Skip to main content
Log in

Assessment of breaking waves and liquid sloshing impact

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article presents an overview of breaking waves and liquid sloshing impact acting on rigid walls and in liquid containers. The physics of breaking waves against rigid walls can be understood through the Bagnold/Mitsuyasu piston theory. The flip-through is a major feature associated with the occurrence of violent waves without any actual impact on the wall. The physics of the phase transition during liquid impacts involves two- and multi-phase flows due to the entrapped gas pockets is addressed. The liquid sloshing assessment of liquefied natural gas tanks together with the dimensionless parameters governing the design of small-scale models is discussed. The nonlinear liquid sloshing dynamics under sway and rotational excitations is described for different container geometries. This article will discuss recent developments of numerical algorithms and computer codes capable to describe breaking waves and extreme sloshing impacts. Moreover, recent advances in breaking Faraday waves are also addressed together with an assessment of breaking interfacial gravity waves, in which a multilayer or stratified medium is a stack of different thin layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Notes

  1. In thermodynamics, a polytropic process is governed by the relationship: \( pV^{n}=C\), where p is the pressure, V is the volume, n is the polytropic index and C is a constant. For isentropic process of ideal gas is governed by the relationship: \(pV^{\gamma }=C\), where \(\gamma \) is the ratio of specific heats, i.e., \(\gamma =c_{p}/c_{V}\), \(c_{p}\) is the specific heat at constant pressure, and \(c_{V}\) is the specific heat at constant volume.

  2. Phase boundary is the spatial interface between liquid and gas due to the immiscibility of gas with the liquid.

  3. The Kelvin–Helmholtz instability occurs when there is fluid velocity shear (friction velocity) or where there is a velocity difference across the interface between two fluids. The Rayleigh–Taylor instability occurs when a falling stream of fluid breaks up into smaller packets with the same volume but less surface area.

  4. When calculating solutions to partial differential equations, it is often essential to introduce artificial boundaries to limit the area of computation. One always needs some boundary conditions at these boundaries to guarantee a unique and well-posed solution to the differential equation. These artificial boundaries are only a computational necessity and have no physical significance. Thus, it is highly desirable to design boundary conditions for these artificial boundaries that minimize the amplitudes of reflected waves (see Engquist and Majda [145]).

  5. The sigma coordinate system is a common coordinate system used in computational models in the field of fluid dynamics. Pressure, p, at a given height may be scaled with the surface pressure, \(p_{0}\), or less often with the pressure at the top of the defined domain \(p_{T}\). The sigma value at the scale reference is 1, i.e., if surface-scaled \(\sigma _{0}=1\).

References

  1. Abbaspour, M., Hassanabad, M.G.: A novel 2D BEM with composed elements to study sloshing phenomenon. J. Appl. Fluid Mech. 2(2), 77–83 (2009)

    Google Scholar 

  2. Abrahamsen, B.C.: Sloshing Induced Tank-roof Impact with Entrapped Air Pocket. Norwegian University of Science and Technology (NTNU), Trondheim, Norway (2011). PhD thesis

    Google Scholar 

  3. Abrahamsen, B.C., Faltinsen, O.M.: The effect of air leakage and heat exchange on the decay of entrapped air pocket slamming oscillations. Phys. Fluids 23(1), 102107 17p (2011)

    Google Scholar 

  4. Abrahamsen, B.C., Faltinsen, O.M.: A numerical model of an air pocket impact during sloshing. Appl. Ocean. Res. 37, 54–71 (2012)

    Google Scholar 

  5. Abrahamsen, B.C., Faltinsen, O.M.: Scaling of entrapped gas-pocket slamming events at dissimilar Euler number. J. Fluids Struct. 40, 246–257 (2013)

    Google Scholar 

  6. Abramson, H.N. (ed.): The Dynamic Behavior of Liquids in Moving Containers, NASA SP 106, Washington D.C (1966)

  7. Agrawal, M., Rahumathulla, L.: Numerical simulation of liquid sloshing in floating LNG. Proc. Ann. Offshore Technol. Conf. Houst. TX. 3, 1848–1858 (2014)

    Google Scholar 

  8. Ahn, Y., Kim, S.Y., Kim, K.H., Kim, Y., Jong-Jin Park, J.J.: Study on the effect of density ratio of liquid and gas in sloshing experiment. In: Proceedings of 26 International Workshop on Water Waves and Floating Bodies, p. 4p. Denmark, Copenhagen (2012)

  9. Allsop, N.W.H., Vann, A.M., Howarth, M., Jones, R.J., Davis, J.P.: Measurements of wave impacts at full-scale: results of fieldwork on concrete armor units. In: Clifford, J.E. (ed.) Advances in Coastal Structures and Breakwaters, pp. 287–307. Thomas Telford, London (1996)

    Google Scholar 

  10. Ancellin, M.: Modé lisation macroscopique et simulation numérique du retour à l’é quilibre liquide-vapeur (Macroscopic modeling and numerical simulation of the return to liquid-vapor equilibrium), Etudiant á l’Ecole Centrale Paris, Publication du CMLA 2012–05. (2011). http://tinyurl.com/Ancellin2011

  11. Ancellin, M., Brosset, L., Ghidaglia, J.M.: Influence of phase transition on sloshing impact pressures described by a generalized Bagnold’s model. In: Procedigs of 22nd International Offshore Polar Engineering Conference (ISOPE). Rhodes, Greece 3, 300–310 (2012)

  12. Ancellin, N., Brosset, L., Ghidagkia, J.M.: Preliminary numerical results on the influence of phase change on wave impacts loads. In: Proceedigs of 26th International Offshore Polar Engineering Conference (ISOPE). Rhodes, Greece 3, 886–893 (2016a)

  13. Ancellin, N., Brosset, L., Ghidagkia, J.M.: A hyperbolic model of nonequilibrium phase change at a sharp liquid-Vapor interface. In: Springer Proceedings Mathematics and Statistics, vol. 236, pp. 59–69. Theory, Numerics and Applications of Hyperbolic Problems I - Aachen, Germany (2016b)

    MATH  Google Scholar 

  14. Ancellin, M., Brosset, L., Ghidaglia, J.M.: Numerical simulation of wave impacts with interfacial phase change: An isothermal averaged model. Eu. J. Mech.-B/Fluids 72, 631–644 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Ancellin, N., Brosset, L., Ghidagkia, J.M.: Numerical simulation of wave impacts with interfacial phase change: an interface reconstruction scheme. Eur. J. Mech./B Fluids 76, 352–364 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Ansari, M.R., Firouz-Abadi, R.D., Ghasemi, M.: Two-phase modal analysis of nonlinear sloshing in a rectangular container. Ocean Eng. 38(11–12), 1277–1282 (2011)

    Google Scholar 

  17. Antuono, M., Colagrossi, A., Marrone, S., Molteni, D.: Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput. Phys. Commun. 181(3), 532–549 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Antuono, M., Colagrossi, A., Marrone, S., Lugni, C.: Propagation of gravity waves through SPH schemes with numerical diffusive terms. Comput. Phys. Commun. 182, 866–877 (2011)

    MATH  Google Scholar 

  19. Antuono, M., Bouscasse, B., Colagrossi, A., Lugni, C.: Two-dimensional modal method for shallow-water sloshing in rectangular basins. J. Fluid Mech. 700, 419–440 (2012a)

    MathSciNet  MATH  Google Scholar 

  20. Antuone, M., Colagrossi, A., Marrone, S.: Numerical diffusive terms in weakly-compressible SPH schemes. Comput. Phys. Commun. 183(12), 2570–2580 (2012b)

    MathSciNet  Google Scholar 

  21. Antuono, M., Brocchini, M.: Beyond Boussinesq-type equations: semi-integrated models for coastal dynamics. Phys. Fluids 25(016603), 21p (2013)

    Google Scholar 

  22. Antuono, M., Colagrossi, A.: The damping of viscous gravity waves. Wave Motion 50, 197–209 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Antuono, M., Bardazzi, A., Lugni, C., Brocchini, M.: A shallow-water sloshing model for wave breaking in rectangular tank. J. Fluid Mech. 746, 437–465 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Antuono, M., Lugni, C.: Global force and moment in rectangular tanks through a modal method for wave sloshing. J. Fluids Struct. 77, 1–18 (2018)

    Google Scholar 

  25. Aquelet, N., Souli, M., Gabrys, J., Olovson, L.: A new ALE formulation for sloshing analysis. Struct. Eng. Mech. 16(4), 423–440 (2003)

    Google Scholar 

  26. Aquino, H.C., Sou, A.: Sloshing of LNG and liquid hydrogen in rectangular tanks. In: Proceedings of 26th International Ocean and Polar Engineering (ISOPE) Confernce, Rhodes, Greece, p. 6p (2016)

  27. Arai, M., Makiyama, H.S., Cheng, L.Y., Kumano, A., Ando, T., Imakita, A.: Numerical and experimental study of 3-D sloshing in tanks of LNG carriers. In: Proceedings of 25ht International Conference Offshore Mechanics and Arctic Engineering (OMAE), pp. 763-770, Hamburg, Germany, OMAE2006-92235, 8p (2006a)

  28. Arai, M., Makiyama, H.S., Cheng, L.Y., Kumano, A., Ando, T., Imakita, A.: Numerical analysis of 3-D sloshing in tanks of membrane-type LNG carriers. In: Proceedings of International Conference Design, Construction and Operation of Natural Gas Carriers and Offshore Systems (ICSOT 2006), pp. 201–210. Busan, Korea (2006b)

  29. Arai, M., Cheng, L.Y., Wang, X., Okamoto, N., Hata, R., Karuka, G.: Sloshing and swirling behavior of liquid in a spherical LNG tank. J Jpn Soc Naval Archit Ocean Eng 26, 165–173. Proceedings of 13th International Symposium Practical Design of Ships and Other Floating Structures (PRADS 2016) (2017)

  30. Arai, M., Hata, R., Cheng, L.Y.: Sloshing in vertical and horizontal axisymmetric tanks. J. Jpn. Soc. Naval Archit. Ocean Eng. 27, 117–123 (2018)

    Google Scholar 

  31. Arami, A., Hattori, M.: Experimental study on shock pressure of breaking waves. JSCE Proc. Coast. Eng. 36, 579–583 (1988). (in Japanese)

    Google Scholar 

  32. Atif, M.M., Chi, S.W., Grossi, E., Shabana, A.A.: Evaluation of breaking wave effects in liquid sloshing problems: ANCF/SPH comparative study. Nonlinear Dyn (2019). https://doi.org/10.1007/s11071-019-04927-5, 18p

    MATH  Google Scholar 

  33. Baeten, A.: Optimization of LNG tank shape in terms of sloshing impact pressure. In: Proceedings of the 19th International Offshore and Polar Engineering Conference (ISOPE), Osaka, Japan, p. 8p (2009)

  34. Bagnold, R.A.: Interim report on wave-pressure research. Proc. Inst. Civ. Eng. (Lond.) 12, 201–227 (1939)

    Google Scholar 

  35. Bai, W., Liu, X., Kih, C.G.: Numerical study of violent LNG sloshing induced by realistic ship motions using level set method. Ocean Eng. 97, 100–113 (2015)

    Google Scholar 

  36. Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, Chichester, UK (1994)

    MATH  Google Scholar 

  37. Bazilevskii, A.V., Kalinichenko, V.A., Rozhkov, A.N.: Viscous regularization of breaking Faraday waves. JETP Lett. 107(11), 684–689 (2018)

    Google Scholar 

  38. Behruzi, P., Konopka, M., De Rose, F., Schwartz, G.: Cryogenic slosh modeling in LNG ship tanks and spacecrafts. In: Proceedings of 24th International Offshore and Polar Engineering (ISOPE) Conf, Busan, Korea, pp. 209–217 (2014)

  39. Behruzi, P., Gaulke, D., Haake, D., Brosset, L.: Modeling of impact waves in LNG ship tanks. Int. J. Offshore Polar. Eng. 27(1), 18–26 (2017)

    Google Scholar 

  40. Benielli, D., Sommeria, J.: Excitation of internal waves and stratified turbulence by parametric instability. Dyn. Atmos. Oceans 23, 335–343 (1996)

    MATH  Google Scholar 

  41. Benielli, D., Sommeria, J.L.: Excitation and breaking of internal gravity waves by parametric instability. J. Fluid Mech. 374, 117–144 (1998)

    MathSciNet  MATH  Google Scholar 

  42. Benz, W.: The Numerical Modelling of Nonlinear Stellar Pulsation: Problems and Prospect. In: Robert Buchler, J. (ed.) Smoothed Particle Hydrodynamics: A Review, pp. 269–288. Kluwer Academic Publishers, Dordrecht (1990)

    Google Scholar 

  43. Bogaert, H.: An experimental investigation of sloshing impact physics in membrane LNG tanks on floating structures. Ph.D. thesis, Delft University of Technology, The Netherlands (2018). https://doi.org/10.4233/uuid:96870b88-e07b-4ec2-8bd4-ef2cd3713568

  44. Bogaert, H., Leonard, S., Kaminski, M., Brosset, L.: Sloshing and scaling: results from Sloshel project. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Bejing, China, p. 10p (2010a)

  45. Bogaert, H., Léonard, S., Marhem, M., Lecl ère, G. and Kaminski, M.: Hydro-structural behavior of LNG containment systems under breaking wave impacts: findings from the Sloshel project. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Beijing, China, p. 11p (2010b)

  46. Bogaert, H., Brosset, L., Kaminski, M.L.: Interaction between wave impacts and corrugations of MarkIII Containment System for LNG carriers: Findings from the Sloshel project. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Beijing, China, p. 10p (2010c)

  47. Bogaert, H., Kaminski, M.L., Brosset, L.: Full and large-scale wave impact tests for a better understanding of sloshing: results of the Sloshel project. In: Proceedings of ASME 30th International Conference Ocean, Offshore and Arctic Engineering (OMAE), Rotterdam, The Netherlands, OMAE2011-49992, 11p (2011)

  48. Bonet, J., Lok, T.S.L.: Variational and momentum preservation aspects of SPH formulations. Comput. Methods Appl. Mech. Eng. 180, 97–115 (1999)

    MATH  Google Scholar 

  49. Bouruet-Aubertot, P., Sommeria, J., Staquet, C.: Breaking of standing internal gravity waves through two-dimensional instabilities. J. Fluid Mech. 285, 265–301 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Bouruet-Aubertot, P., Sommeria, J., Staquet, C.: Stratified turbulence produced by internal wave breaking. Dyn. Atmos. Oceans 23, 357–369 (1996)

    MATH  Google Scholar 

  51. Bouscasse, B., Colagrassi, A., Antuono, M., Lugni, C.: A classification of shallow water resonant sloshing in a rectangular tank. In: ASME 32nd International Conference on Offshore Mechanics and Arctic Engineering (OMAE), vol. 9, Nantes, France, Article number: V009T12A049, 10p (2013a)

  52. Bouscasse, B., Antuono, M., Clagrossi, A., Lugni, C.: Numerical and experimental investigation of nonlinear shallow water sloshing. Int. J. Nonlinear Sci. Numer. Simul. 14(2), 123–138 (2013b)

    Google Scholar 

  53. Bouscasse, B., Clagrossi, A., Souto-Iglesias, A., Cercosa-Pita, J.L.: Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system, I: theoretical formulation and numerical investigation. Phys. Fluids 26(033103), 21p (2014a)

    Google Scholar 

  54. Bouscasse, B., Clagrossi, A., Souto-Iglesias, A., Cercosa-Pita, J.L.: Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. II. Exp. Investig. Phys. Fluids 26, 033104, 22p (2014b)

    Google Scholar 

  55. Braeunig, J.-P.: FVCF-NIP method for multi-material compressible fluid flows: some improvements in the computation of condensates evolution, Instut National de Recherche en Informatique et en Automatique (INRIA), Nancy Grand Est, Rapport de recherche no 7121, 33p (2009)

  56. Braeunig, J.P.: An algorithm to control the pressure evolution for the FVCF-NIP method for compressible multi-material fluid flows. Int. J. Finite Vol. Institut de Mathématiques de Marseille, AMU 1(7), 101–132 (2010)

    MathSciNet  Google Scholar 

  57. Braeunig, J.P., Brosset, L., Dias, F., Ghidaglia, J.L.: Phenomenological study of liquid impacts through 2D compressible two-fluids numerical simulations. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE), Osaka, Japan, p. 9p (2009a)

  58. Braeunig, J.P., Desjardins, B., Ghidaglia, J.M.: A totally Eulerian finite volume solver for multi-material fluid flows. Eur. J. Mech-B/Fluids 28, 475–485 (2009b)

    MathSciNet  MATH  Google Scholar 

  59. Braeunig, J.P., Brosset, L., Dias, F., Ghidaglia, J.L.: On the effect of phase transition on impact pressures due to sloshing. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Beijing, China, p. 9p (2010)

  60. Bredmose, H., Bullock, G.N.: Scaling of wave impact pressures in trapped air pockets. In: Proceedings of 23rd International Workshop on Water Waves and Floating Bodies (IWWWFB), Jeju, Korea (2008)

  61. Bredmose, H., Peregrine, D.H., Bullock, G.N.: Violent breaking wave impacts, Part 2: modelling the effect of air. J. Fluid Mech. 641, 389–430 (2009)

