Skip to main content

Advertisement

Log in

Energy-efficient firing patterns with sparse bursts in the Chay neuron model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The energy efficiency of neural signal transmission is thought to be an important constraint in the nervous system. It is generally measured as the energy consumed per unit of information. Most of the previous studies have demonstrated this efficiency by focusing on single action potentials. However, neural information is more likely to be encoded by a spike train rather than by a single spike. To date, how the energy efficiency is dependent on patterns of spike trains is still unclear. In this study, we examined the energy efficiency of various firing patterns simulated by the Chay neuron model, including relatively high-frequency activities with massive spikes, medium-frequency activities with a moderate number of spikes, and low-frequency activities with rare spikes. Our results indicate that medium-frequency patterns are more energy efficient than both the high-frequency and low-frequency patterns. The most efficient medium-frequency pattern is a sparse burst firing (SBF) pattern because it consumes minimal energy and transmits an amount of neural information comparable to that of high-frequency patterns which consume much more energy. SBF patterns minimize energy consumption not only by producing fewer spikes than high-frequency patterns, but more importantly, also by consuming available energy sources, namely the potential energy stored in ionic concentration gradients, in a balanced way. Furthermore, with fewer spikes, the irregular spike trains of SBF patterns with short bursts and single spikes maximize the neural information that they carry, leading to higher energy efficiency. Thus, the sensory system may give priority to limiting energy costs over maximizing information to achieve greater energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Krahe, R., Gabbiani, F.: Burst firing in sensory systems. Nat. Rev. Neurosci. 5, 13–23 (2004)

    Google Scholar 

  2. Bingmer, M., Schiemann, J., Roeper, J., Schneider, G.: Measuring burstiness and regularity in oscillatory spike trains. J. Neurosci. Meth. 201(2), 426–437 (2011)

    Google Scholar 

  3. Bittner, K.C., Grienberger, C., Vaidya, S.P., Milstein, A.D., et al.: Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18, 1133–1142 (2015)

    Google Scholar 

  4. Naud, R., Sprekeler, H.: Sparse bursts optimize information transmission in a multiplexed neural code. Proc. Natl. Acad. Sci. 115(27), E6329–E6338 (2018)

    Google Scholar 

  5. Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proc. Natl. Acad. Sci. 99(21), 13920–13925 (2002)

    Google Scholar 

  6. Snider, R.K., Kabara, J.F., Roig, B.R., Bonds, A.B.: Burst firing and modulation of functional connectivity in cat striate cortex. J. Neurophysiol. 80, 730–744 (1998)

    Google Scholar 

  7. Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., et al.: Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459, 663–667 (2009)

    Google Scholar 

  8. Schiemann, J., Schlaudraff, F., Klose, V., Bingmer, M., et al.: K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat. Neurosci. 15, 1272–1280 (2012)

    Google Scholar 

  9. Mondal, A., Upadhyay, R.K., Ma, J., Yadav, B.K., et al.: Bifurcation analysis and diverse firing activities of a modified excitable neuron model. Cogn. Neurodyn. 13, 393–407 (2019)

    Google Scholar 

  10. Goldberg, J.A., Wilson, C.J.: Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons. J. Neurosci. 25(44), 10230–10238 (2005)

    Google Scholar 

  11. Berry, M.J., Warland, D.K., Meister, M.: The structure and precision of retinal spike trains. Proc. Natl. Acad. Sci. 94(10), 5411–5416 (1997)

    Google Scholar 

  12. Strong, S.P., Koberle, R., de Ruyter van Steveninck, R.R., Bialek, W.: Entropy and information in neural spike trains. Phys. Rev. Lett. 80, 197 (1998)

    Google Scholar 

  13. Masuda, N., Aihara, K.: Bridging rate coding and temporal spike coding by effect of noise. Phys. Rev. Lett. 88, 248101 (2002)

    Google Scholar 

  14. Zhu, J., Liu, X.: Measuring spike timing distance in the Hindmarsh–Rose neurons. Cogn. Neurodyn. 12, 225–234 (2018)

    Google Scholar 

  15. Malagarriga, D., Pons, A.J., Villa, A.E.P.: Complex temporal patterns processing by a neural mass model of a cortical column. Cogn. Neurodyn. 13, 379–392 (2019)

    Google Scholar 

  16. Laughlin, S.B., de Ruyter van Steveninck, R.R., Anderson, J.C.: The metabolic cost of neural information. Nat. Neurosci. 1, 36–41 (1998)

    Google Scholar 

  17. Zheng, H., Wang, R., Qiao, L., Du, Y.: The molecular dynamics of neural metabolism during the action potential. Sci. China Technol. Sci. 57, 857–863 (2014)

