} \ldots \nonumber \\&\qquad \int \limits _{t - \tau \left( t \right) }^t {\dot{\xi } \left( s \right) ds} \nonumber \\&\quad \le \tau \left( t \right) {{\bar{\xi } }^T}\left( t \right) {M_{ijmn}}R_1^{ - 1}M_{ijmn}^T\bar{\xi } \left( t \right) \nonumber \\&\qquad + \int \limits _{t - \tau \left( t \right) }^t {{{\dot{\xi } }^T}\left( s \right) {R_1}\dot{\xi } \left( s \right) } ds\left. {} \right\} \end{aligned}$$
(30)
$$\begin{aligned}&\qquad \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau \left\{ {} \right. } } } } - 2{{\bar{\xi } }^T}\left( t \right) {N_{ijmn}}\ldots \nonumber \\&\qquad \int \limits _{t - {\tau _M}}^{t - \tau \left( t \right) } {\dot{\xi } \left( s \right) ds} \nonumber \\&\quad \le \left( {{\tau _M} - \tau \left( t \right) } \right) {{\bar{\xi } }^T}\left( t \right) {N_{ijmn}}R_1^{ - 1}N_{ijmn}^T\bar{\xi } \left( t \right) \nonumber \\&\qquad + \int \limits _{t - {\tau _M}}^{t - \tau \left( t \right) } {{{\dot{\xi } }^T}\left( s \right) {R_1}\dot{\xi } \left( s \right) } ds\left. {} \right\} \end{aligned}$$
(31)
$$\begin{aligned}&\sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau \left\{ {} \right. } } } } - 2{{\bar{\xi } }^T}\left( t \right) {T_{ijmn}}\ldots \nonumber \\&\qquad \int \limits _{t - d\left( t \right) }^t {\dot{\xi } \left( s \right) ds} \nonumber \\&\quad \le d\left( t \right) {{\bar{\xi } }^T}\left( t \right) {T_{ijmn}}R_2^{ - 1}T_{ijmn}^T\bar{\xi } \left( t \right) \nonumber \\&\qquad + \int \limits _{t - d\left( t \right) }^t {{{\dot{\xi } }^T}\left( s \right) {R_2}\dot{\xi } \left( s \right) } ds\left. {} \right\} \end{aligned}$$
(32)
$$\begin{aligned}&\sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau \left\{ {} \right. } } } } - 2{{\bar{\xi } }^T}\left( t \right) {S_{ijmn}}\ldots \nonumber \\ \nonumber&\qquad \int \limits _{t - {d_M}}^{t - d\left( t \right) } {\dot{\xi } \left( s \right) ds} \nonumber \\&\quad \le \left( {{d_M} - d\left( t \right) } \right) {{\bar{\xi } }^T}\left( t \right) {S_{ijmn}}R_2^{ - 1}S_{ijmn}^T\bar{\xi } \left( t \right) \nonumber \\&\qquad + \int \limits _{t - {d_M}}^{t - d\left( t \right) } {{{\dot{\xi } }^T}\left( s \right) {R_2}\dot{\xi } \left( s \right) } ds\left. {} \right\} . \end{aligned}$$
(33)

