Skip to main content
Log in

Adaptive robust decoupling control of multi-arm space robots using time-delay estimation technique

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The most distinctive difference between a space robot and a base-fixed robot is its free-flying/floating base, which results in the dynamic coupling effect. The mounted manipulator motion will disturb the position and attitude of the base, thereby deteriorating the operational accuracy of the end effector. This paper focuses on decoupling or counteracting the coupling between the manipulator and the base. The dynamics model of multi-arm space robots is established using the composite rigid dynamics modeling approach to analyze the dynamic coupling force/torque. An adaptive robust controller that is based on time-delay estimation (TDE) and sliding mode control (SMC) is designed to decouple the multi-arm space robot. In contrast to the online computation method, the proposed controller compensates for the dynamic coupling via the TDE technique and the SMC can complement and reinforce the robustness of the TDE. The global asymptotic stability of the proposed decoupling controller is mathematically proven. Several contrastive simulation studies on a dual-arm space robot system are conducted to evaluate the performance of the TDE-based SMC controller. The results of qualitative and quantitative analysis illustrate that the proposed controller is simpler and yet more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. From, P.J., Gravdahl, J.T., Pettersen, K.Y.: Vehicle-manipulator systems. Springer, London (2016)

    MATH  Google Scholar 

  2. Flores-Abad, A., Ma, O., Pham, K., Steven, U.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)

    Article  Google Scholar 

  3. Huang, P., Zhang, F., Chen, L., Meng, Z., Zhang, Y., Liu, Z., Hu, Y.: A review of space tether in new applications. Nonlinear Dyn. 94(1), 1–19 (2018)

    Article  Google Scholar 

  4. Roesler, G., Paul, J., Glen, H.: Orbital mechanics. IEEE Spectr. 54, 44–503 (2017)

    Article  Google Scholar 

  5. Xu, W., Peng, J., Liang, B., Mu, Z.: Hybrid modeling and analysis method for dynamic coupling of space robots. IEEE Trans. Aerosp. Electron. Syst. 52(1), 85–98 (2016)

    Article  Google Scholar 

  6. Zhang, X., Liu, J.: Autonomous trajectory planner for space telerobots capturing space debris under the teleprogramming framework. Adv Mech Eng 9(9), 1–13 (2017)

    Google Scholar 

  7. Rekleitis, G., Papadopoulos, E.: On-orbit cooperating space robotic servicers handling a passive object. IEEE Trans. Aerosp. Electron. Syst. 51(2), 802–814 (2015)

    Article  Google Scholar 

  8. Guang, Z., Heming, Z., Liang, B.: Attitude dynamics of spacecraft with time-varying inertia during on-orbit refueling. J. Guid. Control Dyn. 41(8), 1744–1754 (2018)

    Article  Google Scholar 

  9. Carignan, C.R., Akin, D.L.: The reaction stabilization of on-orbit robots. IEEE Control Syst. Mag. 20(6), 19–33 (2000)

    Article  Google Scholar 

  10. Antonello, A., Valverde, A., Tsiotras, P.: Dynamics and control of spacecraft manipulators with thrusters and momentum exchange devices. J. Guid. Control Dyn. 42(1), 15–29 (2019)

    Article  Google Scholar 

  11. Dubowsky, S., Torres, M. A.: Path planning for space manipulators to minimize spacecraft attitude disturbances. In: Proceedings of IEEE International Conference on Robotics and Automation, pp.2522–2528. (1991)

  12. Nakamura, Y., Mukherjee, R.: Exploiting nonholonomic redundancy of free-flying space robots. IEEE Trans. Robotic. Autom. 9(4), 499–506 (1993)

    Article  Google Scholar 

  13. Nenchev, D.N.: Reaction null space of a multibody system with applications in robotics. Mech. Sci. 4(1), 97–112 (2013)

    Article  Google Scholar 

  14. Hafez, A.A., Mithun, P., Anurag, V.V., Shah, S.V., Krishna, K.M.: Reactionless visual servoing of a multi-arm space robot combined with other manipulation tasks. Robot. Auton. Syst. 91, 1–10 (2017)