    MathSciNet  MATH  Google Scholar 

  62. Bredmose, H., Hunt Raby, A., Jayaratne, R., Bullock, G.: The ideal flip-through impact: experimental and numerical investigation. J. Eng. Math. 67(1–2), 115–136 (2010)

    MathSciNet  MATH  Google Scholar 

  63. Bredmose, H., Bullock, G.N., Hogg, A.J.: Violent breaking wave impacts, Part 3. Effects of scale and aeration. J. Fluid Mech. 765, 82–113 (2015)

    MathSciNet  Google Scholar 

  64. Brosset, L., Mravak, Z., Kaminski, M.L., Collins, S., Finnigan, T.: Overview of Sloshel project. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, p. 10p (2009)

  65. Brosset, L., Bogaert, H., Carden, E.P., Kaminski, M.L., Maguire, J.R., Marhem, M.: A MARK-III panel subjected to a flip through wave impact: results from the Sloshel Project. In: Proceedings of the 21st International Offshore and Polar Engineering (ISOPE) Conference, Maui, Hawaii, USA (2011)

  66. Brosset, L., Chidaglia, J.M., Tarnec, L.L., Guilcher, P.M.: Generalized Bagnold model. In: Proceedings of the 23rd International Offshore and Polar Engineering (ISOPE) Conference, Anchorage, Alaska, 15p (2013)

  67. Buldakov, E.: Lagrangian modelling of fluid sloshing in moving tanks. J. Fluids Struct. 45, 1–14 (2014)

    Google Scholar 

  68. Buldakov, E.V., Eatock Taylor, R., Taylor, P.H.: New asymptotic description of nonlinear water waves in Lagrangian coordinates. J. Fluid Mech. 562, 431–444 (2006)

    MathSciNet  MATH  Google Scholar 

  69. Buldakov, E., Stagonas, D., Simons, R.: Extreme wave groups in a wave flume: controlled generation and breaking onset. Coast. Eng. 128, 75–83 (2017)

    Google Scholar 

  70. Bullock, G.N., Crawford, A.R., Hewson, P.J., Walkden, M.J.D., Bird, P.A.D.: The influence of air and scale on wave impact pressures. Coast. Eng. 42(4), 291–312 (2001)

    Google Scholar 

  71. Bullock, G., Obhrai, C., Müller, G., Wolters, G., Peregrine, H., Bredmose, H.: Field and laboratory measurement of wave impacts. In: ASCE Proceedings of Coastal Structures, Portland, Oregon, pp. 343–355 (2003)

  72. Bullock, G., Obhrai, C., Peregrine, D., Bredmose, H.: Violent breaking wave impacts. Part 1: results from large-scale regular wave tests on vertical and sloping walls. Coast. Eng. 54, 602–617 (2007)

    Google Scholar 

  73. Bunnik, T., Huijsmans, R.H.M.: Large scale LNG sloshing model tests. Int. J. Offshore Polar Eng. 19(1), 8–14 (2007)

    Google Scholar 

  74. Caboussat, A.: Numerical simulation of two-phase free surface flows. Arch. Comput. Methods Eng. 12(2), 165–224 (2005)

    MATH  Google Scholar 

  75. Cai, Z.H., Wang, D.Y., Li, Z.: Numerical simulation and experimental study of sloshing in a liquefied natural gas tank. Shanghai Jiaotong Daxue Xuebao/J Shanghai Jiaotong Univer 43(10), 1559–1563 (2009) (in Chinese)

  76. Cai, Z.H., Wang, D.Y., Li, Z.: Influence of excitation frequency on slosh-induced impact pressures of liquefied natural gas tanks. J. Shanghai Jiaotong Univ. (Sci.) 16(1), 124–128 (2011)

    Google Scholar 

  77. Cai, Z.H., Wang, D.Y., Li, Z.: Experimental study and numerical simulation of sloshing in VLGC tanks with internal structures. Chuan Bo Li Xue/J Ship Mech. 16(12), 1385–1393 (2012)

    Google Scholar 

  78. Cao, X.Y., Ming, F.R., Zhang, A.M.: Sloshing in a rectangular tank based on SPH simulation. Appl. Ocean Res. 47, 241–254 (2014)

    Google Scholar 

  79. Cao, Y., Graczyk, M., Pakozdi, C., Lu, H., Huang, F., Yang, C.: Sloshing load due to liquid motion in a tank, comparison of potential flows, CFD, and experiment solutions. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Beijing, China, p. 12p (2010)

  80. Carden, E.P., Maguire, J.R., Durley-Boot, N.J.: Modal testing and model reconciliation of the Sloshel Mk III test panel. In: Proceedings of the 21st International Offshore and Polar Engineering (ISOPE) Conference, Maui, Hawaii, USA, p. 8p (2011a)

  81. Carden, E.P., Zegos, C., Durley-Boot, N.J., Maguire, J.R., Radosavljevic, D., Whitworth, S.: Modelling of full-scale wave impacts on the Sloshel Mk III test panel. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Maui, Hawaii, USA, p. 8p (2011b)

  82. Cariou, A., Casella, G.: Liquid sloshing in ship tanks: a comparative study of numerical simulation. Mar. Struct. 12(3), 183–198 (1999)

    Google Scholar 

  83. Chan, E.S., Melvillem, W.K.: Deep-water plunging wave pressures on a vertical plane wall. Proc. R. Soc. Lond. A 417, 95–131 (1988)

    Google Scholar 

  84. Chandrasekaran, R., Sundar, V., Sannasiraj, S.A.: Breaking wave impact pressure on a vertical wall. Int. J. Ocean Clim. Syst. 1(3), 155–166 (2010)

    Google Scholar 

  85. Chen, B.F.: Viscous fluid in tank under coupled surge, heave, and pitch motions. ASCE J Waterw. Port Coast. Ocean Eng. 131, 239–256 (2005)

    Google Scholar 

  86. Chen, B.F., Nokes, R.: Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank. J. Comput. Phys. 209(1), 47–81 (2005)

    MATH  Google Scholar 

  87. Chen, H.C.: CFD simulation of compressible two-phase sloshing flow in a LNG tank. Ocean Syst. Eng. 1(1), 31–57 (2011)

    MathSciNet  Google Scholar 

  88. Chen, J.K., Beraun, J.E., Carney, T.C.: A corrective smoothed particle method for boundary value problems in heat conduction. Numer. Methods Eng. 46(2), 231–252 (1999)

    MATH  Google Scholar 

  89. Chen, J.K., Beraun, J.E.: A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput. Methods Appl. Mech. Eng. 190, 225–239 (2000)

    MATH  Google Scholar 

  90. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 30(1), 329–364 (1998)

    MathSciNet  MATH  Google Scholar 

  91. Chen, X., Wan, D.: Numerical simulation of three-dimensional violent free surface flows by GPU-based MPS method. Int. J. Comput. Methods 16(4), Article No. 1843012 (2019)

    MathSciNet  MATH  Google Scholar 

  92. Chen, X.D., Yue, Q.J.: Experimental investigation on sloshing impact pressure for tank structure design. Zhendong yu Chongji/J Vib. Shock 34(18), 171–176 (2015)

    Google Scholar 

  93. Chen, Y.G., Djidjeli, K., Price, W.G.: Numerical simulation of liquid sloshing phenomena in partially filled containers. Comput. Fluids 38, 830–842 (2009a)

    MATH  Google Scholar 

  94. Chen, Y.G., Price, W.G., Temarel, P.: Numerical simulation of liquid sloshing in LNG tanks using a compressible two-fluid flow model. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, pp. 221–230 (2009b)

  95. Chen, Z., Zong, Z., Li, H.T., Li, J.: An investigation into the pressure on solid walls in 2D sloshing using SPH method. Ocean Eng. 59, 129–141 (2013)

    Google Scholar 

  96. Cheng, L.Y., Arai, M.: A 3D numerical method for assessment of impact loads due to sloshing in liquid cargo tanks. In: Proceedings of the 15th International Offshore and Polar Engineering (ISOPE) Conference, pp. 214–221. Seoul, Korea (2005)

  97. Cheng, L.Y., Bellzi, C.A., Amaro, R.A., Arai, M., Okada, T.: A numerical study on the effects of the perforated swash bulkheads on sloshing behaviors of liquid cargo tanks. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, pp. 923–930 (2016)

  98. Chern, M.J., Vaziri, N., Syamsuri, S., Borthwick, A.G.L.: Pseudo-spectral solution of three-dimensional nonlinear sloshing in a shallow water rectangular tank. J. Fluids Struct. 35, 160–184 (2012)

    Google Scholar 

  99. Cho, J.R., Lee, H.W.: Nonlinear finite element analysis of large amplitude sloshing flow in two-dimensional tank. Int. J. Numer. Methods Eng. 61, 514–531 (2004)

    MATH  Google Scholar 

  100. Cho, J.R., Lee, H.W., Ha, S.Y.: Finite element analysis of resonant sloshing response in 2-D baffled tank. J. Sound Vib. 288(4–5), 829–845 (2005)

    Google Scholar 

  101. Choi, H.I., Kwon, S.H., Choi, Y.M., Lee, K.H., Lee, S.B., Shin, J.Y.: Investigation of characteristics of impact pressure pattern in sloshing experiment. In: Proceedings of the 9th ISOPE Pacific/Asia Offshore Mechanics Symposium (PACOMS-2010), pp. 290–293 (2010a)

  102. Choi, H.I., Choi, Y.M., Kim, H.Y., Kwon, S.H., Park, J.S., Lee, K.H.: A study on the characteristics of piezoelectric sensor in sloshing experiment. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Beijing, China, pp. 231–236 (2010b)

  103. Chorin, A.J.: Random choice solutions of hyperbolic systems. J. Comput. Phys. 22(4), 517–533 (1976)

    MathSciNet  MATH  Google Scholar 

  104. Chorin, A.J.: Random choice methods with applications to reacting gas flow. J. Comoput. Phys. 25(3), 253–272 (1977)

    MathSciNet  MATH  Google Scholar 

  105. Chuang, S.L.: Experiments on slamming of wedge-shaped bodies. J. Ship Res. 11(3), 9p (1967)

    Google Scholar 

  106. Colagrossi, A.: A Meshless Lagrangian Method for Free-Surface and Interface Flows with Fragmentation. Ph.D. Thesis, University of Rome La Sapienza, Dept Mech Eng (2005). http://padis.uniroma1.it/

  107. Colagrossi, A., Landrini, M.: Numerical simulation of interfacial flows by smoothed particle hydro-dynamics. J. Comput. Phys. 191, 448–475 (2003)

    MATH  Google Scholar 

  108. Colagrossi, A., Lugni, C., Greco, M., Faltinsen, O.M.: Experimental and numerical investigation of 2D sloshing with slamming. In: Proceedings of the 19th International Workshop on Water Waves and Floating Bodies, Cortona, Italy, p. 6p (2004a)

  109. Colagrossi, A., Palladino, F., Greco, M., Lugni, C., Faltinsen, O.M.: Experimental and numerical investigation of 2D sloshing: scenarios near the critical filling depth. In: Proceedings of 19th International Workshop on Water Waves and Floating Body, Cortona, Italy, p. 5p (2004b)

  110. Colagrossi, A., Antuono, M., Le Touzé, D.: Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model. Phys. Rev. E 79(5), 056701, 13p (2009)

    Google Scholar 

  111. Colagrossi, A., Colicchio, G., Lugni, C., Brocchini, M.: A study of violent sloshing wave impacts using an improved SPH method. J. Hydraul. Res. 48, 94–104 (2010)

    Google Scholar 

  112. Colagrossi, A., Antuono, M., Souto-Iglesia, A., Le Touzé. D.: Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows. Phys. Rev. E- Stat. Nonlinear Soft Matter. Phys. 84(2), Article # 026705, 13p (2011)

  113. Colagrossi, A., Bouscasse, B., Antuono, M., Marrone, S.: Particle packing algorithm for SPH schemes. Comput. Phys. Commun 183(8), 1641–1653 (2012)

    MathSciNet  MATH  Google Scholar 

  114. Colagrossi, A., Souto-Iglesias, A., Antuono, A., Marrone, S.: Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 87(2), Article # 023302, 15p (2013)

  115. Colicchio, G., Colagrossi, A., Lugni, C., Brocchini, M., Faltinsen, O.: Challenges on the numerical investigation of the flip-through. In: Proceedings of the 9th International Conference on Numerical Ship Hydrodynamics, pp. 380–394 (2007)

  116. Cooker, M.J., Peregrine, D.H.: Computation of violent wave motion due to waves breaking against a wall. In: Proceedings of ASCE 22nd International Conference on Coastal Engineering, Delft, pp. 164–176 (1990)

  117. Cooker, M.J., Peregrine, D.H.: Violent motion as near-breaking waves meet a vertical wall. In: Banner, M.L., Grimshaw, R.H.J. (eds.) Proceedings of the IUTAM Symp Breaking Waves, Sydney, pp. 291–297. Springer (1991)

    Google Scholar 

  118. Cooker, M.J., Peregrine, D.H.: Wave impact pressure and its effect upon bodies lying on the sea bed. Coast. Eng. 18, 205–229 (1992)

    Google Scholar 

  119. Cordonnier, J.P.V.: Numerical simulation of sloshing in tanks. In: Marine, Offshore and Ice Technology, pp. 197–204. Computational Mechanics Publ, Southampton, Boston (1994)

  120. Costes, J., Dias, F., Ghidaglia., J.-M., Mrabet, A.: Simulation of breaking wave impacts on a flat rigid wall by a 2D parallel finite volume solver with two compressible fluids and an advanced free surface reconstruction. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Anchorage, Alaska 3, 243–250 (2013)

  121. Cuomo, G.: Dynamics of Wave-Induced Loads and their Effects on Coastal Structures. Ph.D. Thesis, Science of Civil Engineering, University of Rome Tre, Rome, Italy (2005)

  122. Cuomo, G.: Wave impacts on vertical seawalls and caisson breakwaters. On Course International Navigation Association AIPCN-PIANC No. 127, 25–38 (2007)

  123. Cuomo, G., Allsop, W., Takahashi, S.: Scaling wave impact pressures on vertical walls. Coast. Eng. 57(6), 604–609 (2010a)

    Google Scholar 

  124. Cuomo, G., Allsop, W., Bruce, T., Pearson, J.: Breaking wave loads at vertical seawalls and breakwaters. Coast. Eng. 57(4), 424–439 (2010b)

    Google Scholar 

  125. Dalrymple, R.A., Rogers, B.D.: Numerical modeling of water waves with the SPH method. Coast. Eng. 53(2–3), 141–147 (2006)

    Google Scholar 

  126. De Lauzon, J., Diebold, L., Malenica, S.: Sloshel project—strength assessment of LNG cargo containment systems under sloshing loads. In: Proceedings of the 21st International Offshore and Polar Engineering (ISOPE) Conference, Maui, Hawaii, USA, p. 8p (2011)

  127. Delorme, L., Iglesias, A.S., Perez, S.A.: Sloshing loads simulation in LNG tankers with SPH. In: International Conference of Computational Methods in Marine Engineering, Barcelona, p. 10 (2005)

  128. Delorme, L., Colagrossi, A., Souto-Iglesias, A., Zamora-Rodriguez, R., Botia-Vera, E.: A set of canonical problems in sloshing. Part I. Pressure field in forced roll. Comparison between experimental results and SPH. Ocean Eng. 36(2), 168–178 (2009)

    Google Scholar 

  129. Dematteo, A., Ratouis, A.: Stochastic simulation of the pressure field induced by sloshing impacts. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Anchorage, Alaska, pp. 290–297 (2013)

  130. Denny, D.F.: Further experiment on wave pressure. J. Inst. Civ. Eng. 35(4), 330–345 (1951)

    Google Scholar 

  131. Deuff, J.B.: Extrapolation au Réel des Mesures de Pressions Obtenues sur des Cuves Modèle Réduit (Real-Life Extrapolation of Pressure Measurements Obtained on Reduced-Model Tanks). Ecole Centrale de Nantes/GTT, France (2007). PhD Thesis

    Google Scholar 

  132. Dias, F., Ghidaglia, J. M., Le Coq, G.: On the fluid dynamics models for sloshing. In: Proceedings of the 17th International Offshore and Polar Engineering (ISOPE) Conference, Lisbon, Portugal, pp. 1880–1888 (2007)

  133. Dias, F., Dutykh, D., Ghidaglia, J.M.: A two-fluid model for violent aerated flows. Comput. Fluids. 39, 283–293 (2010)

    MathSciNet  MATH  Google Scholar 

  134. Di Mascio, A., Antuono, M., Colagrossi, A., Marrone, S.: Smoothed particle hydrodynamics method from a large eddy simulation perspective. Phys. Fluids 29(3), 035102, 31p (2017)

    Google Scholar 

  135. DNV, 2006, Sloshing analysis of LNG membrane tanks , Classification Notes No. 30.9. Oslo (Norway): Det Norke Veritas

  136. Doh, D.H., Jo, H.J., Shin, B.R., Ryu, M.C., Hwang, Y.K.: Analysis of the sloshing flows of a LNG cargo tank. J. Therm. Sci. 20(5), 442–448 (2011)