By combining (25)–(33), one obtains that

$$\begin{aligned}&\dot{V}\left( t \right) \nonumber \\&\quad \le \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau \left\{ {} \right. } } } } 2{\xi ^T}\left( t \right) P\Lambda \nonumber \\&\qquad + {\xi ^T}\left( t \right) \left[ {{Q_1} {+} {Q_2}} \right] \xi \left( t \right) {-} {\xi ^T}\left( {t {-} {\tau _M}} \right) {Q_1}\xi \left( {t {-} {\tau _M}} \right) \nonumber \\&\qquad - {\xi ^T}\left( {t - {d_M}} \right) {Q_2}\xi \left( {t - {d_M}} \right) \nonumber \\&\qquad + \tau \left( t \right) {{\bar{\xi } }^T}\left( t \right) {M_{ijmn}}R_1^{ - 1}M_{ijmn}^T\bar{\xi } \left( t \right) \nonumber \\&\qquad + 2{{\bar{\xi } }^T}\left( t \right) {M_{ijmn}}\left[ {\xi \left( t \right) - \xi \left( {t - \tau \left( t \right) } \right) } \right] \nonumber \\&\qquad + \left( {{\tau _M} - \tau \left( t \right) } \right) {{\bar{\xi } }^T}\left( t \right) {N_{ijmn}}R_1^{ - 1}{N_{ijmn}}^T\bar{\xi } \left( t \right) \nonumber \\&\qquad + 2{{\bar{\xi } }^T}\left( t \right) {N_{ijmn}}\left[ {\xi \left( {t - \tau \left( t \right) } \right) - \xi \left( {t - {\tau _M}} \right) } \right] \nonumber \\&\qquad + d\left( t \right) {{\bar{\xi } }^T}\left( t \right) {T_{ijmn}}R_2^{ - 1}T_{ijmn}^T\bar{\xi } \left( t \right) \nonumber \\&\qquad + 2{{\bar{\xi } }^T}\left( t \right) {T_{ijmn}}\left[ {\xi \left( t \right) - \xi \left( {t - d\left( t \right) } \right) } \right] \nonumber \\ \nonumber&\qquad + \left( {{d_M} - d\left( t \right) } \right) {{\bar{\xi } }^T}\left( t \right) {S_{ijmn}}R_2^{ - 1}{S_{ijmn}}^T\bar{\xi } \left( t \right) \nonumber \\&\qquad + 2{{\bar{\xi } }^T}\left( t \right) {S_{ijmn}}\left[ {\xi \left( {t - d\left( t \right) } \right) - \xi \left( {t - {d_M}} \right) } \right] \nonumber \\&\qquad + {\Lambda ^T}\left( {{\tau _M}{R_1} + {d_M}{R_2}} \right) \Lambda \nonumber \\&\qquad +{\sigma _y}{\xi ^T}\left( {t - \tau \left( t \right) } \right) H_2^TC_n^T{\Omega _y}{C_n}{H_2}\xi \left( {t - \tau \left( t \right) } \right) \nonumber \\&\qquad - e_y^T\left( t \right) {\Omega _y}{e_y}\left( t \right) \nonumber \\&\qquad + {\sigma _u}{\xi ^T}\left( {t - d\left( t \right) } \right) H_1^TC_{{c_m}}^T{\Omega _u}{C_{{c_m}}}{H_1}\xi \left( {t - d\left( t \right) } \right) \nonumber \\&\qquad - e_u^T\left( t \right) {\Omega _u}{e_u}\left( t \right) \left. {} \right\} \end{aligned}$$
(34)

then, from (34), we have

$$\begin{aligned}&\dot{V}\left( t \right) \nonumber \\&\quad \le \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau {{\bar{\xi } }^T}\left( t \right) \left\{ {} \right. } } } } {\Omega _{11}} {+} \Gamma {+} {\Gamma ^T} \nonumber \\&\qquad + \Omega _{31}^T{\Omega _{33}}{\Omega _{31}} + \Omega _{\mathrm{{4}}1}^T{\Omega _{\mathrm{{44}}}}{\Omega _{\mathrm{{4}}1}} + \Omega _{\mathrm{{5}}1}^T{\Omega _{\mathrm{{55}}}}{\Omega _{\mathrm{{5}}1}}\nonumber \\&\qquad + \tau \left( t \right) {M_{ijmn}}R_1^{ - 1}M_{ijmn}^T \nonumber \\&\qquad + \left( {{\tau _M} - \tau \left( t \right) } \right) {N_{ijmn}}R_1^{ - 1}N_{ijmn}^T\nonumber \\&\qquad + d\left( t \right) {T_{ijmn}}R_2^{ - 1}T_{ijmn}^T \nonumber \\&\qquad + \left( {{d_M} - d\left( t \right) } \right) {S_{ijmn}}R_2^{ - 1}S_{ijmn}^T\left. {} \right\} \bar{\xi } \left( t \right) . \end{aligned}$$
(35)