    Article  Google Scholar 

  15. Chu, Z., Ma, Y., Cui, J.: Adaptive reactionless control strategy via the PSO-ELM algorithm for free-floating space robots during manipulation of unknown objects. Nonlinear Dyn. 91(2), 1321–1335 (2018)

    Article  Google Scholar 

  16. Xu, W., Liu, Y., Xu, Y.: The coordinated motion planning of a dual-arm space robot for target capturing. Robotica 30(5), 755–771 (2012)

    Article  Google Scholar 

  17. Huang, P., Xu, Y., Liang, B.: Dynamic balance control of multi-arm free-floating space robots. Int J Adv Robot Syst. 2(2), 17–124 (2005)

    Article  Google Scholar 

  18. Wang, M., Luo, J., Yuan, J., Walter, U.: Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization. Acta Astronaut. 146, 259–272 (2018)

    Article  Google Scholar 

  19. Zhang, X., Liu, J.: Effective motion planning strategy for space robot capturing targets under consideration of the berth position. Acta Astronaut. 148, 403–416 (2018)

    Article  Google Scholar 

  20. Zhang, X., Liu, J., Feng, J., Liu, Y., Ju, Z.: Effective capture of non-graspable objects for space robots using geometric cage pairs. IEEE/ASME Trans. Mech. 25(1), 95–107 (2020)

    Article  Google Scholar 

  21. Chu, X., Hu, Q., Zhang, J.: Path planning and collision avoidance for a multi-arm space maneuverable robot. IEEE Trans. Aerosp. Electron. Syst. 54(1), 217–232 (2018)

    Article  Google Scholar 

  22. Longman, R.W., Lindbergt, R.E., Zedd, M.F.: Satellite-mounted robot manipulators—new kinematics and reaction moment compensation. Int. J. Robot. Res. 6(3), 87–103 (1987)

    Article  Google Scholar 

  23. Huo, W.: Robot dynamics and control. Higher Education Press, Beijing (2005)

    Google Scholar 

  24. Oda, M., Ohkami, Y.: Coordinated control of spacecraft attitude and space manipulators. Control Eng. Pract. 5(1), 11–21 (1997)

    Article  Google Scholar 

  25. Papadopoulos, E., Dubowsky, S.: Coordinated manipulator/spacecraft motion control for space robotic systems. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1696–1701. (1991)

  26. Kumar, N., Panwar, V., Borm, J.H., Chai, J., Yoon, J.: Adaptive neural controller for space robot system with an attitude controlled base. Neural Comput. Appl. 23(7–8), 2333–2340 (2013)

    Article  Google Scholar 

  27. Shi, L., Kayastha, S., Katupitiya, J.: Robust coordinated control of a dual-arm space robot. Acta Astronaut. 138, 475–489 (2017)

    Article  Google Scholar 

  28. Jayakody, H.S., Shi, L., Katupitiya, J., Kinkaid, N.: Robust adaptive coordination controller for a spacecraft equipped with a robotic manipulator. J. Guid. Control Dyn. 39, 2699–2711 (2016)

    Article  Google Scholar 

  29. Wang, M., Luo, J., Yuan, J., Walter, U.: Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target. Nonlinear Dyn. 92(3), 1023–1043 (2018)

    Article  Google Scholar 

  30. Zong, L., Luo, J., Wang, M., Yuan, J.: Parameters concurrent learning and reactionless control in post-capture of unknown targets by space manipulators. Nonlinear Dyn. 96(1), 443–457 (2019)

    Article  Google Scholar 

  31. Hsia, T. C., Gao, L. S.: Robot manipulator control using decentralized linear time-invariant time-delayed joint controllers. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2070–2075. (1990)

  32. Kumar, R.P., Dasgupta, A., Kumar, C.S.: Robust trajectory control of underwater vehicles using time delay control law. Ocean Eng. 34(5–6), 842–849 (2007)

    Article  Google Scholar 

  33. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2014)

    MATH  Google Scholar 

  34. Roy, S., Kar, I.N.: Adaptive sliding mode control of a class of nonlinear systems with artificial delay. J. Frankl. Inst. 354(18), 8156–8179 (2017)

    Article  MathSciNet  Google Scholar 

  35. Cho, S.J., Jin, M., Kuc, T.Y., Lee, J.S.: Control and synchronization of chaos systems using time-delay estimation and supervising switching control. Nonlinear Dyn. 75(3), 549–560 (2014)