    Google Scholar 

  137. Dong, C.: Modeling and Simulation of Sloshing Motion in Partly Filled Tank. Åalesund University College, Ålesund, Norway (2015). M.S. Thesis

    Google Scholar 

  138. Duan, M.Y., Zhu, R.Q.: Numerical simulation of violent liquid sloshing in a tank based on Youngs method. Chuan Bo Li Xue/J. Ship Mech. 13(1), 9–18 (2009). (in Chinese)

    MathSciNet  Google Scholar 

  139. Elahi, R., Passandideh-Frad, M., Javanshir, A.: Simulation of liquid sloshing in 2D containers using the volume of fluid method. Ocean Eng. 96(1), 226–244 (2015)

    Google Scholar 

  140. Elias, R.N., Coutinho, A.L.G.: Stabilized edge-based finite element simulation of free-surface flows. Int. J Num. Methods Fluids 54(6–8), 965–993 (2007)

    MathSciNet  MATH  Google Scholar 

  141. Elias, R.N., Gonçalves Jr., M.A., Coutinho, A.L.G., Esperança, P.T.T., Martins, M.A.D., Ferreira, M.D.A.S.: Computational techniques for stabilized edge-based finite element simulation of free-surface flows. In: 27th ASME, International Conference on Offshore Mechanics and Arctic Engineering (OMAE). Estoril, Portugal 5, 823–834 (2008)

  142. Elias, R.N., Gonçalves Jr., M.A., Coutinho, A.L.G., Esperança, P.T.T., Martins, M.A.D., Ferreira, M.D.A.S.: Computational techniques for stabilized edge-based finite element simulation of nonlinear free-surface flows. ASME J. Offshore Mech. Arctic Eng. 131(4), 041103, 7p (2009a)

  143. Elias, R.N., Gonçalves Jr., M.A., Coutinho, A.L.G., Esperança, P.T.T., Martins, M.A.D., Ferreira, M.D.A.S.: Progressive wave simulation using stabilized edge-based finite element methods. In: 28th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Honolulu, Hawaii 5, 621–631 (2009b)

  144. Elias, R.N., Gonçalves Jr., M.A., Coutinho, A.L.G., Esperança, P.T.T., Martins, M.A.D., Ferreira, M.D.A.S.: Computational simulation of free surface flows using stabilized edge-based finite element method. In: 29th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Shanghai, China 6, 967–972 (2010)

  145. Engquist, B., Majda, A.: Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci./ Appl. Math. Sci. 74(5), 1765–1766 (1977)

    MathSciNet  MATH  Google Scholar 

  146. Eswaran, M., Saha, U.K.: Low steeping waves simulation in a vertical excited container using \(\sigma -\)transformation. In: 28th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Honolulu, Hawaii, Paper No. OMAE2009–80248, pp. 761–770, 10p (2009)

  147. Eswaran, M., Saha, U.K.: Waves simulation in an excited cylindrical tank using \( \sigma -\)transformation. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Paper No. IMECE2010–39752, Vancouver, Canada (2010)

  148. Eswaran, M., Saha, U.K.: Sloshing of liquids in partially filled tanks—a review of experimental investigations. Ocean Syst. Eng. 1(2), 131–155 (2011)

    Google Scholar 

  149. Eswaran, M., Singh, A., Saha, U.K.: Experimental measurement of the surface velocity field in an externally induced sloshing tank. Proc IMechE, Part M: J. Eng. Marit. Environ. 225, 133–148 (2011)

    Google Scholar 

  150. Eswaran, M., Saha, U.K.: Experimental investigation for capturing liquid free surface elevation in an externally induced tank. Dev. Appl. Ocean Eng. 2(1), 15–24 (2013)

    Google Scholar 

  151. Etienne, S., Scolan, Y.M., Brosset, L.: Numerical study of density ratio influence on global wave shapes before impact. In: 37th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Madrid, Spain, #OMAE2018-78624, V009T13A025(11p) (2018)

  152. Faltinsen, O.M., Landrini, M., Greco, M.: Slamming in marine applications. J. Eng. Math. 48(3–4), 187–217 (2004)

    MATH  Google Scholar 

  153. Faltinsen, O.M., Rognebakke, O.F., Timokha, A.N.: Classification of three-dimensional nonlinear sloshing in a square-base tank with finite depth. J. Fluids Struct. 20(1), 81–103 (2005a)

    MATH  Google Scholar 

  154. Faltinsen, O.M., Rognebakke, O.F., Timokha, A.N.: Resonant three-dimensional nonlinear sloshing in a square-base basin, Part 2: Effect of higher modes. J. Fluid Mech. 523, 199–218 (2005b)

    MathSciNet  MATH  Google Scholar 

  155. Fang, Z.Y., Duan, M.Y., Zhu, R.Q.: Numerical simulation of liquid sloshing in a liquid tank based on Level-set method. Chuan Bo Li Xue/J. Ship Mech. 11(1), 62–67 (2007). (in Chinese)

    Google Scholar 

  156. Farid, M., Gendelman, O.V.: Internal resonances and dynamic responses in equivalent mechanical model of partially liquid-filled vessel. J. Sound Vib. 379, 191–212 (2016a)

    Google Scholar 

  157. Farid, M., Gendelman, O.V.: Response regimes in equivalent mechanical model of strongly nonlinear liquid sloshing. Int. J. NonLinear Mech, 94(2017), 146–159 (2016b). arXiv:1605.09648

    Google Scholar 

  158. Farid, M., Gendelman, O.V.: Internal resonances and dynamic responses in equivalent mechanical model of partially liquid-filled vessel. Proc. Eng. 199, 3440–3443 (2017)

    Google Scholar 

  159. Farid, M., Levy, N., Gendelman, O.V.: Vibration mitigation in partially liquid-filled vessel using passive energy absorbers. J. Sound Vib. 406, 51–73 (2017)

    Google Scholar 

  160. Ferrari, A., Dumbser, M., Toro, E.F., Armanini, A.: A new 3D parallel SPH scheme for free-surface flows. Comput. Fluids 38, 1203–1217 (2009)

    MathSciNet  MATH  Google Scholar 

  161. Field, K.S.: Liquid Slosh Analysis Using Smoothed Particle Hydrodynamics. M.S. thesis, Embry-Riddle Aeronautical University, Daytona Beach, Florida (2014)

  162. Firouz-Abadi, R.D., Haddadpour, H., Ghasemi, M.: Reduced order modeling of liquid sloshing in 3D tanks using boundary element method. Eng. Anal. Bound. Elem. 33(6), 750–761 (2009)

    MathSciNet  MATH  Google Scholar 

  163. Firouz-Abadi, R.D., Ghamesi, M., Haddadpour, H.: A modal approach to second-order analysis of sloshing using boundary element method. Ocean. Eng. 38, 11–21 (2011)

    Google Scholar 

  164. Firouz-Abadi, R.D., Borhan-Panahm M.R.: Sloshing analysis of flowing liquid in 3D tank using boundary elements method. ASME J. Press. Vessel Technol. 135(2), Article # 021301, 8p (2013)

  165. Fonfach, J.M., Manderbacka, T., Neves, M.A.S.: Numerical sloshing simulations: comparison between Lagrangian and lumped mass models applied to two compartments with mass transfer. Ocean Eng. 114, 168–184 (2016)

    Google Scholar 

  166. Frandsen, J.B.: Sloshing motion in excited tank. J. Comput. Phys. 196(1), 53–87 (2004)

    MATH  Google Scholar 

  167. Frandsen, J.B.: Free surface water wave 1-D LBGK predictions. Int. J. Comput. Fluid Dyn. 20(6), 427–437 (2006)

    MATH  Google Scholar 

  168. Frandsen, J.B.: Sloshing in tanks: assessment of traditional and lattice Boltzmann solutions. In: Proceedings of International Conference Violent Flows Nantes, France, p. 8 (2012)

  169. Frandsen, J.B., Borthwick, A.G.L.: Simulation of sloshing motions in fixed and vertically excited containers using a 2-D inviscid \(\sigma -\)transformed finite difference solver. J. Fluids Struct. 18(2), 197–214 (2003)

    Google Scholar 

  170. Frihat, M., Karimi, M.R., Brosset, L., Ghidaglia, J.M.: Variability of impact pressures induced by sloshing investigated through the concept of singularization. In: Proceedings of the 26th International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, pp. 901–914 (2016)

  171. Frihat, M., Brosset, L., Ghidaglia, J.M.: Experimental study of surface tension effects on sloshing impact loads. In: Proceedings of 32nd International Workshop on Water and Floating Bodies, Dalian, China, p. 4p (2017)

  172. Fringer, O.B., Street, R.L.: The dynamics of breaking progressive interfacial waves. J. Fluid Mech. 494, 319–353 (2003)

    MathSciNet  MATH  Google Scholar 

  173. Fu, T.C., Fullerton, A.M., Brewton, S., Brucker, K.A., Dommermuth, D.: An Experimental and Computational Study of Breaking Wave Impact Forces. In: Proceedings of 27th Symposium Naval Hydrodynamics, Seoul, Korea, p. 12p (2008)

  174. Galvin, C.J.: Wave breaking in Shallow water, Chapter in Waves on Beaches and Resulting Sediment Transport, Edited by T.E. Meyer. Academic Press, New York (1972)

    Google Scholar 

  175. Gao, F., Ma, Z.H., Zang, J., Causon, D.M.: Simulation of breaking wave impact on a vertical wall with a compressible two-phase flow, model. In: Proceedings of the 25th International Offshore and Polar Engineering (ISOPE), Kona, Hawaii, p. 5p (2015)

  176. Gazzola, T., Diebold, L.: Dynamic probes: an on-the-Fly CFD Plug-in for sloshing impact assessment. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Anchorage, Alaska, p. 8p (2013)

  177. Ge, Z.F., Wang, B., Shin, Y.S.: Sloshing simulations of various types of LNG tanks due to ship motions. In: Proceedings of 6th International Conference on Computational Methods in Marine Engineering (MARINE 2015), pp. 1027–1038 (2015)

  178. Gerlach, C.R.: Investigation of Water Impact of Blunt Rigid Bodies—Real Fluid Effects, Technical Report No. 1, Southwest Research Institute Project No. 02-2036, San Antonio, Texas (1967)

  179. Gervaise, E., de Sèze, P.E., Maillard, S.: Reliability-based methodology for sloshing assessment of membrane LNG vessels. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE), Osaka, Japan, pp. 183–191 (2009)

  180. Ghidaglia, J.M., Kumbaro, A., Le Coq, G.: Une méthode volumes finis à flux caracté ristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation (A flow-through finite volume method for the numerical resolution of hyperbolic systems of conservation laws). C R Acad. Sci. Paris 322(I), 981–988 (1996)

    MATH  Google Scholar 

  181. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    MATH  Google Scholar 

  182. Glimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. Commun. Pure Appl. Math. 18, 697–715 (1965)

    MathSciNet  MATH  Google Scholar 

  183. Godderidge, B., Tan, M., Earl, C., Turnock, S.: Boundary layer resolution for modeling of a sloshing liquid. In: Proceedings of the 17th International Offshore and Polar Engineering (ISOPE) Conference, Lisbon, Portugal, pp. 1905–1911 (2007)

  184. Godderidge, B., Turnock, S.R., Earl, C., Tan, M.: Identification of dangerous LNG sloshing using a rapid sloshing model validated with computational fluid dynamics. In: Proceedings of the 18th International Offshore and Polar Engineering (ISOPE) Conference, vol. 3, Vancouver, 8p (2008)

  185. Godderidge, B., Turnock, S., Earl, C., Tan, M.: The effect of fluid compressibility on the simulation of sloshing impacts. Ocean Eng. 36(8), 578–587 (2009a)

    Google Scholar 

  186. Godderidge, B., Turnock, S., Tan, M., Earl, C.: An investigation of multi-phase CFD modelling of a lateral sloshing tank. Comput. Fluids 38(2), 183–193 (2009b)

    MATH  Google Scholar 

  187. Godderidge, B., Turnock, S.R., Tan, M.: A rapid method for the simulation of sloshing using a mathematical model based on the pendulum equation. Comput. Fluids 57, 163–171 (2012a)

    MathSciNet  MATH  Google Scholar 

  188. Godderidge, B., Turnock, S.R., Tan, M.: Evaluation of a rapid method for the simulation of sloshing in rectangular and octogonal containers at intermediate filling levels. Comput. Fluids 57, 1–24 (2012b)

    MathSciNet  MATH  Google Scholar 

  189. Gomez-Gesteira, M., Dalrymple, R.A.: Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. J. Waterw. Port C 130(2), 63–69 (2004)

    Google Scholar 

  190. Gómez-Goñi, J., Garrido-Mendoza, C.A., Cercós, J.L., González, L.: Two-phase analysis of sloshing in a rectangular container with Volume of Fluid (VoF) methods. Ocean Eng. 73, 208–212 (2013)

    Google Scholar 

  191. Gong, K., Shao, S.D., Liu, H., Wang, B., Tan, S.K.: Two-phase SPH simulation of fluid-structure interactions. J. Fluids Struct. 65, 155–179 (2016)

    Google Scholar 

  192. Gotoh, H., Shao, S.D., Memita, T.: SPH-LES model for numerical investigation of wave interaction with partially immersed break-water. Coast. Eng. 46(1), 39–63 (2004)

    Google Scholar 

  193. Gotoh, H., Sakai, T.: Key issues in the particle method for computation of wave breaking. Coast. Eng. 53(2–3), 171–179 (2006)

    Google Scholar 

  194. Gotoh, H., Khayyera, A., Ikari, H.: On enhancement of incompressible SPH method for simulation of violent sloshing flows. Appl. Ocean Res. 46, 104–115 (2014)

    Google Scholar 

  195. Gradinscak, M., Jafar, R.: Computational modelling of liquid sloshing in rectangular tank. Appl. Mech. Mater. 365–366, 186–189 (2013)

    Google Scholar 

  196. Gran, S.: Statistical distributions of local impact pressures in liquid sloshing. Nor. Marit. Res. 9(2), 2–12 (1981)

    MathSciNet  Google Scholar 

  197. Green, M.D., Peiró, J.: Long duration SPH simulations of sloshing in tanks with a low fill ratio and high stretching. Comput. Fluids 174, 179–199 (2018)

    MathSciNet  MATH  Google Scholar 

  198. Grenier, N., Antuono, M., Colagrossi, A., Le Touze, D., Alessandrini, B., Le Touzé, D.: An Hamiltonian interface SPH formulation for multi-fluid and free surface flows. J. Comput. Phys. 228(22), 8380–8393 (2009)

    MathSciNet  MATH  Google Scholar 

  199. Grotle, E.L., Æsøy, V., Halse, K.H., Pedersen, E., Li, Y.: Non-isothermal sloshing in marine liquefied natural gas fuel tanks. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, ISOPE-I-16-441, p. 7p. Rhodes, Greece (2016)

  200. Grotle, E.L., Æsøy, V.: Experimental and numerical investigation of sloshing under roll excitation at shallow liquid depths. Ocean Eng. 138, 73–85 (2017)

    Google Scholar 

  201. Grüne, J., Wang, Z., Bullock, G., Obhrai, C.: Violent wave overtopping on vertical and inclined walls: large scale model tests. In: Proceedings of 29th International Conference on Coastal Engineering, Lisbon, Portugal, pp. 4469–4481 (2005)

  202. Guan, Y.M., Ye, H.K., Chen, Q.R.: Numerical simulation of 2D sloshing with arbitrary Lagrangian–Eulerian finite element method. Chuan Bo Li Xue/J. Ship Mech. 14(10), 1094–1099 (2010)

    Google Scholar 

  203. Guilcher, P.-M., Oger, G., Brosset, L., Jacquin, J.-B., Le Touzé, D.: Simulation of liquid impacts with a compressible two-phase parallel SPH model. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Beijing, China, p. 9p (2010)

  204. Guilcher, P.M., Brosset, L., Jacquin, E., Le Touzé, D.: Simulations of breaking wave impacts on a MARK-III containment system for LNG carriers with a two-phase fluid-structure SPH model. In: Proceedings of the 22nd International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece III, 460–472 (2012)

  205. Guilcher, P.M., Couty, N., Brosset, L., Le Touzé, D.: Simulations of breaking wave impacts on a rigid wall at two different scales with a two-phase fluid compressible SPH model. Int. J. Offshore Polar Eng. 23(4), 241–253 (2013)

    Google Scholar 

  206. Guilcher, P.M., Oger, G., Jacquin, E., Brosset, L., Grenier, N., Le Touzé, D.: Simulation of liquid impacts with a two-phase parallel SPH model. Int. J Offshore Polar Eng. 24(1), 11–20 (2014a)

    Google Scholar 

  207. Guilcher, P.M., Jus, Y., Brosset, L.: 2D simulations of breaking wave impacts on a flat rigid wall—Part 1: Influence of the wave shape. In: Proceedings of the 24th International Offshore and Polar Engineering (ISOPE) Conference, p. 14p. Busan, Korea (2014b)

  208. Guilcher, P.M., Jus, Y., Brosset: 2D simulations of breaking wave impacts on a flat rigid wall—Part 2: Influence of scale. In: Proceedings of the 28th International Offshore and Polar Engineering (ISOPE) Conference, Sapporo, Japan, p. 14p (2018)

  209. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 2182–2189 (1965)