Applying Lemma 2 and Schur complement, we can finally obtain the following inequalities to guarantee \(\dot{V}\left( t \right) < 0\).

$$\begin{aligned} \left\{ \begin{array}{l} \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau {{\bar{\xi } }^T}\left( t \right) {\Omega _{ijmn}}\left( 1 \right) \bar{\xi } \left( t \right)< 0} } } } \\ \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau {{\bar{\xi } }^T}\left( t \right) {\Omega _{ijmn}}\left( 2 \right) \bar{\xi } \left( t \right)< 0} } } } \\ \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau {{\bar{\xi } }^T}\left( t \right) {\Omega _{ijmn}}\left( 3 \right) \bar{\xi } \left( t \right)< 0} } } } \\ \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau {{\bar{\xi } }^T}\left( t \right) {\Omega _{ijmn}}\left( 4 \right) \bar{\xi } \left( t \right) < 0} } } } \end{array} \right. \end{aligned}$$

In conclusion, there exists \({\Omega _{ijmn}}\left( s \right) < 0\), \(s = 1,2,3,4\), then the system (14) is asymptotically stable. The proof is completed.

Appendix B

The positive definite symmetric matrix P is decomposed as follows:

$$\begin{aligned} P = \left[ {\begin{array}{*{20}{c}} {{P_1}}&{} * \\ {P_2^T}&{}{P_2^T{{\left( {{P_1} - P_3^{ - 1}} \right) }^{ - 1}}{P_2}} \end{array}} \right] \end{aligned}$$
(36)

where \({P_1}\), \({P_2}\), \({P_3} \in {\mathbb {R}^{n \times n}}\).

Through Schur complement, \(P > 0\) is equivalent to \({P_3} > 0\) and \({P_1} - P_3^{ - 1} > 0\). Therefore, we use \(\hat{P} = \left[ {\begin{array}{*{20}{c}} {{P_3}}&{} * \\ I&{}{{P_1}} \end{array}} \right] > 0\) to guarantee \(P > 0\).

Define the matrix J

$$\begin{aligned} {J^T} = \left[ {\begin{array}{*{20}{c}} {{P_3}}&{}I\\ {P_2^{ - 1}\left( {I - {P_1}{P_3}} \right) }&{}0 \end{array}} \right] . \end{aligned}$$
(37)

Define the matrix \(\Upsilon \)

$$\begin{aligned} \Upsilon = \mathrm{diag}\left\{ {\underbrace{J,J,J,J,J}_5,I,I,\underbrace{J,J,J,J}_4,I,I} \right\} \end{aligned}$$
(38)

Multiplying (18) by \(\Upsilon \) from the left side and its transpose from the right side.

Define

$$\begin{aligned} \hat{P}&= JP{J^T} = \left[ {\begin{array}{*{20}{c}} {{P_3}}&{} * \\ I&{}{{P_1}} \end{array}} \right] \end{aligned}$$
$$\begin{aligned} {\hat{Q}_m}&= J{Q_m}{J^T}, {\hat{R}_m} = J{R_m}{J^T}\left( {m = 1,2} \right) \\ {{\hat{M}}_{ijmn1}}&= J{M_{ijmn1}}{J^T},{{\hat{M}}_{ijmn2}} = J{M_{ijmn2}}{J^T}\\ {{\hat{N}}_{ijmn2}}&= J{N_{ijmn2}}{J^T},{{\hat{N}}_{ijmn3}} = J{N_{ijmn3}}{J^T}\\ {{\hat{T}}_{ijmn1}}&= J{T_{ijmn1}}{J^T},{{\hat{T}}_{ijmn4}} = J{T_{ijmn4}}{J^T}\\ {{\hat{S}}_{ijmn4}}&= J{S_{ijmn4}}{J^T},{{\hat{S}}_{ijmn5}} = J{S_{ijmn5}}{J^T}. \end{aligned}$$

