Skip to main content
Log in

Parallel numerical continuation of periodic responses of local nonlinear systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop an efficient and robust parallel numerical continuation method for periodic solutions of local nonlinear systems. In this method, a component mode synthesis method is first employed to reduce the nonlinear system with local nonlinearity; the parallel principle is implemented in the correction part of the classic pseudo-arc length continuation, and the step control strategy is dependent on historical and current information from multiple cores. In addition, a numerical continuation (NC) jumping phenomenon may occur alongside the periodic solution tracking process; a geometrical indicator algorithm based on the frequency–amplitude curve is utilized to prevent NC jumping and enhance the robustness of the tracking behavior. By applying the methodology to a nonlinear energy sink and a rod-fastened rolling bearing rotor system, it is shown that numerical continuation can be employed to calculate periodic solutions efficiently and robustly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Friswell, M.I., Penny, J.E.T., Garvey, S.D.: Using linear model reduction to investigate the dynamics of structures with local non-linearities. Mech. Syst. Signal Process. 9, 317–328 (1995). https://doi.org/10.1006/mssp.1995.0026

    Article  Google Scholar 

  2. Fey, R.H.B., van Campen, D.H., de Kraker, A.: Long term structural dynamics of mechanical systems with local nonlinearites. J. Vib. Acoust. 118, 147–153 (1996). https://doi.org/10.1115/1.2889642

    Article  Google Scholar 

  3. Zheng, T.S., Hasebe, N.: An efficient analysis of high-order dynamical system with local nonlinearity. J. Vib. Acoust. 121, 408–416 (1999). https://doi.org/10.1115/1.2893995

    Article  Google Scholar 

  4. Wang, S., Wang, Y., Zi, Y.Y., He, Z.J.: A 3D finite element-based model order reduction method for parametric resonance and whirling analysis of anisotropic rotor-bearing systems. J. Sound Vib. 359, 116–135 (2015). https://doi.org/10.1016/j.jsv.2015.08.027

    Article  Google Scholar 

  5. Lu, K., Jin, Y.L., Chen, Y.S., Yang, Y.F., et al.: Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems. Mech. Syst. Signal Process. 123, 264–297 (2019). https://doi.org/10.1016/j.ymssp.2019.01.018

    Article  Google Scholar 

  6. Kim, S., Palazzolo, A.: Shooting/continuation based bifurcation analysis of large order nonlinear rotordynamic systems. In: MATEC Web of Conferences, Lisbon (2018). https://doi.org/10.1051/matecconf/201821118003

    Article  Google Scholar 

  7. Dobbs, J.R., Hencey, B.M.: Structured building model reduction toward parallel simulation. In: 13th Conference of International Building Performance Simulation Association, Chambéry (2013)

  8. Sundararajan, P., Noah, S.T.: Dynamics of forced nonlinear systems using shooting/arc length continuation method-application to rotor systems. J. Vib. Acoust. 119, 9–20 (1997). https://doi.org/10.1115/1.2889694

    Article  Google Scholar 

  9. Doedel, E.J., Oldeman, B.E.: AUTO-07P: Continuation and Bifurcation Software for Ordinary differential Equations. Concordia University, Montreal (2012)

    Google Scholar 

  10. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw. 29, 141–164 (2003). https://doi.org/10.1145/779359.779362

    Article  MathSciNet  MATH  Google Scholar 

  11. Salles, L., Staples, B., Hoffmann, N., Schwingshackl, C.: Continuation techniques for analysis of whole aeroengine dynamics with imperfect bifurcations and isolated solutions. Nonlinear Dyn. 86, 1897–1911 (2016). https://doi.org/10.1007/s11071-016-3003-y

    Article  Google Scholar 

  12. Xie, L., Baguet, S., Prabel, B., Dufour, R.: Bifurcation tracking by harmonic balance method for performance tuning of nonlinear dynamical systems. Mech. Syst. Signal Process. 88, 445–461 (2017). https://doi.org/10.1016/j.ymssp.2016.09.037