    Article  MathSciNet  Google Scholar 

  36. Kali, Y., Saad, M., Benjelloun, K., Khairallah, C.: Super-twisting algorithm with time delay estimation for uncertain robot manipulators. Nonlinear Dyn. 93(2), 557–569 (2018)

    Article  Google Scholar 

  37. Gao, Q., Liu, J., Tian, T., Li, Y.: Free-flying dynamics and control of an astronaut assistant robot based on fuzzy sliding mode algorithm. Acta Astronaut. 138, 462–474 (2017)

    Article  Google Scholar 

  38. Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron 40(1), 2–22 (1993)

    Article  Google Scholar 

  39. Jin, M., Lee, J., Chang, P.H., Choi, C.: Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron 56(9), 3593–3601 (2009)

    Article  Google Scholar 

  40. Ghoshal, S.P.: Optimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation control. Electr. Power Syst. Res. 72(3), 203–212 (2004)

    Article  Google Scholar 

  41. Kim, J., Jin, M.: Synchronization of chaotic systems using particle swarm optimization and time-delay estimation. Nonlinear Dyn. 86(3), 2003–2015 (2016)

    Article  Google Scholar 

  42. Giordano, A.M., Ott, C., Albu-Schäffer, A.: Coordinated control of spacecraft’s attitude and end-effector for space robots. IEEE Robot. Autom. Lett. 4(2), 2108–2115 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (Grant No. 2018YFB1304600), the National Natural Science Foundation of China (Grant No. 51775541), the CAS Interdisciplinary Innovation Team (Grant No. JCTD-2018-11), and the State Key Laboratory of Robotics Foundation (Grant No. Y91Z0303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinguo Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A detailed proof of the boundedness of ε is provided as follows, which is the same as the proof in Refs. [31, 32, 39].

Lemma 1

For the inertial matrix\( \varvec{H} \), there exists a constant diagonal matrix\( \bar{\varvec{H}} \)that satisfies the spectral norm condition, namely\( \left\| {\varvec{H}^{ - 1} \bar{\varvec{H}} - \varvec{E}} \right\| < 1 \) [34].

Lemma 2

For vectors\( \varvec{\alpha} \)and\( \varvec{\beta} \), if\( \varvec{\alpha}= \varvec{A\beta } \), \( \varvec{A} \)is a symmetric matrix, and\( A_{\hbox{max} } \)is the maximum eigenvalue of\( \varvec{A} \), there exists a conclusion, namely\( \left\|\varvec{\alpha}\right\| \le A_{\hbox{max} } \left\|\varvec{\beta}\right\|, \, ({\rm A}_{\hbox{max} }^{k} > 0) \).

According to Eqs. (39) and (40) , we reformulate the control law of the TDE-based SMC as

$$ \varvec{F} = \bar{\varvec{H}}\varvec{u} + \hat{\varvec{N}} $$
(44a)
$$ \varvec{u} = {\ddot{\varvec{q}}} _{\text{d}} + \varvec{\varLambda} \dot{\varvec{e}} + \bar{\varvec{H}}^{ - 1} \varvec{G}{\text{sgn}}(\varvec{s} ) $$
(44b)

Substituting Eqs. (44a) and (37b) into the dynamics equation (Eq. (36a)) yields

$$ \varvec{N}(t) - \varvec{N}\text{(}t - \delta \text{)} = {\bar{\varvec H}\xi }(t) $$
(45a)
$$ \varvec{\xi}(t) = \varvec{u}(t) - {\ddot{\varvec{q}}} (t) $$
(45b)

where\( \varvec{\varepsilon}(t) = \varvec{N}(t) - \varvec{N}\text{(}t - \delta \text{)} \). If we want to verify that\( {\varvec{\varepsilon}}(t) \)is bounded, it is equivalent to verify that\( \varvec{\xi} (t) = \varvec{u}(t) - \ddot{\varvec{q}}(t) \)is bounded. Furthermore, we can obtain

$$ \begin{aligned} & \varvec{H}(t)\varvec{\xi}(t) = \varvec{H}(t)(\varvec{u}(t) - {\ddot{\varvec{q}}} (t)) \\ & = \varvec{H}(t)\varvec{u}(t) - (\varvec{F}(t) - \varvec{C}(t) - \varvec{f}_{\text{D}} (t) - \varvec{f}_{\text{U}} (t)) \\ \end{aligned} $$
(46)

