Skip to main content
Log in

Method for estimating vibration responses of belt drive systems with a nonlinear tensioner

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A friction-type tensioner is widely used in a belt drive system for maintaining belt tension constantly and reducing vibration. Owing to friction dampings, the curve of the reaction torque and the imposed angle of tensioner arm is a hysteretic loop. Here, the hysteretic behavior of tensioner is considered in dynamic analysis of a belt drive system. A hysteretic model for describing the applied torque versus the imposed angle of tensioner arm is established. And an iterative algorithm is proposed for estimating the nonlinear equivalent viscous damping of tensioner under a varying excitation frequency. A timing belt drive system is taken as an example. Based on the existing research, the dynamic models for a belt, an automatic tensioner and rotational pulleys of system are also given. The vibration responses of a belt system, such as the oscillation angle of tensioner arm, the transmission error between pulleys and the hub load applied on pulley, are calculated and compared with the measurements, which are validated the presented method. The influence of damping ratio of tensioner on dynamic responses of system is investigated, and the influence of iteration parameters on the iterative efficiency is discussed. The presented method is beneficial to modifying the existing method for calculating the vibration responses of a belt drive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Chiariotti, P., Martarelli, M., Castellini, P.: Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterization. Mech. Syst. Signal Process. 86, 66–81 (2012)

    Article  Google Scholar 

  2. Qatu, M.S., Abdelhamid, M.K., Pang, J.: Overview of automotive noise and vibration. Int. J. Veh. Noise Vib. 5(1), 1–35 (2009)

    Article  Google Scholar 

  3. Jia, S.S., Song, Y.M.: Elastic dynamic analysis of synchronous belt drive system using absolute nodal coordinate formulation. Nonlinear Dyn. 81(3), 1393–1410 (2015)

    Article  Google Scholar 

  4. Hao, Z., Yunmei, H., Yangjun, P.: Hysteretic damping characteristics of a mechanical tensioner: modeling and experimental investigation. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 1, 1–13 (2018)

    Google Scholar 

  5. Dufva, K., Kerkk, N.K., Maqueda, L.G.: Nonlinear dynamics of three-dimensional belt drives using the finite-element method. Nonlinear Dyn. 48(4), 449–466 (2007)

    Article  Google Scholar 

  6. Ding, H., Li, D.P.: Static and dynamic behaviors of belt-drive dynamic systems with a one-way clutch. Nonlinear Dyn. 78(2), 1553–1575 (2014)

    Article  MathSciNet  Google Scholar 

  7. Nouri, M., Zu, J.W.: Dynamic analysis and optimization of tensioner in automotive serpentine belt drive systems. In: ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 1, pp. 813–820 (2002)

  8. Hu, Y., Han, L., Liu, J.: Mathematical modeling and FEA verification for the damping characteristics of a hydraulic tensioner. Autom. Eng. 36(2), 204–209 (2014)

    Google Scholar 

  9. Zhao, J., Barker, C., Oliver, L.: Experimental testing and modeling of automotive automatic belt tensioners. SAE Tech. Pap. 08(39), 1–13 (1998)

    Google Scholar 

  10. Bastien, J., Michon, G., Manin, L.: An analysis of the modified Dahl and Masing models: application to a belt tensioner. J. Sound Vib. 302(4), 841–864 (2007)

    Article  MathSciNet  Google Scholar 

  11. Michon, G., Manin, L., Dufour, R.: Hysteretic behavior of a belt tensioner: modeling and experimental investigation. J. Vib Control 11(9), 1147–1158 (2005)

    Article  Google Scholar 

  12. Chatelet, E., Michon, G., Manin, L.: Stick/slip phenomena in dynamics: choice of contact model (numerical predictions and experiments). ASME Mech. Mach. Theory. 43(10), 1211–1224 (2008)

    Article  Google Scholar 

  13. Hwang, S.J., Perkins, N.C., Ulsoy, A.G.: Rotational response and slip prediction of serpentine belt drives systems. ASME J. Vib. Acoust. 116(1), 71–78 (1994)

    Article  Google Scholar 

  14. Kraver, T.C., Fan, G.W., Shah, J.J.: Complex modal analysis of a flat belt pulley system with belt damping and coulomb-damped tensioner. ASME J. Mech. Des. 118, 306–311 (1996)

    Article  Google Scholar 

  15. Cheng, G., Zu, J.W.: Nonstick and stick-slip motion of a coulomb-damped belt drive system subjected to multifrequency excitations. ASME J. App. Mech. 70, 871–884 (2003)

    Article  Google Scholar 

  16. Shangguan, W.B., Zeng, X.K.: Modeling and validation of rotational vibration responses for accessory drive system-Part II: simulations and Analyses. ASME J. Vib. Acoust. 135(3), 1–13 (2013)

    Google Scholar 

  17. Feng, X., Shangguan, W.B., Deng, J.: Modeling of the rotational vibrations of the engine front-end accessory drive system: a generic method. Proc. Inst. Mech. Eng. D J. Automob. Eng. 213(13), 1780–1795 (2017)

    Article  Google Scholar 

  18. Farong, Z., Robert, G.P.: Influence of tensioner dry friction on the vibration of belt drives with belt bending stiffness. ASME J. Vib. Acoust. 130(1), 1–9 (2008)

    Google Scholar 

  19. Kwon, Y.I., Ih, J.-G.: Vibrational power flow in the moving belt passing through a tensioner. J. Sound Vib. 229(2), 329–353 (2000)

    Article  Google Scholar 

  20. Zeng, X.K., Wang, H.Y.: Experimental and modeling analysis of dynamic characteristic for automatic tensioner in a two pulley-belt drive system. Int. J. Veh. Noise Vib. 10(4), 302–313 (2014)

    Article  Google Scholar 

  21. Long, S.B., Yin, Z.H., Zhao, X.Z., Shangguan, W.B.: Methods for estimating hysteretic behavior and vibration responses of a timing belt tensioner. Adv. Mech Eng. 11(11), 1–19 (2019)

    Article  Google Scholar 

  22. Zhang, Y.Q., Shangguan, W.B.: A novel approach for lower frequency performance design of hydraulic engine mounts. Compos. Struct. 84(8–9), 572–584 (2006)

    Article  Google Scholar 

  23. Karolev, N.A., Gold, P.W.: Load distribution of timing belt drivings transmitting variable torques. ASME Mech. Mach. Theory 30(4), 553–567 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The paper is supported by the National Natural Science Foundation of China (No. 51875216) and Natural Science Foundation of Guangdong Province (Nos. 2019A1515011612 and 2019A1515011780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bin Shangguan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 3, 4 and 5.

Table 3 The parameters of tensioner
Table 4 The coordinate, radius, moment of inertial and damping for each pulley
Table 5 Parameters of timing belt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, S., Zhao, X. & Shangguan, WB. Method for estimating vibration responses of belt drive systems with a nonlinear tensioner. Nonlinear Dyn 100, 2315–2335 (2020). https://doi.org/10.1007/s11071-020-05617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05617-3

Keywords

Navigation