    Article  Google Scholar 

  13. Chávez, J.P., Wiercigroch, M.: Bifurcation analysis of periodic orbits of a non-smooth Jeffcott rotor model. Commun. Nonlinear Sci. Numer. Simul. 18, 2571–2580 (2013). https://doi.org/10.1016/j.cnsns.2012.12.007

    Article  MathSciNet  MATH  Google Scholar 

  14. Adiletta, G.: An insight into the dynamics of a rigid rotor on two-lobe wave squeeze film damper. Tribol. Int. 116, 69–83 (2017). https://doi.org/10.1016/j.triboint.2017.06.029

    Article  Google Scholar 

  15. Sghir, R., Chouchane, M.: Nonlinear stability analysis of a flexible rotor-bearing system by numerical continuation. J. Vib. Control 22, 3079–3089 (2016). https://doi.org/10.1177/1077546314558133

    Article  MathSciNet  Google Scholar 

  16. Boyaci, A.: Numerical continuation applied to nonlinear rotor dynamics. Procedia IUTAM 19, 255–265 (2016). https://doi.org/10.1016/j.piutam.2016.03.032

    Article  Google Scholar 

  17. Seydel, R.: Practical Bifurcation and Stability analysis From Equilibrium to Chaos. Springer, New York (2010)

    Book  Google Scholar 

  18. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Springer, Berlin (2003)

    Book  Google Scholar 

  19. Sundararajan, P., Noah, S.T.: An algorithm for response and stability of large order non-linear systems- application to rotor systems. J. Sound Vib. 214, 695–723 (1998). https://doi.org/10.1006/jsvi.1998.1614

    Article  Google Scholar 

  20. Castillo, Z.: A new algorithm for continuation and bifurcation analysis of large scale free surface flows. Ph.D. Thesis, Rice University (2004). https://pdfs.semanticscholar.org/b8f7/3c13d50a210f6c3939cfad83eefb3e101b86.pdf. Accessed 4 Sept 2018

  21. Léger, S., Deteix, J., Fortin, A.: A Moore-Penrose continuation method based on a Schur complement approach for nonlinear finite element bifurcation problems. Comput. Struct. 152, 173–184 (2015). https://doi.org/10.1016/j.compstruc.2015.02.003

    Article  Google Scholar 

  22. Cherfils, L.: A parallel and adaptive continuation method for semilinear bifurcation problems. Comput. Methods Appl. Mech. Eng. 163, 247–259 (1998). https://doi.org/10.1016/S0045-7825(98)00017-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Kim, S., Palazzolo, A.B.: Bifurcation analysis of a rotor supported by five-pad tilting pad journal bearings using numerical continuation. ASME J. Tribol. (2018). https://doi.org/10.1115/1.4037699

    Article  Google Scholar 

  24. Aruliah, D.A., Veen, L.V.: Algorithm 956: PAMPAC, a parallel adaptive method for pseudo-arclength continuation. ACM Trans. Math. Softw. (2016). https://doi.org/10.1145/2714570

    Article  MathSciNet  MATH  Google Scholar 

  25. Stoykov, S., Margenov, S.: Scalable parallel implementation of shooting method for large-scale dynamical systems: application to bridge components. J. Comput. Appl. Math. 293, 223–231 (2016). https://doi.org/10.1016/j.cam.2015.04.015

    Article  MathSciNet  MATH  Google Scholar 

  26. Stoykov, S., Margenov, S.: Numerical methods and parallel algorithms for computation of periodic responses of plates. J. Comput. Appl. Math. 310, 200–212 (2017). https://doi.org/10.1016/j.cam.2016.06.040

    Article  MathSciNet  MATH  Google Scholar 

  27. Choi, S.H., Harney, D.A., Book, N.L.: A robust path tracking algorithm for homotopy continuation. Comput. Chem. Eng. 20, 647–655 (1996). https://doi.org/10.1016/0098-1354(95)00199-9

    Article  Google Scholar 

  28. Yamamura, K. Adachi, K.: A modified predictor-corrector method for tracing solution curves. In: Proc. IEEE Asia pacific conference on circuits and systems, pp. 372–375. Jeju (2016)

  29. Yu, Y., Yu, B., Dong, B.: Robust continuation methods for tracing solution curves of parameterized systems. Numer. Algoritms 65, 825–841 (2014). https://doi.org/10.1007/s11075-013-9716-9