    MathSciNet  MATH  Google Scholar 

  210. Hasheminejad, S.M., Moshrefzadeh, A., Jarrahi, M.: Transient sloshing in partially filled laterally excited spherical vessels. ASCE J. Eng. Mech. 802–813 (2013). https://doi.org/10.1061/EM.1943-7889.0000526

  211. Hasheminejad, S.M., Mohammadi, M.M., Jarrahi, M.: Liquid sloshing in partly-filled laterally-excited circular tanks equipped with baffles. J. Fluids Struct. 44, 97–114 (2014)

    Google Scholar 

  212. Hasheminejad, S.M., Soleimani, H.: Linear solution for liquid sloshing in an upright elliptical cylindrical container with an eccentric core barrel. ASCE J. Eng. Mech. 143(9), 04017105, 15p (2017a)

    Google Scholar 

  213. Hasheminejad, S.M., Soleimani, H.: An analytical solution for free liquid sloshing in a finite-length horizontal cylindrical container filled to an arbitrary depth. Appl. Math. Modell. 48, 338–352 (2017b)

    MathSciNet  MATH  Google Scholar 

  214. Hattori, M., Arami, A., Yui, T.: Wave impact pressure on vertical walls under breaking waves of various types. Coast. Eng. 22(1–2), 79–114 (1994)

    Google Scholar 

  215. Hay, A., Etienne, S., Pelletier, D.: An ALE/FE formulation for high precision interface tracking in separated multi-phase flows. In: Proceedings of the 22nd AIAA Computational Fluid Dynamics Conference, Dallas, Texas, p. 15p (2015)

  216. Hay, A., Etienne, S., Pelletier, D., Brosset, L.: Accurate prediction of sloshing waves in tanks by an adaptive two-fluid front-tracking approach. In: Proceedings of the 26th International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, p. 10p (2016a)

  217. Hay, A., Etienne, S., Pelletier, D.: Adaptive simulation of gas-liquid interfacial flows with surface tension. In: Proceedings of 54th AIAA Aerospace Sciences Meeting, San Diego California. Paper No. AIAA 2016–1594, 16p (2016b)

  218. Hayashi, T., Hattori, M.: Pressure of the breaker against a vertical wall. JSCE Coast. Eng. Jpn. 1, 25–37 (1958)

    Google Scholar 

  219. He, H., Kuo, J.F., Rinehart, A.J., Yung, T.W.: Influence of raised invar edges on sloshing impact pressures. In: Proceedings of the 1st Sloshing Dynamics and Design Symposium, in Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, vol. 3, pp. 100–106 (2009)

  220. Helfrich, K.R., Melville, W.K., Miles, J.W.: On interfacial solitary waves over slowly varying topography. J. Fluid Mech. 149, 305–317 (1984)

    MathSciNet  MATH  Google Scholar 

  221. Hirt, C.W., Nichols, B.D.: Volume of fluid (VoF) methods for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    MATH  Google Scholar 

  222. Holloway, G.: Considerations on the theory of temperature spectra in stably stratified turbulence. J. Phys. Oceanogr. 16, 2179–2183 (1986)

    Google Scholar 

  223. Holyer, J.Y.: Large amplitude progressive interfacial waves. J. Fluid. Mech. 93(3), 433–448 (1979)

    MathSciNet  MATH  Google Scholar 

  224. Hosain, M.L., Sand, U., Fdhila, R.B.: Numerical investigation of liquid sloshing in carrier ship fuel tanks. In: Proceedings of the 9th Vienna International Conference on Mathematical Modelling, IFAC-PapersOnLine, vol. 51, # 2, pp. 583–588 (2018)

    Google Scholar 

  225. Hou, L., Li, F., Wu, C.: A numerical study of liquid sloshing in a two-dimensional tank under external excitations. J. Mar. Sci. Appl. 11(3), 305–310 (2012)

    Google Scholar 

  226. Hu, C.H., Kashiwagi, M.: A CIP-based method for numerical simulations of violent free surface flow. J. Mar. Sci. Technol. 9, 143–157 (2004)

    Google Scholar 

  227. Hu, C.H., Yang, K.K., Kim, Y.: 3-D numerical simulations of violent sloshing by CIP-based method. J. Hydrodyn. 22(5Suppl.), 253–258 (2010)

    Google Scholar 

  228. Hu, X.Y., Adams, N.A.: A multi-phase SPH method for macroscopic and mesoscopic flows. J. Comput. Phys. 213, 844–861 (2006)

    MathSciNet  MATH  Google Scholar 

  229. Hu, X.Y., Adams, N.A.: An incompressible multi-phase SPH method. J. Comput. Phys. 227, 278–364 (2007)

    MATH  Google Scholar 

  230. Hu, Z.Z., Mai, T., Greaves, D., Raby, A.: Investigations of offshore breaking wave impacts on a large offshore structure. J. Fluids Struct. 75, 99–116 (2017)

    Google Scholar 

  231. Huang, S., Duan, W.Y., Li, F.L., You, S.Z.: A numerical and experimental study of sloshing-induced force. In: Proceedings of the AIP 6th International Conference on Fluid Mechanics Conference, Guangzhou, China 1376, 327–329 (2011a)

  232. Huang, S., Duan, W.Y., Ma, Q.W.: An approximation to energy dissipation in time domain simulation of sloshing waves based on linear potential theory. China Ocean Eng. 25(2), 189–200 (2011b)

    Google Scholar 

  233. Huijsmans, R.H.M., Tritschler, G., Gaillarde, G., Dallinga, R.P.D.: Sloshing of partially filled LNG carriers. In: Proceedings of 14th International Offshore and Polar Engineering (ISOPE) Conference, Toulon, France, pp. 424–432 (2004)

  234. Hull, P., Müller, G.: An investigation of breaker heights, shapes and pressures. Ocean Eng. 29, 59–79 (2002)

    Google Scholar 

  235. Hwang, S.H., Sung-Chul, H., Abbas, K., Hitoshi, G., Jong-Chun, P.: Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems. J. Fluids Struct. 50, 497–511 (2014)

    Google Scholar 

  236. Hwang, S.C., Khayyer, A., Gotoh, H., Park, J.C.: Simulations of incompressible fluid flow-elastic structure interactions by a coupled fully Lagrangian solver. In: Proceedings of the 25th International Offshore and Polar Engineering (ISOPE) Conference, Kona, Hawaii, pp. 1247–1250 (2015)

  237. Hwang, S.C., Park, J.C., Gotoh, H., Khayyer, A., Kang, K.J.: Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method. Ocean Eng. 118, 227–241 (2016)

    Google Scholar 

  238. Hwang, S.Y., Lee, J.H., Kim, S.C.: Effect of gas bubble on the sloshing pressure simulated by a multi-phase flow of droplet and liquid. In: Proceedings of the 24th International Offshore and Polar Engineering (ISOPE) Conference, Busa, Korea, pp. 194–200 (2014)

  239. Hwang, Y.S., Jung, J.H., Kim, D.W., Ryu, M.C.: An experimental study and numerical simulation on sloshing impact pressures with two identically shaped rectangular 2-Dimensional model tanks with different sizes. In: Proceedings of the 13th International Offshore and Polar Engineering (ISOPE), Vancouver, Canada, pp. 184–190 (2008)

  240. Ibrahim, R.A.: Recent results in random vibrations of nonlinear mechanical systems. ASME J. Vib. Acoust. 117, 222–233 (1995)

    Google Scholar 

  241. Ibrahim, R.A.: Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  242. Ibrahim, R.A.: Recent advances in physics of fluid parametric sloshing and related problems. ASME J. Fluids Eng. 137(9), 090801, 52p (2015)

    Google Scholar 

  243. Ibrahim, R.A.: Handbook of Structural Life Assessment. Wiley, London (2017)

    Google Scholar 

  244. Ibrahim, R.A., Singh, B.: Assessment of ground vehicle tankers interacting with liquid sloshing dynamics. Int. J. Heavy Veh. Syst 25(1), 23–112 (2018)

    Google Scholar 

  245. Idelsohn, S.R., Onāte, E., Pin, F.D.: The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Numer. Methods Eng. 61(7), 964–989 (2004)

    MathSciNet  MATH  Google Scholar 

  246. Idelsohn, S.R., Marti, J., Limache, A., O ñate, E.: Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid-structure interaction problems via the PFEM. Comput. Methods Appl. Mech. Eng. 197(19–20), 1762–1776 (2008)

    MathSciNet  MATH  Google Scholar 

  247. Iglesias, A.S., Delorme, L., Perez-Rojas, L., Abril-Perez, S.: Liquid moment amplitude assessment in sloshing type problems with smooth particle hydrodynamics. Ocean Eng. 33, 1462–1484 (2006)

    Google Scholar 

  248. Iglesias, A.S., Botia-Vera, E., Martín, A., Pérez-Arribas, : A set of canonical problems in sloshing. Part 0: experimental setup and data processing. Ocean Eng. 38, 1823–1830 (2011)

    Google Scholar 

  249. Iglesias, A.S., Bulian, G., Botia-Vera, E.: A set of canonical problems in sloshing, Part 2: influence of tank width on impact pressure statistics in regular forced angular motion. Ocean Eng. 105, 136–159 (2015)

    Google Scholar 

  250. Ikeda, T., Ibrahim, R.A., Harata, Y.: Nonlinear liquid sloshing in a square tank subjected to obliquely horizontal excitation. J. Fluid. Mech. 700, 304–328 (2012)

    MATH  Google Scholar 

  251. Ikeda, T., Harata, Y., Ibrahim, R.A.: Nonlinear liquid sloshing in square tanks subjected to horizontal random excitation. Nonlinear Dyn. 72(1–2), 439–453 (2013)

    MathSciNet  Google Scholar 

  252. Ikeda, T., Harata, Y., Osasa, T.: Internal resonance of nonlinear sloshing in rectangular liquid tanks subjected to obliquely horizontal excitation. J. Sound Vib. 361, 210–225 (2016)

    Google Scholar 

  253. Ioan, A., Domnisoru, L., Dragomir, D.: The study of sloshing in the parallepiped container. In: Proceedings of 13th International Conference Modern Technologies, Quality and Innovation, Iasi, Romania, pp. 327–230 (2009)

  254. Iwanowski, B., Lefranc, M., Wemmenhove, R.: CFD simulation of wave run-up on a semi-submersible and comparison with experiment. In: 28th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Honolulu, Hawai, Paper No. OMAE2009-79052, 11p (2009a)

  255. Iwanowski, B., Lefranc, M., Wemmenhove, R.: Numerical simulation of sloshing in a tank, CFD calculations against model tests. In: 28th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Honolulu, Hawaii, Paper No. OMAE2009-79051, 10p (2009b)

  256. Jena, D., Biswal, K.C.: A numerical study of violent sloshing problems with modified MPS method. J. Hydrodyn. 29(4), 659–667 (2017)

    Google Scholar 

  257. Ji, Y.M., Shin, Y.S., Park, J.S., Hyun, J.M.: Experiments on non-resonant sloshing in a rectangular tank with large amplitude lateral oscillation. Ocean Eng. 50, 10–22 (2012)

    Google Scholar 

  258. Jia, S.P., Xu, C.X.: Dynamic analysis of 3D liquid sloshing in container by the method of finite element. Chuan Bo Li Xue/J. Ship Mech. 16(1–2), 21–26 (2012). (in Chinese)

    MathSciNet  Google Scholar 

  259. Jiang, L., Perlin, M., Schultz, W.W.: Period tripling and energy dissipation of breaking standing waves. J. Fluid Mech. 369, 273–299 (1998)

    MathSciNet  MATH  Google Scholar 

  260. Jung, J.H., Yoon, H.S., Lee, C.Y.: Effect of natural frequency modes on sloshing phenomenon in a rectangular tank. Int. J Naval Archit. Ocean Eng. 7(3), 580–594 (2015)

    Google Scholar 

  261. Kakiyama, H.S., Arai, M.: Prediction of sloshing load in irregular seaways by a numerical simulation method. In: Proceedings of the 15th International Offshore and Polar Engineering (ISOPE) Conference, Seoul, Korea, pp. 222–227 (2005)

  262. Kalinichenko, V.A.: Breaking of Faraday waves and jet launch formation. Fluid Dyn. 44(4), 577–586 (2009)

    Google Scholar 

  263. Kalinichenko, V.A., Sekerzh-Zen’kovich, S.Ya.: Experimental investigation of Faraday waves of maximum height. Fluid Dyn. 42(6), 959–965 (2007)

    Google Scholar 

  264. Kaminski, M.L., Bogaert, H.: Full-scale sloshing impact tests. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, p. 10 (2009)

  265. Kaminski, M., Bogaert, H.: Full-scale sloshing impact tests: Part I. Int. J. Offshore Polar Eng. 20, 1–10 (2010a)

    Google Scholar 

  266. Kaminski, M., Bogaert, H.: Full-scale sloshing impact tests: Part II. Int. J. Offshore Polar Eng. 20, 11–20 (2010b)

    Google Scholar 

  267. Kang, C.W., Zhang, B., Lou, J., Lee, S.K., Wu, J.F., Seah, A.K.: Sensitivity analysis on three-dimensional numerical simulation of liquified natural gas sloshing in tank. Proc ASME International Mechanical Engineering Congress on and Exp, Boston, Massachusetts, vol. 10(C), IMECE2008-67963, pp. 1859–1867 (2009)

  268. Karamanos, S.A., Papaprokopiou, D., Platyrrachos, M.A.: Finite element analysis of externally-induced sloshing in horizontal cylindrical and axisymmetric liquid vessels. ASME J. Press. Vessel Technol. 131(5), 051301 (2009)

    Google Scholar 

  269. Karimi, M.R., Brosset, L.: Global and Local Effects of Gas-liquid Density Ratio on Shape and Kinematics of Sloshing Waves and Scaling Considerations, p. 4p. Int Workshop Water Waves and Floating Bodies, Osaka, Japan (2014)

    Google Scholar 

  270. Karimi, M.R., Brosset, L., Ghidaglia, J.M., Kaminski, M.L.: A study on conservatism of Froude scaling for sloshing model tests. In: Proceedings of the 24th International Offshore and Polar Engineering (ISOPE) Conference, Busan, Korea, pp. 306–313 (2014)

  271. Karimi, M.R., Brosset, L., Ghidaglia, J.M., Kaminnski, M.L.: Effect of ullage gas on sloshing, Part I: Global effects of gas-liquid density ratio. Eur. J. Mech. B/Fluids 53, 213–228 (2015a)

    Google Scholar 

  272. Karimi, M.R., Brosset, L., Ghidaglia, J.M., Kaminski, M.L.: Singularization of sloshing impacts. In: Proceedings of the 30th International Workshop Water Waves and Floating Bodies, Bristol, U.K., p. 4 (2015b)

  273. Karimi, M.R., Brosset, L., Ghidaglia, J.M., Kaminnski, M.L.: Effect of ullage gas on sloshing, Part II: local effects of gas-liquid density ratio. Eur. J. Mech-B/Fluids 57, 82–100 (2016)

    Google Scholar 

  274. Karimi, M.R., Brosset, L., Kaminnski, M.L., Ghidaglia, J.M.: Effects of ullage gas and scale on sloshing loads. Eur. J. Mech. B/Fluids 62, 59–85 (2017)

    Google Scholar 

  275. Karuka, G.M., Arai, M., Ando, H.: Sloshing and swirling in partially loaded prismatic chamfered tanks. In: 36th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE). Trondheim, Norway 1 OMAE2017-61562, 8p (2017)

  276. Kayal, B., Berthon, C.F.: Analytical approach to predict sloshing severity in LNG membrane tanks based on optimized series of model tests. In: Proceedings of the 23rd International Offshore and Polar Engineering (ISOPE), Anchorage, Alaska, pp. 313–319 (2013)

  277. Kerswell, R.R.: Elliptical instability. Annu. Rev. Fluid Mech. 34(1), 83–113 (2002)

    MathSciNet  MATH  Google Scholar 

  278. Ketabdari, M.J., Saghi, H.: Parametric study for optimization of storage tanks considering sloshing phenomenon using coupled BEM-FEM. Appl. Math. Comput. 224, 123–139 (2013a)

    MathSciNet  MATH  Google Scholar 

  279. Ketabdari, M.J., Saghi, H.: Numerical study on behavior of the trapezoidal storage tank due to liquid sloshing impact. Int. J. Comput. Methods 10(6), Article # 1350046, 22p (2013b)

    MathSciNet  MATH  Google Scholar 

  280. Khabakhpasheva, T.I., Korobkin, A.A., Malenica, S.: Fluid impact onto a corrugated panel with trapped gas cavity. Appl. Ocean Res. 39, 97–112 (2013)

    Google Scholar 

  281. Khaddaj-Mallat, C., Toularastel, J.L., Rousset, J.M., Ferrant, P.: Investigating the transient flooding and sloshing in internal compartments of an ITTC damaged Ro-Ro passenger ferry part I: Experimental setup. In: 29th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Shanghai, China 4, 1–10 (2010a)

  282. Khaddaj-Mallat, C., Vadeboin, F., Davoust, L., Pettinotti, B., Alessandrini, B., Rousset, J.M., Ferrant, P.: Investigating the transient flooding and sloshing in internal compartments of an ITTC damaged Ro-Ro passenger ferry part II: Experimental analysis. In: 29th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Shanghai, China 4, 11–21 (2010b)