    Google Scholar 

  18. Wang, Y., Wang, R., Xu, X.: Neural energy supply-consumption properties based on Hodgkin–Huxley model. Neural Plast. 2017, 6207141 (2017)

    Google Scholar 

  19. Sengupta, B., Stemmler, M., Laughlin, S.B., Niven, J.E.: Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLoS Comput. Biol. 6(7), e1000840 (2010)

    MathSciNet  Google Scholar 

  20. Laughlin, S.B.: Energy as a constraint on the coding and processing of sensory information. Curr. Opin. Neurobiol. 11(4), 475–480 (2001)

    Google Scholar 

  21. Alle, H., Roth, A., Geiger, J.R.P.: Energy-efficient action potentials in hippocampal mossy fibers. Science 325(5946), 1405–1408 (2009)

    Google Scholar 

  22. Carter, B.C., Bean, B.P.: Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons. Neuron 64(6), 898–909 (2009)

    Google Scholar 

  23. Sengupta, B., Laughlin, S.B., Niven, J.E.: Balanced excitatory and inhibitory synaptic currents promote efficient coding and metabolic efficiency. PLoS Comput. Biol. 9, e1003263 (2013)

    Google Scholar 

  24. Moujahid, A., d’Anjou, A.: Metabolic efficiency with fast spiking in the squid axon. Front. Comput. Neurosci. 6, 95 (2012)

    Google Scholar 

  25. Brown, M.R., Kaczmarek, L.K.: Potassium channel modulation and auditory processing. Hear. Res. 279(1–2), 32–42 (2011)

    Google Scholar 

  26. Meng, X., Lu, Q., Rinzel, J.: Control of firing patterns by two transient potassium currents: leading spike, latency, bistability. J. Comput. Neurosci. 31, 117–136 (2011)

    MathSciNet  Google Scholar 

  27. Johnston, J., Forsythe, I.D., Kopp-Scheinpflug, C.: Going native: voltage-gated potassium channels controlling neuronal excitability. J. Physiol. 588, 3187–3200 (2010)

    Google Scholar 

  28. Ma, J., Yang, Z., Yang, L., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A 20, 639–659 (2019)

    Google Scholar 

  29. Wang, R., Zhu, Y.: Can the activities of the large scale cortical network be expressed by neural energy? A brief review. Cogn. Neurodyn. 10, 1–5 (2016)

    MathSciNet  Google Scholar 

  30. Kriegeskorte, N., Douglas, P.K.: Cognitive computational neuroscience. Nat. Neurosci. 21, 1148–1160 (2018)

    Google Scholar 

  31. Kass, R.E., Amari, S., Arai, K., Brown, E.N., et al.: Computational neuroscience: mathematical and statistical perspectives. Annu. Rev. Stat. Appl. 5, 183–214 (2018)

    MathSciNet  Google Scholar 

  32. Chay, T.R.: Chaos in a three-variable model of an excitable cell. Physica D 16(2), 233–242 (1985)

    MATH  Google Scholar 

  33. Li, L., Gu, H., Yang, M., Liu, Z., Ren, W.: A series of bifurcation scenarios in the firing pattern transitions in an experimental neural pacemaker. Int. J. Bifurc. Chaos 14(5), 1813–1817 (2004)

    MATH  Google Scholar 

  34. Ando, H., Suetani, H., Kurths, J., Aihara, K.: Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force. Phys. Rev. E 86, 016205 (2012)

    Google Scholar 

  35. Jia, B., Gu, H., Xue, L.: A basic bifurcation structure from bursting to spiking of injured nerve fibers in a two-dimensional parameter space. Cogn. Neurodyn. 11, 189–200 (2017)

    Google Scholar 

  36. Wang, R., Wang, Z., Zhu, Z.: The essence of neuronal activity from the consistency of two different neuron models. Nonlinear Dyn. 92, 973–982 (2018)

    Google Scholar 

  37. Zhu, F., Wang, R., Pan, X., Zhu, Z.: Energy expenditure computation of a single bursting neuron. Cogn. Neurodyn. 13, 75–87 (2019)

    Google Scholar 

  38. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J.: Principles of Neural Science, 5th edn. McGraw-Hill Companies, New York (2013)

    Google Scholar 

  39. Moujahid, A., d’Anjou, A., Torrealdea, F.J., Torrealdea, F.: Energy and information in Hodgkin–Huxley neurons. Phys. Rev. E 83, 031912 (2011)

    MathSciNet  Google Scholar 

  40. Wang, R., Tsuda, I., Zhang, Z.: A new work mechanism on neuronal activity. Int. J. Neural Syst. 25(3), 1450037 (2015)