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, H., Chen, L.: Nonlinear dynamic analysis of a flexible rod fastening rotor bearing system. In: Proceedings of the ASME TURBO EXPO 2010, pp. 389–398. Glasgow (2010)

  31. Detroux, T., Renson, L., Masset, L., Kerschen, G.: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput. Methods Appl. Mech. Eng. 296, 18–38 (2015). https://doi.org/10.1016/j.cma.2015.07.017

    Article  MathSciNet  MATH  Google Scholar 

  32. Keller, H.B: Numerical methods in Bifurcation problems. Tata Institute of Fundamental Research, Bombay (1987)

  33. Didier, J., Sinou, J.J., Faverjon, B.: Nonlinear vibrations of a mechanical system with non-regular nonlinearities and uncertainties. Nonlinear Sci. Numer. Simul. 18, 3250–3270 (2013). https://doi.org/10.1016/j.cnsns.2013.03.005

    Article  MathSciNet  MATH  Google Scholar 

  34. Yi, J., Liu, H., Liu, Y.: Global nonlinear dynamic characteristics of rod-fastening rotor supported by ball bearings. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 229, 208–222 (2015). https://doi.org/10.1177/1464419314557846

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 51605380, 51475357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Rod model

Fastened rod mass is very small compared with the whole rotor system so that it could be regarded as linear spring without mass effect. Four parts shown in Fig. 18a are assembled through twelve circumferentially distributed rods. The dynamical character of rod-fastened rotor system will be similar with the intact rotor, provided the rod preloads are large enough [34]. A disk shaft model with twelve circumferentially distributed springs is utilized to approximate rod-fastened rotor system in Fig. 18b.

Fig. 18
figure 18

Rod model: a schematic diagram of rod, b simplified rod model

Operational load of ith rod Fi is written as follows

$$ F^{i} = F_{0}^{i} + \frac{EA}{{L_{0}^{i} }}\Delta L^{i} $$
(21)

where \( F_{0}^{i} \) is the initial preload of ith rod and \( L_{0}^{i} \) is the initial preloaded length of ith rod; E represents elasticity modulus of rod material and A is cross-sectional area of rod; ∆Li is the elongation of ith rod.

Coordinate system of rod model shown in Fig. 19 is established; axial and torsional vibrations are not considered in this paper. Disk stiffness is usually so large that it could be regarded as rigid body, circumferentially distributed rod load \( {\mathbf{F}}_{1}^{i} \) of disk 1 could be replaced by equivalent force \( {\hat{\mathbf{F}}}_{1}^{i} \) and moment \( {\hat{\mathbf{M}}}_{1}^{i} \) acted on circle center of disk 1; equivalent force \( {\hat{\mathbf{F}}}_{4}^{i} \) and moment \( {\hat{\mathbf{M}}}_{4}^{i} \) are chosen to replace circumferentially distributed rod load \( {\mathbf{F}}_{4}^{i} \) of disk 4.

Fig. 19
figure 19

Coordinate system of rod model

\( F_{x1}^{i} \), \( F_{y1}^{i} \) are x, y coordinate components of \( {\mathbf{F}}_{1}^{i} \) in inertial coordinate system OXYZ. \( {\hat{\mathbf{F}}}_{1}^{i} \) only consists of x, y coordinate components, and \( {\hat{\mathbf{M}}}_{1}^{i} \) consists of φ, ψ coordinate components.

$$ {\hat{\mathbf{F}}}_{1}^{i} = \left[ {\begin{array}{*{20}c} {F_{x1}^{i} } \\ {F_{y1}^{i} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\frac{{x_{4}^{i} - x_{1}^{i} }}{{L^{i} }}F^{i} } \\ {\frac{{y_{4}^{i} - y_{1}^{i} }}{{L^{i} }}F^{i} } \\ \end{array} } \right] $$
(22)
$$ {\hat{\mathbf{M}}}_{1}^{i} = \left[ {\begin{array}{*{20}c} {M_{\varphi 1}^{i} } \\ {M_{\psi 1}^{i} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - F_{z1}^{i} y_{1}^{i} + F_{y1}^{i} \left( {z_{1}^{i} - z_{1}^{0} } \right)} \\ { - F_{z1}^{i} x_{1}^{i} + F_{x1}^{i} \left( {z_{1}^{i} - z_{1}^{0} } \right)} \\ \end{array} } \right] $$
(23)