  283. Khayyer, A., Gotoh, H., Shao, S.D.: Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coast. Eng. 55(3), 236–250 (2008)

    Google Scholar 

  284. Khezzar, L., Seibi, A.C., Goharzadeh, A.: Water sloshing in rectangular tanks—an experimental investigation and numerical simulation. Int. J. Eng. 3(2), 174–184 (2009)

    Google Scholar 

  285. Kim, B., Ryu, M.C., Jung, J.H., Shin, Y.: Identification of critical sea states for sloshing model tests. Trans. Soc. Naval Archit. Mar. Eng. 118, 437–446 (2010)

    Google Scholar 

  286. Kim, H.I., Kwon, S.H., Park, J.S., Lee, K.H., Jeon, S.S., Jung, J.H., Ryu, M.C., Hwang, Y.S.: An experimental investigation of hydrodynamic impact on 2-D LNG models. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, p. 8p (2009)

  287. Kim, J., Kim, S.Y., Kim, Y., Lee, K.M., Sung, Y.J.: Experimental study of slosh-induced loads on LNG fuel tank of container ship. In: Proceedings of the 27th International Offshore and Polar Engineering (ISOPE) Conference, California, San Francisco, pp. 1070–1076 (2017)

  288. Kim, J.W., Shin, Y.S., Bai, K.J.: A finite-element computation for the sloshing motion in LNG tank. In: Proceedings of the 12th International Offshore and Polar Engineering (ISOPE) Conference, Kitakyushu, Japan, May 26–31, pp. 43-51 (2002)

  289. Kim, J.W., Sim, I.H., Shin, Y., Kim, Y.S., Bai, K.J.: A three-dimensional finite-element computation for the sloshing impact pressure in LNG tank. In: Proceedings of the 13th International Offshore and Polar Engineering (ISOPE) Conference, Honolulu, Hawaii, p. 8p (2003)

  290. Kim, J.W., Lee, J.M., Bai, K.J., Kim, Sim, I.H., Lee, Y.B.: A finite-element computation for three-dimensional problems of sloshing in LNG tank. In: 25th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Hamburg, Germany, OMAE2006-92564, 10p (2006)

  291. Kim, K.S., Kim, M.H., Park, J.C.: Simulation of multiliquid-layer sloshing with vessel motion by using moving particle semi-implicit method. J. Offshore Mech. Arct. Eng. 137(5), 051602, 12p (2015)

    Google Scholar 

  292. Kim, M.S., Lee, W.I.: A new VoF-based numerical scheme for the simulation of fluid flow with free surface, Part I: new free surface-tracking algorithm and its verification. Int. J. Numer. Methods Fluids 42, 765–790 (2003)

    MATH  Google Scholar 

  293. Kim, M.S., Park, J.S., Lee, W.: A new VoF-based numerical scheme for the simulation of fluid flow with free surface, Part II: application to the cavity filling and sloshing problems. Int. J. Numer. Methods Fluids 42, 791–812 (2003)

    MATH  Google Scholar 

  294. Kim, S.Y., Ahn, Y., Kim, K.H., Kim, Y., Heo, J.H., Jeong, T., Lee, C.H., Kim, D.H.: Experimental studies on sloshing in a STX independence type-b tank. In: Proceedings of the 23rd International Offshore and Polar Engineering (ISOPE) Conference, Anchorage, Alaska, pp. 162–170 (2013)

  295. Kim, S.Y., Kim, Y.W., Park, J.J., Kim, B.: Experimental study of sloshing load on LNG tanks for unrestricted filling operation. In: Proceedings of the 26th International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, pp. 980–987 (2016a)

  296. Kim, S.Y., Lee, J., Kim, Y.W.: Study on scale effects on 3D sloshing flows. In: Proceedings of the 26th International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, pp. 972–979 (2016b)

  297. Kim, S.Y., Kim, Y.W., Lee, J.: Comparison of sloshing-induced pressure in different scale tanks. Ships Offshore Struct. 12(2), 244–261 (2017)

    Google Scholar 

  298. Kim, Y.: Numerical simulation of sloshing flows with impact load. Appl. Ocean Res. 23, 53–62 (2001)

    Google Scholar 

  299. Kim, Y.: Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. Appl. Ocean Res. 26(5), 213–216 (2004)

    Google Scholar 

  300. Kim, Y.: Experimental and numerical analyses of sloshing flows. J. Eng. Math. 58(1), 191–210 (2007)

    MathSciNet  MATH  Google Scholar 

  301. Kim, Y., Shin, Y.S., Lee, K.H.: Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks. Appl. Ocean Res. 26, 213–226 (2004)

    Google Scholar 

  302. Kim, Y., Lee, Y.B., Kim, Y.S., Lee, J.M.: Sensitivity study on computational parameters for prediction of slosh-induced impact pressure. Int. J. Offshore Polar Eng. 16(2), 104–111 (2006)

    Google Scholar 

  303. Kimmoun, O., Malenica, S., Scolan, Y.M.: Fluid structure interactions occurring at a flexible vertical wall impacted by a breaking wave. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, pp. 308–315 (2009)

  304. Kimmoun, O., Ratouis, A., Brosset, L.: Sloshing and scaling: Experimental study in a wave canal at two different scales. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Being, China, pp. 33–43 (2010)

  305. Kimmoun, O., Ratouis, A., Brosset, L.: Influence of a bubble curtain on the impact of waves on a vertical wall. In: Proceedings of the 26th International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, p. 13p (2012)

  306. Kimmoun, O., Brosset, L., Dupont, G.: Experimental study of wave impacts on a corrugated ceiling. In: Proceedings of the 26th International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, p. 14 (2016)

  307. Kirkgöz, M.S.: Shock pressures of breaking wave on vertical walls. ASCE J. Waterw. Harb. Coast. Eng. Div. 108, 87–103 (1982)

    Google Scholar 

  308. Kirkgöz, M.S.: An experimental investigation of a vertical wall response to breaking wave impact. Ocean Eng. 17(4), 379–391 (1990)

    Google Scholar 

  309. Kirkgöz, M.S.: Influence of water depth on the breaking wave impact on vertical and sloping walls. Coast. Eng. 18, 297–314 (1992)

    Google Scholar 

  310. Kirkgöz, M.S.: Breaking wave impact on vertical and sloping coastal structures. Ocean Eng. 22, 35–48 (1995)

    Google Scholar 

  311. Kirkgöz, M.S., Aköz, M.S.: Geometrical properties of perfect breaking waves on composite breakwaters. Ocean Eng. 32, 1994–2006 (2005)

    Google Scholar 

  312. Kishev, Z., Hu, C., Kashiwagi, M.: Numerical simulation of violent sloshing by a CIP-based method. J. Mar. Sci. Techol. 11, 111–122 (2006)

    Google Scholar 

  313. Kishor, D.K., Ganguli, R., Gopalakrishnan, S.: Uncertainty quantification of sloshing motion in partially filled rectangular tanks. Int. J. Comput. Methods Eng. Sci. Mech. 13(3), 146–160 (2012)

    MathSciNet  Google Scholar 

  314. Kjeldsen, S.S., Myrhaug, D.S.: Breaking waves in deep water and resulting wave forces. In: Proceedings of the Offshore Technology Conference, Houston, Texas, p. 8 (1979)

  315. Kleefsman, K.M.T.: Water Impact Loading on Offshore Structures—A Numerical Study. University of Groningen, The Netherlands (2005). PhD thesis

    Google Scholar 

  316. Kleefsman, K.M., Fekken, G., Veldman, A.E., Iwanowski, B., Buchner, B.: A volume-of-fluid based simulation method for wave impact problems. J. Comput. Phys. 206(1), 363–393 (2005)

    MathSciNet  MATH  Google Scholar 

  317. Klostermeyer, J.: Parametric instabilities of internal gravity waves in Boussinesq fluids with large Reynolds numbers. Geophys. Astrophys. Fluid Dyn. 26(1–2), 85–105 (1983)

    MathSciNet  MATH  Google Scholar 

  318. Knickerbocker, C.J., Newell, A.C.: Internal solitary waves near a turning point. Phys. Lett. 75A, 326–330 (1980)

    MathSciNet  Google Scholar 

  319. Kobayakawa, H., Kusumoto, H., Toyoda, M.: Numerical simulation of liquid motion in SPB tank. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, pp. 424–430 (2012)

  320. Kolmogoroff, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C R Acad. Sci. URSS 30, 301–305 (1941)

    MathSciNet  MATH  Google Scholar 

  321. Koshizuka, S., Oka, Y.: Moving-particle semi-implicit method for fragmentation of incompressible fluid. Numer. Sci. Eng. 123, 421–434 (1996)

    Google Scholar 

  322. Kunze, E., Williamsa, A.J., Briscoem, M.G.: Observations of shear and vertical stability from a neutrally buoyant float. J. Geophys. Res. 95, 127–141 (1990)

    Google Scholar 

  323. Kyoung, J.H., Kim, J.W., Bai, K.J.: A finite element method for a nonlinear sloshing problem. In: 22nd ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Cancun, Mexico 3, 643–651 (2003)

  324. Kyoung, J.H., Hong, S.Y., Kim, J.W., Bai, K.J.: Finite-element computation of wave impact load due to a violent sloshing. Ocean Eng. 32(17–18), 2020–2039 (2005)

    Google Scholar 

  325. Lafeber, W., Brosset, L., Bogaert, L.: Elementary loading processes (ELP) involved in breaking wave impacts: findings from the sloshel project. In: Proceedings of the 22nd International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, p. 12 (2012a)

  326. Lafeber, W., Brosset, L., Bogaert, : Comparison of wave impact tests at large and full-scale: results from the Sloshel project. In: Proceedings of the 22nd International Offshore and Polar Engineering (ISOPE) Conference, Rhodos, Greece, p. 15 (2012b)

  327. Landrini, M., Colagrossi, A., Faltinsen, O.M.: Sloshing in 2-D flows by the SPH method. In: Proceedings of the 8th International Conference on Numerical Ship Hydrodynamics, Busan, Korea, 15p (2003)

  328. Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974)

    MATH  Google Scholar 

  329. Le Touzé, D., Barcarolo, D. A., Kerhuel, M., Oger, G., Grenier, N., Quinlan, N., Lobovsky, L., Basa, M., Leboeuf, F., Caro, D., Colagrossi, A., Marrone, S., De Leffe, M., Guilcher, P.M., Marongiu, J. C.: Smoothed particle hydrodynamics: benchmarking on selected test cases within the nextmuse intiative. In: 32nd ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), vol. 7, Nantes, France Article # V007T08A046, 7p (2013)

  330. Lee, B.H., Park, J.C., Kim, M.H., Jung, S.J., Ryu, M.C., Kim, Y.S.: Numerical simulation of impact loads using a particle method. Ocean Eng. 37, 164–173 (2010)

    Google Scholar 

  331. Lee, B.H., Park, J.C., Kim, M.H., Hwang, S.C.: Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Comput. Methods Appl. Mech. Eng 200(9–12), 1113–1125 (2011)

    MATH  Google Scholar 

  332. Lee, D.H., Kim, M.H., Kwon, S.H., Kim, J.W., Lee, Y.B.: A parametric and numerical study on LNG-tank sloshing loads. In: Proceedings of the 15th International Offshore and Polar Engineering (ISOPE) Conference, Seoul, Korea, p. 5 (2005)

  333. Lee, D.H., Kim, M.H., Kwon, S.H., Kim, J.W., Lee, Y.B.: A parametric sensitivity study on LNG tank sloshing loads by numerical simulations. Ocean Eng. 34(1), 3–9 (2007)

    Google Scholar 

  334. Lee, G.J.: Moment of inertia of liquid in a tank. Int. J. Naval Archit. Ocean Eng. 6(1), 132–150 (2014)

    Google Scholar 

  335. Lee, S.H., Lee, Y.G., Jeong, K.L.: Numerical simulation of three-dimensional sloshing phenomena using a finite difference method with marker-density scheme. Ocean Eng. 38, 206–225 (2011)

    Google Scholar 

  336. Lee, T., Zhou, Z., Cao, Y.: Numerical simulations of hydraulic jumps in water sloshing and water impacting. J. Fluid Eng. 124(1), 215–226 (2002)

    Google Scholar 

  337. Lee, Y.B., Kim, Y., Kim, Y.S., Shin, Y.S.: Parametric study on slosh-induced impact pressures: experiment vs. numerical computation. In: Proceedings of the 19th Workshop Water Waves and Floating Bodies, Cortona, Italy, 4p (2004)

  338. Lee, Y.B., Sim, I.H., Kim, Y.S., Jung, J.H., Park, J.S., Kwon, S.H., Jang, T.S.: Experimental study on sloshing for large LNGC design. In: Proceedings of the 15th International Offshore and Polar Engineering (ISOPE) Conference, Seoul, Korea, p. 8p (2005)

  339. Lee, Y.B., Lee, J.M., Kim, Y.S., Jung, J.H., Jung, D.W., Kwon, S.H.: An experimental study of impulsive sloshing load acting on LNGC tank. In: Proceedings of the 16th International Offshore and Polar Engineering (ISOPE) Conference, San Francisco, 6p (2006)

  340. Li, J.G., Hamamoto, Y., Liu, Y., Zhang, X.: Sloshing impact simulation with material point method and its experimental validations. Comput. Fluids 103, 86–99 (2014)

    MathSciNet  MATH  Google Scholar 

  341. Li, Y., Sun, F., Wang, W., Yu, X., Zang, L.: Numerical simulation of liquid sloshing in LNG containers. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, p. 6p. Beijing, China (2010)

  342. Lin, P., Liu, P.L.F.: A numerical study of breaking waves in the surf zone. J. Fluid Mech. 359, 239–264 (1998)

    MATH  Google Scholar 

  343. Liu, D., Lin, P.: A numerical study of three-dimensional liquid sloshing in tanks. Int. J. Comput. Phys. 227, 3921–3939 (2008)

    MATH  Google Scholar 

  344. Liu, D., Lin, P.: Three-dimensional liquid sloshing in a tank with baffles. Ocean Eng. 36(2), 202–212 (2009)

    Google Scholar 

  345. Liu, D., Tang, W., Wang, J.: Numerical simulation of interfacial sloshing in the SDPSO’s storage tank. In: Proceedings of the 25th International Offshore and Polar Engineering (ISOPE) Conference, Kona, Hawaii, pp. 917–923 (2015)

  346. Liu, D., Tang, W., Wang, J., Xue, H., Wang, K.: Comparison of laminar model, RANS, LES and VLES for simulation of liquid sloshing. Appl. Ocean Res. 59, 638–649 (2016)

    Google Scholar 

  347. Liu, D., Tang, W., Wang, J., Xue, H., Wang, K.: Modelling of liquid sloshing using CLSVoF method and very large eddy simulation. Ocean Eng. 129, 160–176 (2017a)

    Google Scholar 

  348. Liu, D., Tang, W., Wang, J., Xue, H., Wang, K.: Hybrid RANS/LES simulation of sloshing flow in a rectangular tank with and without baffles. Ships Offshore Struct. 12(8), 1005–1015 (2017b)

    Google Scholar 

  349. Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Mesh-free Particle Method. World Scientific, Singapore (2003)

    MATH  Google Scholar 

  350. Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17, 25–76 (2010)

    MathSciNet  MATH  Google Scholar 

  351. Liu, Y.T., Ma, N., Gu, X.C.: Numerical simulation of large amplitude sloshing in FPSO tanks under irregular excitations based on Youngs VoF method. In: 29th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE). Shanghai, China 6, OMAE2010-20283, 525–532 (2010)

  352. Liu, Y.T., Ma, N., Zhu, R.Q., Gu, X.C.: CLSVoF method for violent sloshing with impact load in tanks under shallow water depth. Chuan Bo Li Xue/J. Ship Mech. 16(9), 990–998 (2012a)

    Google Scholar 

  353. Liu, Y.T., Ma, N., Gu, X.C.: 3-D simulation of large amplitude liquid sloshing using Youngs-VoF method. Harbin Gongcheng Daxue Xuebao/J Harbin Eng. Univ. 33(9), 1075–1078 (2012b). (in Chinese)

    Google Scholar 

  354. Löhner, R.L., Yang, C., Õnate, E.: On the simulation of flows with violent free surface motion. Comput. Methods. Appl. Mech. Eng. 195, 5597–5620 (2006)

    MathSciNet  MATH  Google Scholar 

  355. Löhner, R.L., Yang, C., Õnate, E.: Simulation of flows with violent free surface motion and moving objects using unstructured grids. Int. J. Numer. Methods Fluids 53(8), 1315–1338 (2007)

    MathSciNet  MATH  Google Scholar 

  356. Loots, E., Pastoor, W., Buchner, B., Tveitnes, T.: The numerical simulation of LNG sloshing with an improved volume of fluid method. In: 23rd ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Paper no. 51085, Vancouver, Canada, Paper # OMAE2004-51085, 9p (2004)

  357. Loubére, R., Braeunig, J.-P., Ghidaglia, J.-M.: A totally Eulerian finite volume solver for multi-material fluid flows: enhanced natural interface positioning (ENIP). Eur. J. Mech.-B/Fluids 31, 1–11 (2012)