    Google Scholar 

  41. Wang, Y., Wang, R.: An improved neuronal energy model that better captures of dynamic property of neuronal activity. Nonlinear Dyn. 91, 319–327 (2018)

    Google Scholar 

  42. Levy, W.B., Baxter, R.A.: Energy efficient neural codes. Neural Comput. 8(3), 531–543 (1996)

    Google Scholar 

  43. Tozzi, A., Peters, J.F., Çankaya, M.N.: The informational entropy endowed in cortical oscillations. Cogn. Neurodyn. 12, 501–507 (2018)

    Google Scholar 

  44. de Ruyter van Steveninck, R.R., Lewen, G.D., Strong, S.P., Koberle, R., Bialek, W.: Reproducibility and variability in neural spike trains. Science 275(5307), 1805–1808 (1997)

    Google Scholar 

  45. Sadeghi, S.G., Chacron, M.J., Taylor, M.C., Cullen, K.E.: Neural variability, detection thresholds, and information transmission in the vestibular system. J. Neurosci. 27(4), 771–781 (2007)

    Google Scholar 

  46. Nawrot, M.P., Boucsein, C., Molina, V.R., Riehle, A., et al.: Measurement of variability dynamics in cortical spike trains. J. Neurosci. Methods 169(2), 374–390 (2008)

    Google Scholar 

  47. Shadlen, M.N., Newsome, W.T.: The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18(10), 3870–3896 (1998)

    Google Scholar 

  48. Harmony, T.: The functional significance of delta oscillations in cognitive processing. Front. Integr. Neurosci. 7, 83 (2013)

    Google Scholar 

  49. Kopell, N., Ermentrout, G.B., Whittington, M.A., Traub, R.D.: Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. 97(4), 1867–1872 (2000)

    Google Scholar 

  50. Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007)

    Google Scholar 

  51. Koch, C.: Biophysics of Computation. Oxford University Press, Oxford (1999)

    Google Scholar 

  52. Mateos, D.M., Guevara Erra, R., Wennberg, R., et al.: Measures of entropy and complexity in altered states of consciousness. Cogn. Neurodyn. 12, 73–84 (2018)

    Google Scholar 

  53. Mease, R.A., Kuner, T., Fairhall, A.L., Groh, A.: Multiplexed spike coding and adaptation in the thalamus. Cell Rep. 19(6), 1130–1140 (2017)

    Google Scholar 

  54. Wang, G., Wang, R., Kong, W., Zhang, J.: Simulation of retinal ganglion cell response using fast independent component analysis. Cogn. Neurodyn. 12, 615–624 (2018)

    Google Scholar 

  55. Wolfe, J., Houweling, A.R., Brecht, M.: Sparse and powerful cortical spikes. Curr. Opin. Neurobiol. 20(3), 306–312 (2010)

    Google Scholar 

  56. Yao, Z., Ma, J., Yao, Y., Wang, C.: Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn. 96, 205–217 (2019)

    Google Scholar 

  57. Xu, Y., Ma, J., Zhan, X., Yang, L., Jia, Y.: Temperature effect on memristive ion channels. Cogn. Neurodyn. 13, 601–611 (2019)

    Google Scholar 

  58. Ma, J., Zhang, G., Hayat, T., Ren, G.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95, 1585–1598 (2019)

    Google Scholar 

  59. Zhu, Z., Wang, R., Zhu, F.: The energy coding of a structural neural network based on the Hodgkin–Huxley model. Front. Neurosci. 12, 122 (2018)

    Google Scholar 

  60. Lu, L., Jia, Y., Kirunda, J.B., Xu, Y., et al.: Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network. Nonlinear Dyn. 95, 1673–1686 (2019)

    Google Scholar 

  61. Xu, Y., Jia, Y., Wang, H., Liu, Y., et al.: Spiking activities in chain neural network driven by channel noise with field coupling. Nonlinear Dyn. 95, 3237–3247 (2019)

    Google Scholar 

  62. Ge, M., Jia, Y., Lu, L., Xu, Y., et al.: Propagation characteristics of weak signal in feedforward Izhikevich neural networks. Nonlinear Dyn. 99, 2355–2367 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants Nos. 11232005, 11472104, 11872180, and 11972159) and the China Scholarship Council (CSC No. 201706740042). This manuscript was communicated by Professor Wang Rubin at rbwang@163.com during the submission and revision.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rubin Wang or Xiaochuan Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Wang, R., Aihara, K. et al. Energy-efficient firing patterns with sparse bursts in the Chay neuron model. Nonlinear Dyn 100, 2657–2672 (2020). https://doi.org/10.1007/s11071-020-05593-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05593-8

Keywords

Navigation