Then, we can derive that

$$\begin{aligned} \left[ {\begin{array}{*{20}{c}} {{{\hat{\Omega } }_{11}} + \hat{\Gamma } + {{\hat{\Gamma } }^T}}&{}*&{}*&{}*&{}*\\ {{{\hat{\Omega } }_{\mathrm{{2}}1}}\left( s \right) }&{}{{{\hat{\Omega } }_{22}}}&{}*&{}*&{}*\\ {{{\hat{\Omega } }_{31}}}&{}0&{}{{\Omega _{33}}}&{}*&{}*\\ {{{\hat{\Omega } }_{41}}}&{}0&{}0&{}{{\Omega _{44}}}&{}*\\ {{{\hat{\Omega } }_{51}}}&{}0&{}0&{}0&{}{{\Omega _{55}}} \end{array}} \right] < 0 \end{aligned}$$
(39)

where

$$\begin{aligned} {\Omega _{33}}&= \mathrm{diag}\left\{ { - PR_2^{ - 1}P, - PR_1^{ - 1}P} \right\} \\ {\Omega _{44}}&= - \Omega _u^{ - 1},\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\Omega _{55}} = - \Omega _y^{ - 1}. \end{aligned}$$

Due to

$$\begin{aligned} \left( {{R_m} - P} \right) R_m^{ - 1}\left( {{R_m} - P} \right) \ge 0,\left( {m = 1,2} \right) \end{aligned}$$
$$\begin{aligned}&\left( {{\Omega _u} - I} \right) \Omega _u^{ - 1}\left( {{\Omega _u} - I} \right) \ge 0\\&\left( {{\Omega _y} - I} \right) \Omega _y^{ - 1}\left( {{\Omega _y} - I} \right) \ge 0 \end{aligned}$$

we have

$$\begin{aligned} - PR_m^{ - 1}P \le - 2P + {R_m} \end{aligned}$$

and

$$\begin{aligned}&- \Omega _u^{ - 1} \le - 2I + {\Omega _u}\\&- \Omega _y^{ - 1} \le - 2I + {\Omega _y} \end{aligned}$$

. Substitute \( - PR_m^{ - 1}P\), \( - \Omega _u^{ - 1}\) and \( - \Omega _y^{ - 1}\) with \( - 2P + {R_m}\), \( - 2I + {\Omega _u}\) and \( - 2I + {\Omega _y}\) into (39) respectively. we can obtain (40)

$$\begin{aligned} {\hat{\Omega } _{ijmn}} = \left[ {\begin{array}{*{20}{c}} {{{\hat{\Omega } }_{11}} + \hat{\Gamma } + {{\hat{\Gamma } }^T}}&{}*&{}*&{}*&{}*\\ {{{\hat{\Omega } }_{\mathrm{{2}}1}}\left( s \right) }&{}{{{\hat{\Omega } }_{22}}}&{}*&{}*&{}*\\ {{{\hat{\Omega } }_{31}}}&{}0&{}{{{\hat{\Omega } }_{33}}}&{}*&{}*\\ {{{\hat{\Omega } }_{41}}}&{}0&{}0&{}{{{\hat{\Omega } }_{44}}}&{}*\\ {{{\hat{\Omega } }_{51}}}&{}0&{}0&{}0&{}{{{\hat{\Omega } }_{55}}} \end{array}} \right] < 0 \end{aligned}$$
(40)

where

$$\begin{aligned} {\hat{\Omega } _{33}}&= \mathrm{diag}\left\{ { - 2P + {R_2}, - 2P + {R_1}} \right\} \\ {\hat{\Omega } _{44}}&= - 2I + {\Omega _u}, {\hat{\Omega } _{55}} = - 2I + {\Omega _y}. \end{aligned}$$

The following expression can be obtained:

$$\begin{aligned} \dot{V}\left( {x\left( t \right) } \right) \le \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau } } } } {\hat{\Omega } _{ijmn}} < 0. \end{aligned}$$
(41)