    MathSciNet  MATH  Google Scholar 

  358. Loysel, T., Chollet, S., Gervaise, E., Brosset, L.: Results of the first sloshing model test benchmark. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, 11p (2012)

  359. Loysel, T., Brosset, L.: Results of the 2012–2013 sloshing model test benchmark. In: Proceedings of the 23rd International Offshore and Polar Engineering (ISOPE) Conference, Anchorage, Alaska, p. 12p (2013)

  360. Lu, Y., Zheng, J.H., Xue, M.A.: Parametric sensitivity study on liquid sloshing in partially filled tank by numerical simulation. In: Proceedings of the 24th International Offshore and Polar Engineering (ISOPE) Conference, pp. 265–271. Busan, Korea (2014)

  361. Lu, Y., Hu, A.K., Liu, Y.C.: Application of finite point method to liquid sloshing in tanks. J. South China Univ. Technol. (Nat. Sci. Ed.) 43(8), 144–150 (2015)

    Google Scholar 

  362. Lu, Y., Zhao, W.H., Zhou, T.M., Cheng, L.: Experimental studies on wave elevation inside a two-dimensional sloshing tank. In: Proceedings of the 26th International Offshore and Polar Engineering (ISOPE) Conference, pp. 996–1001. Rhodes, Greece (2016)

  363. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82(12), 1013–1024 (1977)

    Google Scholar 

  364. Lugni, C., Brocchini, M., Faltinsen, O.M.: Wave impact loads: the role of the flip-through. Phys. Fluids 18(12), 122101, 17p (2006)

    MATH  Google Scholar 

  365. Lugni, C., Miozzi, M., Brocchiinin, M., Faltinsen, O.M.: Evolution of the air cavity during a depressurized wave impact, I: The kinematic flow. Phys. Fluids 22(5), 056101, 16p (2010a)

    MATH  Google Scholar 

  366. Lugni, C., Brocchiinin, M., Faltinsen, O.M.: Evolution of the air cavity during a depressurized wave impact, II: The dynamic field. Phys. Fluids 22(5), 056102, 13p (2010b)

    MATH  Google Scholar 

  367. Lugni, C., Bardazzi, A., Fatinsen, O.M., Graziani, G.: Fluid-structure interaction during wave-impact with air-entrapment in a sloshing tank. In: Proceedings of the 28th International Workshop on Water Waves and Floating Bodies (IWWWFB), France, 4p (2013a)

  368. Lugni, C., Bardazzi, A., Faltinse, O.M., Graziani, G.: Hydroelastic challenges for wave-impact phenomena in sloshing flow. In: 32nd ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE). Nantes, France 9OMAE2013-10695, 9p (2013b)

  369. Lugni, C., Bardazzi, A., Faltinsen, O.M., Graziani, G.: Hydroelastic slamming response in the evolution of a flip-through event during shallow-liquid sloshing. Phys. Fluids 26(032108), 34p (2014)

    Google Scholar 

  370. Lumley, J.L.: The spectrum of nearly inertial turbulence in a stably stratified fluid. J. Atmos. Sci. 21, 99–102 (1964)

    Google Scholar 

  371. Lundgren, H.: Wave shock forces: An analysis of deformations and forces in the wave and the foundation. In: Proceeding of Research on Wave Action Symposium, Delft, vol. 2 (1969)

  372. Lund-Johansen, Ø., Østvold, T., Berthon, C.F., Pran, K.: Full-scale measurements of sloshing in LNG tanks. In: Proceedings of 25th Gastech Conference, The Netherlands, Amsterdam (2011)

  373. Luo, M., Koh, C.G., Bai, W.: A three-dimensional particle method for violent sloshing under regular and irregular excitations. Ocean Eng. 120, 52–63 (2016)

    Google Scholar 

  374. Lyu, W., El-Moctar, O., Patthoff, R., Neugebauer, J.: Experimental and numerical investigation of sloshing using different-free surface capturing methods. Appl. Ocean Res. 68, 307–324 (2017)

    Google Scholar 

  375. Ma, C., Oka, M., Ando, T., Matsubara, N.: A study on sloshing behavior for moss type LNG tank based on SPH numerical simulation and large-scale model experiment. In: Proceedings of the 27th International Offshore and Polar Engineering (ISOPE) Conference, California, San Francisco, pp. 1062–1069 (2017)

  376. Ma, W.: Smoothed Particle Hydrodynamics for Computational Fluid Dynamics. Ph.D. dissertation, College of Engineering and Science, Louisiana Tech University, Ruston, Louisiana (2018)

  377. Ma, Z.H., Causon, D.M., Qian, L., Mingham, C.G., Gu, H.B., Martinez Ferrer, P.: A compressible multiphase flow model for violent aerated wave impact problems. Proc. R. Soc. A 470(20140542), 25p (2014)

    MathSciNet  MATH  Google Scholar 

  378. Maekawa, K., Takeda, M., Hamaura, T., Suzuki, K., Miyake, Y., Matsuno, Y., Fujikawa, S., Kumakura, H.: First experiment on liquid hydrogen transportation by ship inside Osaka bay. In; IOP Cryogenic Engineering Confernce: Materials Science and Engineering, Madison, WI 278(012066), 8p (2017)

    Google Scholar 

  379. Maguire, J.R., Whitworth, S., Oguibe, C.N., Radosavljevic, D., Carden, E.P.: Sloshing dynamics e numerical simulations in support of the Sloshel project. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, p. 8p (2009)

  380. Maillard, S., Brosset, L.: Influence of density ratios between liquid and gas on sloshing model test results. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, pp. 271–279 (2009)

  381. Meiron, D.I., Saffman, P.G.: Overhanging interfacial gravity waves of large amplitude. J. Fluid Mech. 129, 213–218 (1983)

    MATH  Google Scholar 

  382. Makarenko, N.I., Maltseva, J.L., Morozov, E.G., Taraanov, RYu., Ivanova, K.A.: Steady internal waves in deep stratified flows. J. Appl. Mech. Technol. Phys. 60(2), 248–256 (2019)

    MathSciNet  MATH  Google Scholar 

  383. Malenica, Š., Mravak, Z., Besse, P., Kaminski, M.L., Bogaert, H.: Full-scale experiments and new methodology to assess the structural behaviour of a membrane LNGC containment system under breaking waves project SLOSHEL. In: Proceedings of the 24th International Conference on Exhibition for the LNG, LPG & Natural Gas Industries, Abu Dhabi, UAE, p. 16 (2009a)

  384. Malenica, Š., Korobkin, A.A., Ten, I., Gazzola, T., Mravak, Z., De-Lauzon, J., Scolan, Y.M.: Combined semi-analytical and finite element approach for hydro structure interactions during sloshing impacts: sloshel project. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, pp. 143–152 (2009b)

  385. Malencia, Š., Kwon, S.H.: An overview of the hydro-structure interactions during sloshing impacts in the tanks of LNG carriers. Brodo Gradnja 64(1), 22–30 (2013)

    Google Scholar 

  386. Malenica, Š., Diebold, L., Kwon, S.H., Cho, D.S.: Sloshing assessment of the LNG floating units with membrane type containment system where we are? Mar. Struct. 56, 99–116 (2017)

    Google Scholar 

  387. Malkus, W.V.R.: An experimental study of global instabilities due to tidal (elliptical) distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid Dyn. 48, 123–134 (1989)

    Google Scholar 

  388. Manderbacka, T.L., Jacob, V., Carriot, T., Mikkola, T., Matusiak, J.E.: Sloshing forces on a tank with two compartments, application of the pendulum model and CFD. In: 33rd ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE). San Francisco, California 8A OMAE2014-23355, 10p (2014)

  389. Marrone, S., Antuono, M., Colagrossi, A., Colicchio, G., Le Touźe, D., Graziani, G.: \( \delta -\)SPH model for simulating violent impact flows. Comput. Methods Appl. Mech. Eng. 200, 1526–1542 (2011)

    MathSciNet  MATH  Google Scholar 

  390. Martin, J.C., Moyce, W.J.: An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos. Trans. R. Soc Lond. Ser. A 244(882), 312–324 (1952)

    Google Scholar 

  391. Mayer, H.C., Krechetnikov, R.: Walking with coffee: why does it spill? Phys. Rev. E 85, 046117 (2012)

    Google Scholar 

  392. McEwan, A.D.: Degeneration of resonantly-excited standing internal gravity waves. J. Fluid Mech. 50, 431–448 (1971)

    MATH  Google Scholar 

  393. Mehl, B., Püttmann, A., Schreier, S.: Sensitivity study on the influence of the filling height on the liquid sloshing behavior in a rectangular tank. In: Proceedings of the 24th International Offshore and Polar Engineering (ISOPE) Conference, pp. 278–285. Busan, South Korea (2014)

  394. Meseguer-Garrido, F.: On the sloshing of liquids in parallelepiped-shaped containers. Eur. J. Phys. 24(3), 277–288 (2003)

    Google Scholar 

  395. Miguel, A., Celis, C., Wanderley, J.B.V., Neves, M.A.S.: A numerical investigation on 2D and 3D sloshing effects. In: 30th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE). Rotterdam, The Netherlands 7, 613–620 (2011)

  396. Ming, P.J., Duan, W.Y.: Numerical simulation of sloshing in rectangular tank with VoF based on unstructured grids. J Hydrodyn. 22(6), 856–864 (2010)

    Google Scholar 

  397. Mitsuyasu, H.: Experimental study on wave force against a wall. Report of Transportation Technical Research Inst, No.47, 23-47 (1962)

    Google Scholar 

  398. Mitsuyasu, H.: Shock pressure of breaking waves (1). Coast. Eng. Jpn. 9, 83–96 (1966a)

    Google Scholar 

  399. Mitsuyasu, H.: Shock pressure of breaking wave. In: ASCE Proceedings of the 10th International Conference on Coastal Engineering. Tokyo 1, 268–283 (1966b)

  400. Mitsuyasu, H., Hase, N., Shibayama, A.: An experimental study of the pressures of breaking waves. Monthly Report of Transportation Technical Research Inst, vol. 8, no. 2 (1958) (in Japanese)

  401. Molteni, D., Colagrossi, A.: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput. Phys. Commun. 180(6), 861–872 (2009)

    MathSciNet  MATH  Google Scholar 

  402. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)

    MATH  Google Scholar 

  403. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68, 1703–1759 (2005)

    MathSciNet  MATH  Google Scholar 

  404. Nam, B.W., Kim, Y.: Simulation of two-dimensional sloshing flows by SPH method. In: Proceedings of the 16th International Offshore and Polar Engineering (ISOPE) Conference. California, USA, San Francisco (2006)

  405. Napp, N., Bruce, T., Pearson, J., Allsop, W.: Violent overtopping of vertical seawalls under oblique wave conditions. In: Proceedings of the 29th International Conference on Coastal Engineering, Lisbon, Portugal, pp. 4482–4493 (2005)

  406. Natarov, A., Richards, K.J.: On plane internal waves: their amplification, and potential to break in a rotating stratified quiescent fluid. Geophys. Astrophys. Fluid Dyn. 113(3), 257–286 (2019)

    MathSciNet  Google Scholar 

  407. Neugebauer, J., El Moctar, O., Potthoff, R.: Experimental and numerical investigation of single impacts in a 2D tank. In: Proceedings of the 24th International Offshore and Polar Engineering (ISOPE) Conference, Busan, Korea, pp. 286–295 (2014)

  408. Neugebauer, J., Liu, S., Potthoff, R., El Moctar, O.: Investigation of the motion accuracy influence on sloshing model test results. In: Proceedings of the 27th International Offshore and Polar Engineering (ISOPE) Conference, California, San Francisco, pp. 1054–1061 (2017)

  409. Ning, D.Z., Teng, B.: Numerical simulation of fully nonlinear irregular wave tank in three-dimension. Int. J. Numer. Methods Fluids 53(12), 1847–1862 (2007)

    MATH  Google Scholar 

  410. Ning, D.Z., Song, W.H., Liu, Y.L., Teng, B.: A boundary element investigation of liquid sloshing in coupled horizontal and vertical excitation. J. Appl. Math. 2012, Article ID 340640, 20p (2012)

  411. Ning, D.Z., Song, W.H.: Nonlinear numerical simulation of liquid sloshing in a container subjected to pitch excitation. Chuan Bo Li Xue/J. Ship Mech. 21(1), 15–22 (2017). (in Chinese)

    Google Scholar 

  412. Noh, W.F., Woodward, P.: SLIC (simple line interface calculation). In: van Dooren, A.I., Zandbergen, P.J. (eds.) Lecture Notes in Physics, vol. 59, pp. 330–340. Springer, New York (1976)

    Google Scholar 

  413. Obhrai, C., Bullock, G., Wolters, G., Mü ller, G. Peregrine, H., Bredmose H.: Violent wave impacts on vertical and inclined walls: Large scale model tests. In: Proceedings of the 29th International Conference on Coastal Engineering, Lisbon, Portugal, pp. 4075–4086 (2005)

  414. Oger, G., Guilcher, P.-M., Brosset, L., Jacquin, E., Deuff, J.-B., Le Touzé, D.: Simulations of hydro-elastic impacts using a parallel SPH model. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, 9p (2010)

  415. Okamoto, T., Kawahara, M.: Two-dimensional sloshing analysis by Lagrangian finite element method. Int. J. Numer. Methods Fluids 11(5), 453–477 (1990)

    MATH  Google Scholar 

  416. Oñate, E., Idelsohn, S.R., Celiguwta, M.A., Rossi, R.: Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput. Methods Appl. Mech. Eng. 197(19–20), 1777–1800 (2008)

    MathSciNet  MATH  Google Scholar 

  417. Orlanski, I.: On the breaking of standing internal waves. J. Fluid Mech. 54, 577–598 (1972)

    MATH  Google Scholar 

  418. Orlanski, I., Bryan, K.: Formation of the thermocline step structure by large-amplitude internal gravity waves. J. Geophys. Res. 74, 6975–6983 (1969)

    Google Scholar 

  419. Oumeraci, H., Klammer, P., Partenscky, H.W.: Classification of breaking wave loads on vertical structures. J. Waterw. Port Coast. Ocean Eng. 119, 381–397 (1993)

    Google Scholar 

  420. Ovsiannykov, L.V., Makarenko, N.I., Nalimov, V.I., Liapidevskii, VYu., Plotnikov, P.I., Sturova, I.V., Bukreev, V.I., Vladimirov, V.A.: Nonlinear Problems in the Theory of Surface and Internal Waves, in Russian, Nauka. Plotnikov, Russia, Novosibirsk (1985)

    Google Scholar 

  421. Oxtoby, O.F., Malan, A.G., Heyns, J.A.: A computationally efficient 3D finite-volume scheme for violent liquid-gas sloshing. Int. J Numer. Methods Fluids 79, 306–321 (2015)

    MathSciNet  Google Scholar 

  422. Pákozdi, C., Graczyk, M.: Validation of an SPH sloshing simulation by experiments. In: 28th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Honolulu, Hawaii 5, 729–739 (2009)

  423. Pal, N.C., Bhattacharyya, S.K., Sinha, P.K.: Experimental investigation of slosh dynamics of liquid filled containers. Exp. Mech. 41(1), 63–69 (2001)

    Google Scholar 

  424. Pal, N.C., Bhattacharyya, S.K., Sinha, P.K.: Non-linear coupled slosh dynamics of liquid-filled laminated composite containers: a two-dimensional finite element approach. J. Sound Vib. 261(1), 729–749 (2003)

    Google Scholar 

  425. Pal, P.: Sloshing of liquid in partially filled container—an experimental study. Int. J. Recent Trends Eng. 1(6), 5p (2009)

    Google Scholar 

  426. Pal, P., Bhattacharyya, S.K.: Sloshing in partially filled liquid containers—numerical and experimental study for 2-D problems. J. Sound Vib. 329, 4466–4485 (2010)

    Google Scholar 

  427. Pan, X.J., Zhang, H.X., Lu, Y.T.: Numerical simulation of viscous liquid sloshing by moving-particle semi-implicit method. J. Mar. Sci. Appl. 7(3), 184–189 (2008)

    Google Scholar 

  428. Pan, X.J., Zhang, H.X., Sun, X.Y.: Numerical simulation of sloshing with large deforming free surface by MPSLES method. China Ocean Eng. 26, 653–668 (2012)

    Google Scholar 

  429. Pandit, A., Chandra Biswal, K.: Sloshing response of partially filled rectangular tank under periodic horizontal ground motion. In: Proceedings of the 3rd International Conference on Design, Analysis, Manufacturing and Simulation (ICDAMS), Chennai, India, vol. 172, Article # 01005, 5p (2018)

    Google Scholar 

  430. Panigrahy, P.K., Saha, U.K., Maity, D.: Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks. Ocean Eng. 36(3), 213–222 (2009)

    Google Scholar 

  431. Parthasarathy, N., Kim, Y., Choi, Y.H., Lee, Y.: A numerical study on sloshing impact loads in prismatic tanks under forced horizontal motion. J. Korean Soc. Mar. Eng. 41(2), 150–155 (2017)

    Google Scholar 

  432. Pasquier, R., Berthon, C. F.: Model scale test vs. full-scale measurement: Findings from the full-scale measurement of sloshing project. In: Proceedings of the 22nd International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, 8p (2012)