Similarly, \( {\hat{\mathbf{F}}}_{4}^{i} \) and \( {\hat{\mathbf{M}}}_{4}^{i} \) could be expressed as follows:

$$ {\hat{\mathbf{F}}}_{4}^{i} = \left[ {\begin{array}{*{20}c} {F_{x4}^{i} } \\ {F_{y4}^{i} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - \frac{{x_{4}^{i} - x_{1}^{i} }}{{L^{i} }}F^{i} } \\ { - \frac{{y_{4}^{i} - y_{1}^{i} }}{{L^{i} }}F^{i} } \\ \end{array} } \right] $$
(24)
$$ {\hat{\mathbf{M}}}_{4}^{i} = \left[ {\begin{array}{*{20}c} {M_{\varphi 4}^{i} } \\ {M_{\psi 4}^{i} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - F_{z4}^{i} y_{4}^{i} + F_{y4}^{i} \left( {z_{4}^{i} - z_{4}^{0} } \right)} \\ { - F_{z4}^{i} x_{4}^{i} + F_{x4}^{i} \left( {z_{4}^{i} - z_{4}^{0} } \right)} \\ \end{array} } \right] $$
(25)

1.2 Rolling bearing model

$$ \theta_{j} = \frac{2\pi }{{N_{\text{b}} }}\left( {j - 1} \right) + \omega_{\text{c}} t, \quad j \in \left[ {1,N_{\text{b}} } \right] $$
(26)
$$ \omega_{\text{c}} = \frac{{R_{\text{i}} \omega_{\text{i}} + R_{\text{o}} \omega_{\text{o}} }}{{R_{\text{i}} + R_{\text{o}} }} $$
(27)

where θj is the position angle of jth ball shown in Fig. 20; Nb is the ball number; ωc, ωi and ωo represent the rotational speeds of cage, inner ring and outer ring, respectively; Ri and Ro are radii of inner and outer race, respectively.

Fig. 20
figure 20

Ball bearing model

The elastic deformation between jth ball and races is written as

$$ \delta_{j} = x\sin \theta_{j} + y\cos \theta_{j} - \gamma , \quad j \in \left[ {1,N_{\text{b}} } \right] $$
(28)

x and y represent displacements of inner race center in the horizontal and vertical directions, respectively; γ is radial clearance between balls and races.

$$ Q_{j} = \left\{ {\begin{array}{*{20}l} {k_{j} \delta_{j}^{3/2} ,} \hfill & { \delta_{j} > 0} \hfill \\ {0,} \hfill & {\delta_{j} \le 0} \hfill \\ \end{array} } \right.,\quad j \in \left[ {1,N_{\text{b}} } \right] $$
(29)

kj is the normal contact stiffness between jth ball and races. Qj is contact force between jth ball and races; Fb is bearing force vector acted on the shaft, which contains x direction component fbx and y direction component fby; cb is damping coefficient.

$$ {\mathbf{F}}_{\text{b}} = \left[ {\begin{array}{*{20}c} {f_{{{\text{b}}x}} } \\ {f_{{{\text{b}}y}} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} { - c_{\text{b}} \dot{x} - \mathop \sum \limits_{j = 1}^{{N_{\text{b}} }} \left( {Q_{j} \sin \theta_{j} } \right)} \\ { - c_{\text{b}} \dot{y} - \mathop \sum \limits_{j = 1}^{{N_{\text{b}} }} (Q_{j} \cos \theta_{j} )} \\ \end{array} } \right],\quad j \in \left[ {1,N_{\text{b}} } \right] $$
(30)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, Y., Liu, H. et al. Parallel numerical continuation of periodic responses of local nonlinear systems. Nonlinear Dyn 100, 2005–2026 (2020). https://doi.org/10.1007/s11071-020-05619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05619-1

Keywords

Navigation