Similar to [52], we have the slack matrix \({\widehat{\mathrm{{H}}}_i} = \widehat{\mathrm{{H}}}_i^T > 0\left( {i = 1,2,\ldots ,r} \right) \) with appropriate dimensions as follows

$$\begin{aligned}&\sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0\left( {\omega _j^0 - m_j^0} \right) m_m^d\omega _n^\tau } } } } {{\hat{\mathrm{H}}}_i}\\&\quad = \sum \limits _{i = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0} } } m_m^d\omega _n^\tau \left( {\sum \limits _{j = 1}^r {\omega _j^0} - \sum \limits _{j = 1}^r {m_j^0} } \right) {{\hat{\mathrm{H}}}_i}\\&\quad = \sum \limits _{i = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0} } } m_m^d\omega _n^\tau \left( {1 - 1} \right) {{\hat{\mathrm{H}}}_i} = 0 \end{aligned}$$

where \({{\hat{\mathrm{H}}}_i}\) are arbitrary matrices. Then, we have that

$$\begin{aligned}&\dot{V}\left( {x\left( t \right) } \right) \\&\quad \le \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau } } } } {{\bar{\xi } }^T}\left( t \right) {{\hat{\Omega } }_{ijmn}}\bar{\xi } \left( t \right) \\&\quad = \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau } } } } {{\bar{\xi } }^T}\left( t \right) {{\hat{\Omega } }_{ijmn}}\bar{\xi } \left( t \right) \\&\qquad + \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0\left( {\omega _j^0 - m_j^0} \right. } } } }\\&\qquad \left. { + \,{\kappa _j}\omega _j^0 - {\kappa _j}\omega _j^0} \right) m_m^d\omega _n^\tau {{\bar{\xi } }^T}\left( t \right) {{\hat{\mathrm{H}}}_i}\bar{\xi } \left( t \right) \\&\quad = \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0\omega _j^0m_m^d\omega _n^\tau } } } } {{\bar{\xi } }^T}\left( t \right) \left( {{\kappa _j}{{\hat{\Omega } }_{ijmn}}} \right. \\&\qquad \left. { -\, {\kappa _j}{{\hat{\mathrm{H}}}_i} + {{\hat{\mathrm{H}}}_i}} \right) \bar{\xi } \left( t \right) \\&\qquad + \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0\left( {m_j^0} \right. } } } } \\&\qquad \left. { - \,{\kappa _j}\omega _j^0} \right) m_m^d\omega _n^\tau {{\bar{\xi } }^T}\left( t \right) \left( {{{\hat{\Omega } }_{ijmn}} - {{\hat{\mathrm{H}}}_i}} \right) \bar{\xi } \left( t \right) \\&\quad = \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0\left( {m_j^0} \right. } } } } \\&\qquad \left. { - \,{\kappa _j}\omega _j^0} \right) m_m^d\omega _n^\tau {{\bar{\xi } }^T}\left( t \right) \left( {{{\hat{\Omega } }_{ijmn}} - {{\hat{\mathrm{H}}}_i}} \right) \bar{\xi } \left( t \right) \\&\qquad + \sum \limits _{i = 1}^r {\sum \limits _{j = i}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0\omega _i^0m_m^d\omega _n^\tau } } } } {{\bar{\xi } }^T}\left( t \right) \left( {{\kappa _i}{{\hat{\Omega } }_{iimn}}} \right. \\&\qquad \left. { - \,{\kappa _i}{{\hat{\mathrm{H}}}_i} + {{\hat{\mathrm{H}}}_i}} \right) \bar{\xi } \left( t \right) \\&\qquad + \sum \limits _{i = 1}^{r - 1} {\sum \limits _{j = i + 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {\omega _i^0m_j^0m_m^d\omega _n^\tau } } } } {{\bar{\xi } }^T}\left( t \right) \left( {{\kappa _j}{{\hat{\Omega } }_{ijmn}}} \right. \\&\qquad \left. { -\, {\kappa _j}{{\hat{\mathrm{H}}}_i} + {{\hat{\mathrm{H}}}_i} + {\kappa _i}{{\hat{\Omega } }_{jimn}} - {\kappa _i}{{\hat{\mathrm{H}}}_j} + {{\hat{\mathrm{H}}}_j}} \right) \bar{\xi } \left( t \right) . \end{aligned}$$

With \(m_j^0 - {\kappa _j}\omega _j^0 > 0\) for all \(j = 1,2,\ldots ,r\), equations (32)–(35) stand for that (41) is satisfied.