  433. Pastoor, W., Tveitnes, T., Valsgård, S., Sele, H.O.: Sloshing in partially filled LNG tanks: an experimental survey. In: Proceedings of the 35th Offshore Technology Conference, Paper No. OTC 16581, Houston, 7p (2004)

  434. Pastoor, W., Østvold, T.K., Byklum, E., Valsgård, S.: Sloshing in LNG Carriers for New Designs, New Trades and New Operations, DNV, GASTECH-2005 Confernece and Exhibition, p. 40p. Bilbao, Norway (2005)

    Google Scholar 

  435. Peregrine, D.H.: Breaking waves on beaches. Annu. Rev. Fluid Mech. 15, 149–178 (1983)

    Google Scholar 

  436. Peregrine, D.H.: Water wave impact on walls. Ann. Rev. Fluid Mech. 35, 23–43 (2003)

    MathSciNet  MATH  Google Scholar 

  437. Peregrine, D.H., Thais, L.: The effect of entrained air in violent water wave impacts. J. Fluid Mech. 325, 377–397 (1996)

    MATH  Google Scholar 

  438. Peregrine, D.H., Bredmose, H., McCabe, A., Bullock, G., Obhrai, C., Müller, G., Wolters, G.: Violent water wave impact on walls and the role of air. In: Proceedings of the 29th International Conference on Coastal Engineering, Lisbon, Ed. J.McK. Smith, World Sci. 4, 4005–4017 (2004a)

  439. Peregine, D.H., Bredmose, H., Dunn, D.C., Somerville, T.A., Bullock, G.N., Objhrai, C., Wolters, G.: (2004b) Compressibility of entrained and trapped air in violent water wave impacts. 4p., https://www.researchgate.net/.../253974825_Compressibility_of_entrained_and_trapped

  440. Peregrine, D.H., Bredmose, H., Bullock, G., Obhrai, C., Muller, G., Wolters, G.: Water wave impact on walls and the role of air. In: Proceedings of the 29th International Conference on Coastal Engineering, vol. 4, pp. 4005–4017. World Scientific, Singapore (2005)

  441. Peregrine, D.H., Bredmose, H., Bullock, G.N., Hunt, A., Obhrai, C.: Water wave impact on walls and the role of air. In: Smith, J.M (ed.) Proceedings of the 30th ASCE International Conference on Coastal Engineering, San Diego, pp. 4494–4506 (2006)

  442. Pilipchuk, V.N.: Nonlinear interactions and energy exchange between liquid sloshing modes. Physica D 263, 21–40 (2013)

    MathSciNet  MATH  Google Scholar 

  443. Pistani, F., Thiagarajan, K.: Experimental measurements and data analysis of the impact pressures in a sloshing experiment. Ocean Eng. 52, 60–74 (2012)

    Google Scholar 

  444. Plumerault, L.-R.: Numerical Modelling of Aerated-Water Wave Impacts on a Coastal Structure. University of Pau and Pays de l’Adour, France (2009). PhD Thesis

    Google Scholar 

  445. Poorfar, A.K., Shahmardan, M.M., Sedighi, M.: Total volume conservation in numerical simulation of liquid sloshing phenomena in partially filled containers. Mechanika 18(4), 424–431 (2012)

    Google Scholar 

  446. Pushparajalingam, J.S., Loysel, T.: A motion-based approach to estimate the sloshing impact rate in a membrane tank of LNG carrier. In: Proceedings of the 26th International Offshore and Polar Engineering (ISOPE) Conference, pp. 894–900. Rhodes, Greece (2016)

  447. Qi, J.T., Gu, M., Wu, C.S.: Numerical simulation of sloshing in liquid tank. Chuan Bo Li Xue/J. Ship Mech. 12(4), 574–581 (2008). (in Chinese)

    Google Scholar 

  448. Rafiee, A.: SPH modelling of multi-phase and energetic flows. Ph.D. thesis, University of Western Australia, School of Mechanical Engineering (2012)

  449. Rafiee, A., Pistani, F., Thiagarajan, K.: Study of liquid sloshing: numerical and experimental approach. Comput. Mech. 47(1), 65–75 (2011)

    MathSciNet  Google Scholar 

  450. Rafiee, A., Cummins, S., Rudman, M., Thiagarajan, K.: Comparative study on the accuracy and stability of SPH schemes in simulating energetic free-surface flows. Eur. J. Mech. B/Fluids 36, 1–16 (2012)

    MathSciNet  MATH  Google Scholar 

  451. Rafiee, A., Repalle, N., Dias, F.: Numerical simulations of 2D liquid impact benchmark problem using two-phase compressible and incompressible methods. In: Proceedings of the 23rd International Offshore and Polar Engineering (ISOPE) Conference. Alaska, USA (2013)

  452. Rafiee, A., Dutykh, D., Dias, F.: Numerical simulation of wave impact on a rigid wall using a two-phase compressible SPH method. Proc. IUTAM Symp. Particle Methods Fluid Dyn. 18, 123–137 (2015)

    Google Scholar 

  453. Ramkema, C.: A model law for wave impacts on coastal structures. In: Proceedings of the 16th International Conference on Coastal Engineering, p. 20p. Hamburg, Germany (1978)

  454. Reclari, M.: Hydrodynamics of Orbital Shaken Bioreactors. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Suisse (2013)

  455. Reclari, M., Dreyer, M., Tissot, S., Obreschjow, D., Wurm, F.M.: Surface wave dynamics in orbital shaken cylindrical containers. Phys. Fluids 26, 052104, 19p (2014)

    Google Scholar 

  456. Repalle, N.: Study of Sloshing Impact Pressures using Level Set Method. Ph.D. thesis, School of Mechanical and Chemical Engineering, The University of Western Australia (2011)

  457. Rhee, S.H.: Unstructured grid-based Reynolds-averaged Navier-Stokes method for liquid tank sloshing. ASME J. Fluids Eng. 127(3), 572–582 (2005)

    Google Scholar 

  458. Richardson, A.J., Bray, W.H., Sandströ m, R. E., Lokken, R.T., Danaczko, M. A.: Advances in assessment of LNG sloshing for large membrane ships. In: Proceedings of the GasTech 2005. Bilbao, Spain, p. 11p (2005)

  459. Robertson, B., Gharabaghi, B., Power, H.E.: Predicting breaking wave conditions using Gene expression programming. Coast. Eng. J. 59(3), 1–14 (2017)

    Google Scholar 

  460. Rognebakke, O.F., Faltinsen, O.M.: Sloshing Induced Impacts in Rectangular Tanks with a High Filling Ratio. Centre for Ships and Ocean Structures, NTNU, Trondheim, p. 4 (2005)

  461. Rognebakke, O.F., Hoff, J.R., Allers, J.M., Berget, K., Berge, B.O., Zhao, R., Paik, J.K., Danaczko, M.A., Lokkenm, R.T., Kokkinis, T., Sandström, R.E.: Experimental approaches for determining sloshing loads in LNG tanks. Trans. Soc. Naval Archit. Mar. Eng. 113, 384–401 (2005)

    Google Scholar 

  462. Rogers, B. D., Dalrymple, R. A.: SPH modeling of breaking waves. In: Proceedings of the 29th International Conference on Coastal Engineering 2004, Lisbon, Portugal, pp. 415–427 (2005)

  463. Ross, C.W.: Laboratory Study of Shock Pressures of Breaking Waves. Beach Erosion Board, Corps of Engineers, Technical Memorandum No. 59, Washington, D.C., 22 pp (1955)

  464. Royon-Lebeaud, A., Hopffinger, E.J., Cartellier, A.: Liquid sloshing and wave breaking in circular and square-base cylindrical containers. J. Fluid Mech. 577, 467–494 (2007)

    MathSciNet  MATH  Google Scholar 

  465. Rudman, M.: Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Methods Fluids 24, 671–691 (1997)

    MathSciNet  MATH  Google Scholar 

  466. Rudman, M., Cleary, P.W.: Modelling sloshing in LNG tanks. In: Proceeding of the 7th International Conference CFD in the Minerals and Process Industries (CSIRO), p. 6p. Melbourne, Australia (2009)

  467. Rudman, M., Prakash, M., Cleary, P.W.: Simulation of liquid sloshing in a model LNG tank using smoothed particle hydrodynamics. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka Japan, Paper YHK13, pp 213–220 (2009)

  468. Ryu, M.C., Hwang, Y.S., Jung, J.H., Jeon, S.S., Kim, Y.S., Lee, J.H., Lee, Y.M.: Sloshing load assessment for LNG offshore units with a two-row tank arrangement. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, pp. 284–294 (2009)

  469. Ryu, M.C., Jung, J.H., Jeon, S.S., Hwang, Y.S., Kim, Y.S., Lee, J.H., Kwon, S.H.: Nonlinear effect of wave heights on sloshing loads. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, Beijing, China 3, 215–222 (2010)

  470. Ryu, M.C., Jung, J.H., Kim, Y.S., Kim, Y.: Sloshing design load prediction of a membrane type LNG cargo containment system with two-row tank arrangement in offshore applications. Int. J. Naval Archit. Ocean Eng. 8(6), 535–537 (2016)

    Google Scholar 

  471. Saghi, H., Ketabdari, M.J.: Numerical simulation of sloshing in rectangular storage tank using coupled FEM-BEM. J. Mar. Sci. Appl. 11(4), 417–426 (2012)

    Google Scholar 

  472. Sandström, R.E., Bray, W.H., Bourgoyne, D.A.: New sloshing assessment methodology for membrane tanks in LNG carriers. In: Proceedings of the LNG-15, Barcelona, Spain, Paper PS6-1, pp. 6.1–6.10 (2007)

  473. Sapkale, G.N., Patil, S.M., Surwasw, U.S., Bhatbhage, P.K.: Supercritical fluid extraction: a review. Int. J. Chem. Sci. 8(2), 729–743 (2010)

    Google Scholar 

  474. Sarpkaya, T., Isaacson, M.: Mechanics of Wave Forces on Offshore Structures. Van Nostrand Reinhold, New York (1981)

    Google Scholar 

  475. Schreier, S.: Comparison of free surface shape in single impact wave sloshing experiments to linear and higher order predictions. In: Proceedings of the 26th International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, pp. 966–971 (2016)

  476. Schreier, S., Paschen, M.: Sloshing in LNG tanks - assessment of high and low pressures. In: 27h ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Estoril, Portugal, OMAE 2008, 7p (2008)

  477. Scolan, Y.: Some aspects of the flip-through phenomenon: a numerical study based on the desingularized technique. J. Fluids Struct. 26, 918–953 (2010)

    Google Scholar 

  478. Scolan, Y.M., Brosset, L.: Numerical simulation of highly nonlinear sloshing in a tank due to forced motion. Int. J. Offshore Polar Eng. 27(1), 11–17 (2017)

    Google Scholar 

  479. Shao, J.R., Li, H.Q., Liu, G.R., Liu, M.B.: An improved SPH method for modeling liquid sloshing dynamics. Comput. Struct. 100, 18–26 (2012)

    Google Scholar 

  480. Shao, J., LI, S., Li, Z., Liu, M.: A comparative study of different baffles on mitigating liquid sloshing in a rectangular tank due to a horizontal excitation. Eng. Comput. 13(4), 1172–1190 (2015)

    Google Scholar 

  481. Shao, S.D., Gotoh, H.: Simulating coupled motion of progressive wave and floating curtain wall by SPH-LES model. Coast. Eng. J. 46(2), 171–202 (2004)

    Google Scholar 

  482. Shin, Y., Kim, J.W., Lee, H., Hwang, C.: Sloshing impact of LNG cargoes in membrane containment systems in the partially filled condition. In: Proceedings of the 13th International Offshore and Polar Engineering (ISOPE) Conference, Honolulu, Hawaii, USA, p. 7p (2003)

  483. Song, Y.K., Chang, K.A., Ryu, Y, Kwon, S.H.: Experimental study on flow kinematics and impact pressure in liquid sloshing. Exp. Fluids 54(9), article 1592, 20p (2013)

  484. Song, Y., Tan, S., Fu, X.K.: Numerical simulation of rising bubble behavior in sloshing condition. Hedongli Gongcheng/Nuclear Power Eng. 35(Suppl 1), 71–74 (2014). (in Chinese)

    Google Scholar 

  485. Song, Y., Tan, S., Fu, X.K. and Li, X.H.: Study on the characteristics of single bubble rising velocity under sloshing conditions. Harbin Gongcheng Daxue Xuebao/J Harbin Eng. Univ. 36 (6), 865–870 (2015) (in Chinese)

  486. Sriram, V., Sannasiraj, S.A., Sundar, V.: Numerical simulation of 2D sloshing waves due to horizontal and vertical random excitations. Appl. Ocean Res. 28, 19–32 (2006)

    Google Scholar 

  487. Staquet, C., Sommeria, J.: Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34, 559–593 (2002)

    MathSciNet  MATH  Google Scholar 

  488. Sun, H.Y., Sun, Z.C., Liang, S., Zhao, X.: Numerical study of air compressibility effects in breaking wave impacts using a CIP-based model. Ocean Eng. 174, 159–168 (2019)

    Google Scholar 

  489. Surhone, L.M., Tennoe, M.T., Henssonow, S.F.: Finite Volume Method, Betascript Publishing. ISBN (2010). 978-613-1-32713-1

  490. Sutherland, B.: Internal Gravity Waves. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  491. Takahashi, S., Tanimoto, K., Miyanaga, S.: Uplift wave forces due to compression of enclosed air layer and their similitude law. Coast. Eng. Jpn. 28(1), 191–2016 (1985)

    Google Scholar 

  492. Tang, B., Li, J., Wang, T.: The least square particle finite element method for simulating large amplitude sloshing flows. Acta Mech. Sin. 24, 317–323 (2008)

    MATH  Google Scholar 

  493. Tang, Z.Y., Wan, D.C.: Numerical simulation of impinging jet flows by modified MPS method. Eng. Comput. 32(4), 1153–1171 (2015)

    Google Scholar 

  494. Tang, Z.Y., Zhang, Y.L., Wan, D.: Numerical study of sloshing in baffled tanks by MPS. In: Proceedings of the 25th International Offshore and Polar Engineering (ISOPE) Conference, Kona, Hawaii, pp. 937–944 (2015)

  495. Tang, Z.Y., Zhang, Y.L., Wan, D.C.: Multi-resolution MPS method for free surface flows. Int. J. Comput. Methods 13(4), 1641018 (2016a)

    MathSciNet  MATH  Google Scholar 

  496. Tang, Z.Y., Zhang, Y.L., Wan, D.C.: Numerical simulation of 3D free surface flows by overlapping MPS. J. Hydrodyn. 28(2), 306–312 (2016b)

    Google Scholar 

  497. Tang, Z.Y., Wan, D., Chen, G., Xiao, Q.: Numerical simulation of 3D violent free-surface flows by multi-resolution MPS method. J. Ocean Eng. Mar. Energy 2(3), 355–364 (2016c)

    Google Scholar 

  498. Taylor, J.R.: The energetics of breaking events in a resonantly forced internal wave field. J. Fluid Mech. 239, 309–340 (1992)

    Google Scholar 

  499. Teng, B., Zhao, M., He, G.H.: Scaled boundary finite element analysis of the water sloshing in 2D containers. Int. J. Numer. Methods Fluids 329, 4466–4485 (2006)

    MathSciNet  MATH  Google Scholar 

  500. Thiagarajan, K.P., Rakshit, D., Repalle, N.: The air-water sloshing problem: fundamental analysis and parametric studies on excitation and fill levels. Ocean Eng. 38(2), 498–508 (2011)

    Google Scholar 

  501. Thorpe, S.A.: On standing internal gravity waves of finite amplitude. J. Fluid Mech. 32, 489–528 (1968)

    MATH  Google Scholar 

  502. Tritton, D.J.: Physical Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  503. Valentine, D. T.: Nonlinear Internal Waves: A Numerical Investigation of 2D Sloshing. In: 23rd ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Vancouver, British Columbia, Canada. OMAE2004-51002, pp. 367–374 (2004)

  504. Valentine, D.T.: Numerical investigation of two-dimensional sloshing: nonlinear internal waves. J. Offshore Mech. Arct. Eng. 127(4), 300–305 (2005)

    MathSciNet  Google Scholar 

  505. Valentine, D.T., Frandsen, J.B.: Nonlinear free-surface and viscous-internal sloshing in 2-D numerical wave tanks. In: 22nd ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Cancun, Mexico, OMAE2003-37321, 11p (2003)

  506. Valentine, D.T., Frandsen, J.B.: Nonlinear free-surface and viscous-internal sloshing. J. Offshore Mech. Arct. Eng. 127(2), 141–149 (2005)

    Google Scholar 

  507. Van de Bunt, E., Kaminski, M.L.: Measuring sloshing impacts during full-scale tests. In: Advanced Model Measurement Technology for EU Maritime Industry, AMT’09, Nantes, France (2009)

  508. Veldman, A.E.P., Luppes, R., Bunnik, T., Huijsmans, R.H.M., Düz, B., Iwanowski, B., Wemmenhove, R., Borsboom, M.J.A., Wellens, P.R., van der Heiden, H.J.L., van der Plas, P.: Extreme wave impact on offshore platforms and coastal constructions. In: 30th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Rotterdam, The Netherlands, Paper No. OMAE2011-49488, 12p (2011)