From Eqs. (28), (37b), and (38), we can deduce

$$ \begin{aligned} \hat{\varvec{N}}(t) =&\, (\varvec{H}(t - \delta ) - \bar{\varvec{H}}){\ddot{\varvec{q}}} (t - \delta ) + \varvec{C}(t - \delta ) \\ & + \varvec{f}_{\text{D}} (t - \delta ) + \varvec{f}_{\text{U}} (t - \delta ) \\ \end{aligned} $$
(47)

Substituting Eq. (47) into Eq. (44a) yields

$$ \begin{aligned} \varvec{F}(t) =&\, \bar{\varvec{H}}\varvec{u} + (\varvec{H}(t - \delta ) - \bar{\varvec{H}}){\ddot{\varvec{q}}} (t - \delta ) \\ & + \varvec{C}(t - \delta ) + \varvec{f}_{\text{D}} (t - \delta ) + \varvec{f}_{\text{U}} (t - \delta ) \\ \end{aligned} $$
(48)

Substituting Eq. (48) into Eq. (46) yields

$$ \begin{aligned} \varvec{H}(t)\varvec{\xi}(t) = &\, (\varvec{H}(t) - \bar{\varvec{H}})\varvec{u}(t) + (\bar{\varvec{H}} - \varvec{H}(t - \delta )){\ddot{\varvec{q}}} (t - \delta ) \\ & + \varvec{C}(t) - \varvec{C}(t - \delta ) + \varvec{f}_{\text{D}} (t) - \varvec{f}_{\text{D}} (t - \delta ) \\ & + \varvec{f}_{\text{U}} (t) - \varvec{f}_{\text{U}} (t - \delta ) \\ \end{aligned} $$
(49)

We obtain\( {\ddot{\varvec{q}}} (t - \delta ) =\varvec{\xi}(t - \delta ) + \varvec{u}(t - \delta ) \)according to Eq. (45b). Substituting it into Eq. (49) yields

$$ \begin{aligned} \varvec{H}(t)\varvec{\xi}(t) = & (\bar{\varvec{H}} - \varvec{H}(t))(\varvec{\xi}(t - \delta ) + \varvec{u}(t - \delta )) \\ & \quad + (\varvec{H}(t) - \bar{\varvec{H}})\varvec{u}(t) + (\varvec{H}(t) - \varvec{H}(t - \delta )){\ddot{\varvec{q}}} (t - \delta ) \\ & \quad + \varvec{C}(t) - \varvec{C}(t - \delta ) + \varvec{f}_{\text{D}} (t) - \varvec{f}_{\text{D}} (t - \delta ) \\ & \quad + \varvec{f}_{\text{U}} (t) - \varvec{f}_{\text{U}} (t - \delta ) \\ \end{aligned} $$
(50)

Then, we can reformat Eq. (50) as

$$ \varvec{\xi}(t) = \varvec{A}(t)\varvec{\xi}(t - \delta ) +\varvec{\chi}_{1} (t - \delta ) - \varvec{A}(t)\varvec{\chi}_{ 2} (t - \delta ) $$
(51a)
$$ \varvec{A}(t){ = }\varvec{H}^{ - 1} (t)\bar{\varvec{H}} - \varvec{E} $$
(51b)
$$ \begin{aligned}\varvec{\chi}_{1} (t - \delta ) = & \varvec{H}^{ - 1} (t)\{ (\varvec{H}(t) - \varvec{H}(t - \delta )){\ddot{\varvec{q}}} (t - \delta ) \\ & \quad + \varvec{C}(t) - \varvec{C}(t - \delta ) + \varvec{f}_{\text{D}} (t) - \varvec{f}_{\text{D}} (t - \delta ) \\ & \quad + \varvec{f}_{\text{U}} (t) - \varvec{f}_{\text{U}} (t - \delta )\} \\ \end{aligned} $$
(51c)
$$ \varvec{\chi}_{ 2} (t - \delta ) = \varvec{u}(t) - \varvec{u}(t - \delta ) $$
(51d)

