Skip to main content
Log in

The rational and semi-rational solutions to the Hirota Maccari system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, based on the KP hierarchy reduction method, we get the concrete form of semi-rational solutions to the Hirota–Maccari (HM) system. The semi-rational solutions describe a variety of solution types, such as lumps, breathers and line solitons. In addition, we simplify the representation of the higher-order semi-rational solutions of the HM equation and focus on the lump classification as well as the dynamics of mixed solutions about lumps and line solitons. Simultaneously, the modulation instability of the HM equation is also analyzed. The kinetics of semi-rational solutions for the HM system are subsequently discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maccari, A.: A generalized Hirota equation in (2+1) dimensions. J. Math. Phys. 39, 6547–6551 (1998)

    Article  MathSciNet  Google Scholar 

  2. Fan, E.: Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics. Chaos Soliton Fract. 16, 819–839 (2003)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y., Yan, Z.: The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations. Chaos Soliton Fract. 29, 948–964 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bai, C.L., Zhao, H.: Complex hyperbolic-function method and its applications to nonlinear equations. Phys. Lett. A 355, 32–38 (2006)

    Article  Google Scholar 

  5. Zhang, H.: A direct algebraic method applied to obtain complex solutions of some nonlinear partial differential equations. Chaos Soliton Fract. 39, 1020–1026 (2009)

    Article  MathSciNet  Google Scholar 

  6. Wazwaz, A.M.: Abundant soliton and periodic wave solutions for the coupled Higgs field equation, the Maccari system and the Hirota–Maccari system. Phys. Scripta 85, 065011 (2012)

    Article  Google Scholar 

  7. Demiray, S.T., Pandir, Y., Bulut, H.: All exact travelling wave solutions of Hirota equation and Hirota-Maccari system. Optik 127, 1848–1859 (2016)

    Article  Google Scholar 

  8. Yu, X., Gao, Y.T., Sun, Z.Y.: N-soliton solutions for the (2+1)-dimensional Hirota–Maccari equation in fluids, plasmas and optical fibers. J. Math. Anal. Appl. 378, 519–527 (2011)

    Article  MathSciNet  Google Scholar 

  9. Mu, G., Qin, Z.: Dynamic patterns of high-order rogue waves for Sasa–Satsuma equation. Nonlinear Anal. Real World Appl. 31, 179–209 (2016)

    Article  MathSciNet  Google Scholar 

  10. Degasperis, A., Lombardo, S.: Rational solitons of wave resonant–interaction models. Phys. Rev. E 88, 052914 (2013)

    Article  Google Scholar 

  11. Guo, B.L., Ling, L.M.: Rogue wave, breathers and bright-dark-rogue solutions for the coupled Schrödinger equations. Chin. Phys. Lett. 28, 110202 (2011)

    Article  Google Scholar 

  12. Baronio, F., Degasperis, A., Conforti, M.: Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves. Phys. Rev. Lett. 109, 044102 (2012)

    Article  Google Scholar 

  13. Fokas, A.S., Pelinovsky, D.E., Sulem, C.: Interaction of lumps with a line soliton for the DSII equation. Phys. D 152, 189–198 (2001)

    Article  MathSciNet  Google Scholar 

  14. Fokas, A.S., Pogrebkov, A.K.: Inverse scattering transform for the KPI equation on the background of a one-line soliton. Nonlinearity 16, 771 (2003)

    Article  MathSciNet  Google Scholar 

  15. Chen, Y., Yan, Z.: Weierstrass semi-rational expansion method and new doubly periodic solutions of the generalized Hirota–Satsuma coupled KdV system. Appl. Math. Comput. 177, 85–91 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Wang, L., Wang, Z.Z., Jiang, D.Y.: Semirational solutions and baseband modulational instability of the AB system in fluid mechanics. Eur. Phys. J. Plus. 130, 199 (2015)

    Article  Google Scholar 

  17. Wang, L., Zhang, L.L., Zhu, Y.J.: Modulational instability, nonautonomous characteristics and semirational solutions for the coupled nonlinear Schrödinger equations in inhomogeneous fibers. Commun. Nonlinear Sci. 40, 216–237 (2016)

    Article  MathSciNet  Google Scholar 

  18. Wang, L., Zhu, Y.J., Wang, Z.Z.: Higher-order semirational solutions and nonlinear wave interactions for a derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. 33, 218–228 (2016)