  509. Veldman, A.E.P., Luppes, R., van der Heiden, H.J.L., van der Plas, P., Düz, B., Huijsmans, R.H.M.: Turbulence modelling, local grid refinement and absorbing boundary conditions for free-surface flow simulations in offshore applications. In: 33rd ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), San Francisco, California, Paper # OMAE2014-24427, 11p (2014)

  510. Viccione, G., Dentale, F., Bovolin, V., Carratlli, E.P.: Simulation of wave impact pressure on vertical structutes with the SPH method. In: Proceedings of the 3rd International European Research Community on Flow, Turbulence and Combustion (ERCOFAC) SPHERIC SPH Workshop, p. 4p. EPFL, Lausanne, Switzerland (2008)

  511. Viccione, G., Bovolin, V., Carratlli, E.P.: Influence of the compressibility in Fluid-Structure interaction Using Weakly Compressible SPH. In: Proceedings of the 4th International European Research Community on Flow, Turbulence and Combustion (ERCOFAC) SPHERIC SPH workshop, p. 6p. Nantes, France (2009)

  512. Viccione, G., Bovolin, V., Carratlli, E.P.: Simulating Flows with SPH: Recent Developments and Applications, Chapter in Hydrodynamics—Optimizing Methods and Tools. Edited by Prof. Harry Schulz 69–84 (2011). http://www.intechopen.com/books/hydrodynamicsoptimizing-methods-and-tools/simulating-flows-with-sph-recent-developments-and-applications

  513. Viccione, G., Bovolin, V., Carratlli, E.P.: Using SPH to compute slamming loads on vertical structures. In: Proceedings of the International Conference on Violent Flows Nantes, France, p. 6p (2012)

  514. Vieira, D.P., de Mello, P.C., Dotta, R., Nishimoto, K.: Experimental investigation on the influence of the liquid inside the tanks in the wave behavior of FLNG vessels in side-by-side offloading operations. Appl. Ocean Res. 74, 28–39 (2018)

    Google Scholar 

  515. Von Bergheim, P., Thiagarajan, K.P.: The air-water sloshing problem: parametric studies on excitation magnitude and frequency. In: 27th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Estoril Portugal, Paper # OMAE2008-57556, pp. 603-609, 7p (2008)

  516. Wang, B., Shin, Y.: Full-scale sloshing impact test and coupled fluid-structure FE modeling of LNG containment system. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, p. 8p (2009)

  517. Wang, B., Han, S.K., Kim, Y.S., Park, Y.I., Shin, Y.: Sloshing model tests and strength assessment of the NO 96 containment system. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, pp. 261–268 (2009)

  518. Wang, B., Shin, Y.: Full-scale test and FE analysis of LNG MK III containment system under sloshing loads. In: Proceedings of the 21st International Offshore and Polar Engineering (ISOPE) Conference, Maui, Hawaii, USA, p. 8p (2011)

  519. Wang, C.Y., Teng, J.T., Huang, G.P.G.: Numerical simulation of sloshing motion inside a two-dimensional rectangular tank with a baffle or baffles. J. Aeron. Astron. Aviat. Ser. A 42(3), 207–215 (2010)

    Google Scholar 

  520. Wang, C.Y., Teng, J.T., Huang, G.P.G.: Numerical simulation of sloshing motion inside a two-dimensional rectangular tank by level set method. Int. J. Numer. Methods Heat Fluid Flow 21(1), 5–31 (2011)

    Google Scholar 

  521. Wang, C.Z., Khoo, B.C.: Finite element analysis of two-dimensional nonlinear sloshing problems in random excitations. Ocean Eng. 32, 107–133 (2005)

    Google Scholar 

  522. Wang, D.G., Zou, Z.L., Liu, X.: Fully nonlinear 3-D numerical wave tank simulation. Chuan Bo Li Xue/J. Ship Mech. 14(6), 577–586 (2010)

    Google Scholar 

  523. Wang, J.H., Wan, D., Chen, G., Huang, W.H.: Comparative studies of 3-D LNG tank sloshing based on the VoF and IMPS methods. In: Proceedings of the 26th International Offshore and Polar Engineering (ISOPE) Conference, Rhodes, Greece, pp. 815–821 (2016)

  524. Wang, L., Wang, Z., Li, Y.: A SPH simulation on large-amplitude sloshing for fluids in a two-dimensional tank. Earthq. Eng. Eng. Vib. 12(1), 135–142 (2013)

    Google Scholar 

  525. Wang, L.S., Wang, Z., Li, Y.C.: Two-dimensional nonlinear parametric sloshing in the irregular tanks: Numerical analysis and experimental investigation. J Vibroeng. 19(3), 2153–2163 (2017)

    Google Scholar 

  526. Wang, Y.X., Su, T.C.: Numerical simulation of breaking waves against vertical wall. In: Proceedings of the 2nd International Offshore and Polar Engineering (ISOPE) Conference. California, San Francisco, p. 7p (1992)

  527. Wei, C., Wang, L., Shabana, A.A.: A total Lagrangian ANCF liquid sloshing approach for multibody system applications. ASME J. Comput. Nonlinear Dyn. 10(5), p. 051014, 10p (2015)

  528. Wei, Z., Ruan, S., Chen, X.D., Luo, S., Yue, Q.J.: An experimental investigation of liquid sloshing impact load in a large-scaled prismatic tank. In: Proceedings of the 24th International Offshore and Polar Engineering (ISOPE) Conference, Busan, Korea, pp. 272–277 (2014)

  529. Wei, Z.J., Faltinsen, O.M., Lugni, C., Yue, Q.J.: Sloshing-induced slamming in screen-equipped rectangular tanks in shallow-water conditions. Phys. Fluids 27(032104), 24p (2015)

    Google Scholar 

  530. Wellens, P.R., Luppes, R., Veldman, A.E.P., Borsboom, M.J.A.: CFD simulations of a semisubmersible with absorbing boundary conditions. In: 28th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Honolulu, Hawai, Paper # OMAE2009-79342, 10p (2009)

  531. Wellens, P.R., Borsboom, M.J.A., Van Gent, M.R.A., Wenneker, I.: 3D simulation of wave interaction with permeable structures. In: Proceedings of the 32nd International Conference on Coastal Engineering, Shanghai, China, p. 15p (2010)

  532. Wemmenhove, R.: Numerical Simulation of Two-Phase Flow in Offshore Environments. Ph.D. thesis, University of Groningen; Department of Mathematics, The Netherlands (2008)

  533. Wemmenhove, R., Loots, G.E., Luppes, R., Veldman, A.E. P.: Modelling two-phase flow with offshore applications. In: 24th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Paper No. OMAE2005-67460. Halkidiki, Greece, 9p (2005)

  534. Wemmenhove, R., Luppes, R., Veldman, A.E.P., Bunnik, T.: Numerical simulation of sloshing in LNG tanks with a compressible two-phase model. In: 26th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE). San Diego, California, pp. 871–879 (2007a)

  535. Wemmenhove, R., Luppes, R., Veldman, A.E.P., Bunnik, T.: Numerical simulation and model experiments of sloshing in LNG tanks. In: Proceedings of the Computational methods in Marine Engineering II, Barcelona, Spain (2007b)

  536. Wemmenhove, R., Luppes, R., Veldman, A.E.P.: Application of a VoF method to model compressible two-phase flow in sloshing tanks. In: 27th ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), Paper No. OMAE2008-57254, Estoril, Portugal (2008)

  537. Wemmenhove, R., Iwanowski, B., Lefranc, M., Veldman, A.E.P., Luppes, R., Bunnik, T.: Simulation of sloshing dynamics in a tank by an improved volume-of-fluid method. In: Proceedings of the 19th International Offshore and Polar Engineering (ISOPE) Conference, Osaka, Japan, p. 8p (2009)

  538. Wemmenhove, R., Luppes, R., Veldman, A.E.P., Bunnik, T.: Numerical simulation of hydrodynamic wave loading by a compressible two-phase flow method. Comput. Fluids 114, 218–231 (2015)

    MathSciNet  MATH  Google Scholar 

  539. Wenneker, I., Wellens, P., Gervelas, R.: Volume-of-Fluid model COMFLOW simulations of wave impacts on a dike. In: Proceedings of the 32nd International Conference on Coastal Engineering, p. 12p. Shanghai, China (2010)

  540. Westphalen, J., Greaves, D.M., Williams, C.K., Zang, J., Taylor, P.H.: Numerical simulation of extreme free surface waves. In: Proceedings of the 18th International Offshore and Polar Engineering (ISOPE) Conference, Vancouver, Canada, p. 7p (2008)

  541. Westphalen, J., Greaves, D.M., Williams, C.J.K., Hunt-Raby, A.C., Zang, J.: Focused waves and wave-structure interaction in a numerical wave tank. Ocean Eng. 45, 9–21 (2012)

    Google Scholar 

  542. Witte, H.H.: Wave induced impact loading in deterministic and stochastic reflection, Mitt Leichtweiss Inst Wasserbau, vol. 102. Tech Univ Braunschweig, Braunschweig, Germany (1988)

  543. Wood, D.J., Peregrine, D.H.: Two and three-dimensional pressure-impulse models of wave impact on structures. In: Proceedings of the 26th International Conference on Coastal Engineering, pp. 1502–1515. Denmark, Copenhagen (1998)

  544. Wood, D.J., Peregrine, D.H.: Wave impact on a wall using pressure-impulse theory. II: Porous berm. ASCE J. Waterw. Port Coast Ocean Eng. 126, 191–195 (2000)

    Google Scholar 

  545. Wood, D.J., Peregrine, D.H., Bruce, T.: Study of wave impact against a wall with pressure impulse theory: Part 1, trapped air. ASCE J. Waterw. Port Coast. Ocean Eng. 126, 182–190 (2000)

    Google Scholar 

  546. Wu, C.H., Chen, B.F.: Sloshing waves and resonance modes of fluid in a 3D tank by a time-independent finite difference method. Ocean Eng. 36, 500–510 (2009)

    Google Scholar 

  547. Wu, C.H., Chen, B., Hung, T.: Hydrodynamic forces induced by transient sloshing in a 3D rectangular tank due to oblique horizontal excitation. Comput. Math. Appl. 65, 1163–1186 (2013)

    MathSciNet  MATH  Google Scholar 

  548. Wu, G.X., Ma, Q.W., Taylor, R.E.: Numerical simulation of sloshing waves in a 3D tank based on a finite element method. Appl. Ocean Res. 20(6), 337–355 (1998)

    Google Scholar 

  549. Xu, G., Hamouda, A.M.S., Khoo, B.C.: Numerical simulation of fully nonlinear sloshing waves in three-dimensional tank under random excitation. Ocean Syst. Eng. 1(4), 355–372 (2011)

    Google Scholar 

  550. Xu, G., Ma, X.J., Liu, Y.T., Zhu, R.Q.: Numerical simulation of nonlinear sloshing waves in three-dimensional tank based on DBIEM. Chuan Bo Li Xue/J. Ship Mech. 21(6), 661–671 (2017)

    Google Scholar 

  551. Xue, M.A., Zheng, J.H., Yuan, X.L., Lin, P.Z., Ma, Y.X., Zhang, W.: Numerical simulation of shallow water sloshing characteristics in a rectangular tank. In: Proceedings of the 24th International Offshore and Polar Engineering (ISOPE) Conference, Busan, Korea, pp. 150–156 (2014)

  552. Yan, G., Rakheja, S., Siddiqui, K.: Experimental study of liquid slosh dynamics in a partially-filled tank. ASME J. Fluids Eng. 131(7), 0713031–07130314, 14p (2009)

    Google Scholar 

  553. Yan, Y., Ni., Z.H., Liu, X.J., Yin, J.S.: Numerical study of bottom shape effect on pressure performance in a sloshing FLNG membrane tank. In: 36h ASME International Conference on Offshore Mechanics and Arctic Engineering (OMAE), vol. 1, OMAE2017-61008 (2017)

  554. Yang, C., Löhner, R.: Computation of 3D flows with violent free surface motion. In: Proceedings of the 15th International Offshore and Polar Engineering (ISOPE) Conference, Seoul, Korea, pp. 187–196. Paper # 2005-JSC-284 (2005)

  555. Yang, Y., Tang, Z., Zhang, Y., Wan, D.: Investigation of excitation period effects on 2D liquid sloshing by MPS method. In: Proceedings of the 25th International Offshore and Polar Engineering (ISOPE) Conference, Kona, Hawaii, pp. 891–897 (2015)

  556. Yang, Z., Xu, Q., Wu, S., Zhang, W., Yue, Q.: Scale effect in sloshing test in 2D model tank under long-playing regular motion. Ship Build. China 58(2), 156–164 (2017). (in Chinese)

    Google Scholar 

  557. Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics, pp. 273–285. Academic, New York (1982)

    Google Scholar 

  558. Yu, K., Chen, H.C., Kim, J.W., Lee, Y.B.: Numerical simulation of two-phase sloshing flow in LNG tank using finite-analytic level-set method. In: Proceedings of the ASME 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, vol. 4, OMAE2007-29745, pp. 851–860; 10p (2007)

  559. Yung, T.W., Ding, Z., Kuo, J.F.: Impact of corrugations on membrane LNG tank sloshing. In: Proceedings of the Soc Naval Architecture Marine Engineering (SNAME) Conference, Houston, SMTC-036, pp. 1–8 (2008)

  560. Yung, T.W., He, H., Ding, Z., Sandström, R.E.: LNG sloshing: Characteristics and scaling laws. In: Proceedings of the 1st Sloshing Dynamics and Design Symposium, in Proceeding of the 19th International ISOPE Conference, Osaka, vol. 3, pp. 85–91 (2009)

  561. Yung, T.W., Sandström, R.E., He, H., Minta, M.K.: On the physics of vapor/liquid interaction during impact on solids. J. Ship Res. 54(3), 174–183 (2010)

    Google Scholar 

  562. Zhang, C., Ning, D., Teng, B.: Secondary resonance of liquid sloshing in square-base tanks undergoing the circular orbit motion. Eur. J Mech. B/Fluids 72, 235–250 (2018)

    MathSciNet  MATH  Google Scholar 

  563. Zhang, Y.X., Wan, D.C.: Numerical simulation of liquid sloshing in low-filling tank by MPS. Chin. J. Hydrodyn. 27(1), 100–107 (2012). (in Chinese)

    Google Scholar 

  564. Zhang, Y.X., Wan, D.C., Hino, T.: Comparative study of MPS method and level-set method for sloshing flows. J. Hydrodyn. 26(4), 577–585 (2014a)

    Google Scholar 

  565. Zhang, Y.X., Yang, Y., Tang, Z.Y., Wan, D.: Parallel MPS method for three-dimensional liquid sloshing. In: Proceedings of the 24th International Offshore and Polar Engineering (ISOPE) Conference, Busan, Korea, pp. 257–264 (2014b)

  566. Zhao, D.G., Hu, Z.Q., Chen, G., Lim, S., Wang, S.: Nonlinear sloshing in rectangular tanks under forced excitation. Int. J. Naval Archit. Ocean Eng. 10, 545–565 (2018)

    Google Scholar 

  567. Zheng, M., Kim, Y., Kim, S.Y., Ahn, Y.: Study on the prediction of sloshing severity. In; Proceedings of the 23rd International Offshore and Polar Engineering (ISOPE) Conference, pp. 320–329. Anchorage, Alaska (2013)

  568. Zheng, X., Maguire, J.R., Radosavljevic, D.: Validation of numerical tools For LNG sloshing assessment. In: Proceedings of the 20th International Offshore and Polar Engineering (ISOPE) Conference, 20–25 June. Beijing, China, p. 10p (2010)

  569. Zhu, R.Q., Wang, Z.D., Fang, Z.Y.: Prediction of pressure induced by large amplitude sloshing in a tank. Chuan Bo Li Xue/J. Ship Mech. 8(6), 71–78 (2004)

    Google Scholar 

  570. Zhu, R.Q., Fang, Z.Y., Zhang, Z.G., Chen, Z.Y.: Level-set method for predicting impact pressure induced by violent sloshing in a tank. Chuan Bo Li Xue/J. Ship Mech. 12(3), 344–351 (2008)

    Google Scholar 

  571. Zhu, R.Q., Ma, H.X., Miao, Q.M., Zheng, W.T.: Prediction of pressure induced by liquid sloshing for LNG carrier. In: Proceedings of the 6th International Conference Marine Structures (MARSTRUCT 2017): Progress in the Analysis and Design of Marine Structures, Lisbon, Portugal, pp. 69–76 (2017)

  572. Zhu, X.L., Ruan, S., Chen, S.: Numerical simulation on sloshing load in 3D membrane floating liquefied natural gas tank. Comput. Aided Eng. 23(5), 44–48 (2014) (in Chinese)

  573. Zou, C.F., Wang, D.Y., Cai, Z.H.: Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics. Int. J. Naval Archit. Ocean Eng. 7(4), 670–690 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raouf A. Ibrahim.

Ethics declarations

Conflicts of interest

The author has not received any research grant for writing this article. The author also declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, R.A. Assessment of breaking waves and liquid sloshing impact. Nonlinear Dyn 100, 1837–1925 (2020). https://doi.org/10.1007/s11071-020-05605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05605-7

Keywords

Navigation