Furthermore, we analyze Eq. (51a) in the discrete-time domain. Substituting\( t = k\delta \)into Eq. (51a) yields

$$ \varvec{\xi}(k) = \varvec{A}(k)\varvec{\xi}(k - 1) +\varvec{\chi}_{1} (k - 1) - \varvec{A}(k)\varvec{\chi}_{ 2} (k - 1) $$
(52)

Via induction and reasoning, we can obtain

$$ \begin{aligned}\varvec{\xi}(k) = \prod\limits_{m = 1}^{k} {\varvec{A}(m)\varvec{\xi}(0)} + \sum\limits_{m = 1}^{k - 1} {\prod\limits_{p = m}^{k - 1} {\varvec{A}(p + 1)} }\varvec{\chi}_{1} (m - 1) \\ { + }\varvec{\chi}_{1} (k - 1) - \sum\limits_{m = 1}^{k} {\prod\limits_{p = m}^{k} {\varvec{A}(p)} }\varvec{\chi}_{2} (m - 1) \\ \end{aligned} $$
(53)

where \( \varvec{\xi}(0) \) is the initial value, and we can deduce

$$\begin{aligned} & \left\| {\user2{\varvec{\xi} }(k)} \right\| \le \left\| {\prod\limits_{{m = 1}}^{k} {\user2{A}(m)\user2{\varvec{\xi} }(0)} } \right\| + \left\| {\sum\limits_{{m = 1}}^{{k - 1}} {\prod\limits_{{p = m}}^{{k - 1}} {\user2{A}(p + 1)} } \user2{\varvec{\chi} }_{1} (m - 1)} \right\| \\ & {\text{ + }}\left\| {\user2{\varvec{\chi} }_{1} (k - 1)} \right\| + \left\| {\sum\limits_{{m = 1}}^{k} {\prod\limits_{{p = m}}^{k} {\user2{A}(p)} } \user2{\varvec{\chi }}_{2} (m - 1)} \right\| \\ \end{aligned}$$
(54)

According to Lemma 2, we can deduce

$$ \begin{aligned} \left\| {\varvec{\xi}(k)} \right\| \le = {\rm A}_{\hbox{max} }^{k} \left\| {\varvec{\xi}(0)} \right\| + \sum\limits_{m = 1}^{k - 1} {{\rm A}_{\hbox{max} }^{k - m} } \left\| {\varvec{\chi}_{1} (m - 1)} \right\| \\ { + }\left\| {\varvec{\chi}_{1} (k - 1)} \right\| + \sum\limits_{m = 1}^{k} {{\rm A}_{\hbox{max} }^{k - m + 1} } \left\| {\varvec{\chi}_{2} (m - 1)} \right\| \\ \end{aligned} $$
(55)

According to Lemma 1, we know that\( 0 < {\rm A}_{\hbox{max} }^{{}} < 1 \). Meanwhile,\( \left| {\chi_{1i} (k)} \right| < \beta_{1} \)and\( \left| {\chi_{2i} (k)} \right| < \beta_{2} \), where\( \chi_{1i} (k) \)and\( \chi_{2i} (k) \)are, respectively, the ith elements of\( \varvec{\chi}_{1} (k) \) and \( \varvec{\chi}_{2} (k) \)and\( \beta_{1} \) and \( \beta_{2} \)are positive constants. When\( k \to \infty \), \( {\rm A}_{\hbox{max} }^{k} \to 0 \), and we conclude

$$ \left\| {\varvec{\xi}(k)} \right\| \le \frac{{n(\beta_{1} + {\rm A}_{\hbox{max} } \beta_{2} )}}{{1 - {\rm A}_{\hbox{max} } }} $$
(56)

Thus, the boundedness of\( \varvec{\xi}(k) \)is proven, and the stability of the TDE-based SMC is guaranteed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, J., Gao, Q. et al. Adaptive robust decoupling control of multi-arm space robots using time-delay estimation technique. Nonlinear Dyn 100, 2449–2467 (2020). https://doi.org/10.1007/s11071-020-05615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05615-5

Keywords

Navigation