    Article  MathSciNet  Google Scholar 

  19. Liu, Y., Mihalache, D., He, J.: Families of rational solutions of the y-nonlocal Davey–Stewartson II equation. Nonlinear Dyn. 90, 2445–2455 (2017)

    Article  MathSciNet  Google Scholar 

  20. Liu, Y., Li, B., An, H.L.: General high-order breathers, lumps in the (2+1)-dimensional Boussinesq equation. Nonlinear Dyn. 92, 2061–2076 (2018)

    Article  Google Scholar 

  21. Rao, J., Porsezian, K., He, J.: Semi-rational solutions of the third-type Davey–Stewartson equation. Chaos 27, 083115 (2017)

    Article  MathSciNet  Google Scholar 

  22. Rao, J., Porsezian, K., He, J.: Dynamics of lumps and dark–dark solitons in the multi-component long-wave–short-wave resonance interaction system. Proc. R. Soc. A Math. Phys. 474, 20170627 (2018)

    Article  MathSciNet  Google Scholar 

  23. Cao, Y., Malomed, B.A., He, J.: Two (\(2+1\))-dimensional integrable nonlocal nonlinear Schrödinger equations: breather, rational and semi-rational solutions. Chaos Soliton Fract. 114, 99–107 (2018)

    Article  Google Scholar 

  24. Cao, Y., Rao, J., Mihalache, D.: Semi-rational solutions for the (\(2+1\))-dimensional nonlocal Fokas system. Appl. Math. Lett. 80, 27–34 (2018)

    Article  MathSciNet  Google Scholar 

  25. Peng, W.Q., Tian, S.F., Zhang, T.T.: Rational and semi-rational solutions of a nonlocal (\(2+ 1\))-dimensional nonlinear Schrödinger equation. Math. Method. Appl. Sci. 42, 6865–6877 (2019)

    Article  Google Scholar 

  26. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)

    Article  MathSciNet  Google Scholar 

  27. Ma, W.X., Zhou, Y., Dougherty, R.: Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations. Int. J. Mod. Phys. B 30, 1640018 (2016)

    Article  MathSciNet  Google Scholar 

  28. Ma, W.X.: Abundant lumps and their interaction solutions of (\(3+1\))-dimensional linear PDEs. J. Geom. Phys. 133, 10–16 (2018)

    Article  MathSciNet  Google Scholar 

  29. Ma, W.X., Li, J., Khalique, C.M.: A study on lump solutions to a generalized Hirota–Satsuma–Ito equation in (\(2+1\))-dimensions. Complexity 2018, 7 (2018)

    MATH  Google Scholar 

  30. Kundu, A., Mukherjee, A., Naskar, T.: Modelling rogue waves through exact dynamical lump soliton controlled by ocean currents. Proc. R. Soc. A Math. Phy. 470, 20130576 (2014)

    Article  MathSciNet  Google Scholar 

  31. Estévez, P.G.: Lump solitons in a higher-order nonlinear equation in (\(2+1\)) dimensions. Phys. Rev. E 93, 062219 (2016)

    Article  MathSciNet  Google Scholar 

  32. Rao, J., Cheng, Y., He, J.: Rational and semirational solutions of the nonlocal Davey–Stewartson equations. Stud. Appl. Math. 139, 568–598 (2017)

    Article  MathSciNet  Google Scholar 

  33. Ohta, Y., Yang, J.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. Lond. Ser. A 468, 1716–1740 (2012)

    Article  MathSciNet  Google Scholar 

  34. Rao, J.: Rational solutions for the Fokas system. Commun. Theor. Phys. 64, 605 (2015)

    Article  MathSciNet  Google Scholar 

  35. Baronio, F., Conforti, M., Degasperis, A.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Lett. A. 113, 034101 (2014)

    Article  Google Scholar 

  36. Baronio, F., Chen, S., Grelu, P.: Baseband modulation instability as the origin of rogue waves. Phys. Rev. A 91, 033804 (2015)

    Article  Google Scholar 

  37. Chen, S., Baronio, F.: Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems. J. Phys. A Math. Theor. 50, 463001 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11371326 and 11975145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Zhang, Y., Chen, Xt. et al. The rational and semi-rational solutions to the Hirota Maccari system. Nonlinear Dyn 100, 2767–2778 (2020). https://doi.org/10.1007/s11071-020-05624-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05624-4

Keywords

Navigation