In order to deal with the unknown matrix \({P_2}\), we define the following parameters firstly:

$$\begin{aligned} {{\hat{A}}_{{c_{ij}}}}&= {P_2}{A_{{c_{ij}}}}P_2^{ - 1}\quad {{\hat{B}}_{{c_j}}} = {P_2}{B_{{c_j}}}\\ {{\hat{C}}_{{c_m}}}&= {C_{{c_m}}}P_2^{ - 1}\quad {{\hat{A}}_{c{p_{ijm}}}} = {P_2}{A_{c{p_{ijm}}}}P_2^{ - 1}\\ {{\hat{A}}_{c{d_{ijn}}}}&= {P_2}{A_{c{d_{ijn}}}}P_2^{ - 1}. \end{aligned}$$

Then we consider about linear transformations \({x_c}\left( t \right) = P_2^{ - 1}{\hat{x}_c}\left( t \right) \), and the dynamic output feedback controller model (12) is equivalent as

$$\begin{aligned} \left\{ {\begin{array}{*{20}{l}} {{{\mathop {\hat{x}}\limits ^. }_c}\left( t \right) = \sum \limits _{i = 1}^r {\sum \limits _{j = 1}^r {\sum \limits _{m = 1}^r {\sum \limits _{n = 1}^r {{\omega _i}\left( {x\left( t \right) } \right) {m_j}\left( {\theta \left( t \right) } \right) } } } } }\\ {\begin{array}{*{20}{l}} {{m_m}\left( {\theta \left( {t - d\left( t \right) } \right) } \right) {\omega _n}\left( {x\left( {t - \tau \left( t \right) } \right) } \right) }\\ {\left\{ {{{\hat{A}}_{{c_{ij}}}}{{\hat{x}}_c}\left( t \right) + {{\hat{A}}_{c{d_{ijn}}}}{{\hat{x}}_c}\left( {t - \tau \left( t \right) } \right) } \right. } \end{array}}\\ {\left. { + {{\hat{A}}_{c{p_{ijm}}}}{{\hat{x}}_c}\left( {t - d\left( t \right) } \right) + {{\hat{B}}_{{c_j}}}{\hat{y}}\left( t \right) } \right\} }\\ {u\left( t \right) = \sum \limits _{j = 1}^r {{m_j}\left( {\theta \left( t \right) } \right) {{\hat{C}}_{{c_j}}}{{\hat{x}}_c}\left( t \right) } } \end{array}} \right. \end{aligned}$$
(42)

where the controller parameters can be obtained in an explicit form.

$$\begin{aligned} {\hat{A}_{{c_{ij}}}}&= \left( {\hat{\gamma } _{11}^{ij} - {P_1}{A_i}{P_3}} \right) {\left( {I - {P_1}{P_3}} \right) ^{ - 1}}\\ {\hat{B}_{{c_j}}}&= \hat{\gamma } _{32}^j,\;\;\;\;\;\;\;\;\;{\hat{C}_{{c_m}}} = \hat{\gamma } _{21}^m{\left( {I - {P_1}{P_3}} \right) ^{ - 1}}\\ {{\hat{A}}_{c{p_{ijm}}}}&= \left( {\hat{\gamma } _{22}^{ijm} - {P_1}{B_i}\hat{\gamma } _{21}^m} \right) {\left( {I - {P_1}{P_3}} \right) ^{ - 1}}\\ {\hat{A}_{c{d_{ijn}}}}&= \left( {\hat{\gamma } _{31}^{ijn} - {{\hat{B}}_{{c_j}}}{C_n}{P_3}} \right) {\left( {I - {P_1}{P_3}} \right) ^{ - 1}} \end{aligned}$$

The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Zhao, T. & Dian, S. Dynamic output feedback control for nonlinear networked control systems with a two-terminal event-triggered mechanism. Nonlinear Dyn 100, 2537–2555 (2020). https://doi.org/10.1007/s11071-020-05635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05635-1

Keywords

Navigation