Skip to main content
Log in

Analytical and numerical solution of an \(\varvec{n}\)-term fractional nonlinear dynamic oscillator

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work presents a novel method for the analytical and numerical solution of an n-term fractional nonlinear dynamical system. Two simple methods, commonly known to vibration engineers, namely the method of averaging and harmonic balance method, are utilized to obtain the analytical and numerical solution, respectively. The differential equation is derived from a physical problem. The primary resonance of an n-term fractional nonlinear oscillator is studied analytically by the averaging method. Initially, the amplitude–frequency parametric relation is obtained, and then, the effect of the system parameters such as the excitation amplitude, fractional order and nonlinear stiffness coefficients on the dynamics of the system is investigated. Further, the dynamical system is solved numerically using the harmonic balance method. The main advantage of using this approach is that it reduces the solution of differential equation to those of solving a system of algebraic equations, thus greatly simplifying the problem. The results reveal that the proposed methods are very effective and simple. The fractional-order system is defined in Caputo sense. Moreover, only a small number of harmonics are needed to obtain a satisfactory result with reduced computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mani, A.K., Narayanan, M.D., Sen, M.: Mathematical modeling and parametric identification of a magneto-rheological elastomer using fractional calculus. In: First International Nonlinear Dynamics Conference, Sapienza University, Rome, Italy

  2. Sweilam, N.H., Khader, M.M., Al-Bar, R.F.: Numerical studies for a multi-order fractional differential equation. Phys. Lett. A 371(1–2), 26–33 (2007)

    Article  MathSciNet  Google Scholar 

  3. Diethelm, K., Ford, N.J.: Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 154(3), 621–640 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Daftardar-Gejji, V., Jafari, H.: Solving a multi-order fractional differential equation using adomian decomposition. Appl. Math. Comput. 189(1), 541–548 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Edwards, J.T., Ford, N.J., Simpson, A.C.: The numerical solution of linear multi-term fractional differential equations: systems of equations. J. Comput. Appl. Math. 148(2), 401–418 (2002)

    Article  MathSciNet  Google Scholar 

  6. El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A.: Numerical solution for multi-term fractional (arbitrary) orders differential equations. Comput. Appl. Math. 23(1), 33–54 (2004)

    Article  MathSciNet  Google Scholar 

  7. Hegazi, A.S., Ahmed, E., Matouk, A.E.: On chaos control and synchronization of the commensurate fractional order Liu system. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1193–1202 (2013)

    Article  MathSciNet  Google Scholar 

  8. Tavazoei, M.S., Haeri, M.: Chaotic attractors in incommensurate fractional order systems. Phys. D 237(20), 2628–2637 (2008)

    Article  MathSciNet  Google Scholar 

  9. Daftardar-Gejji, V., Bhalekar, S.: Solving multi-term linear and non-linear diffusion-wave equations of fractional order by adomian decomposition method. Appl. Math. Comput. 202(1), 113–120 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Ford, N.J., Connolly, J.A.: Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations. J. Comput. Appl. Math. 229(2), 382–391 (2009)

    Article  MathSciNet  Google Scholar 

  11. El-Sayed, A.M.A., El-Kalla, I.L., Ziada, E.A.A.: Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations. Appl. Numer. Math. 60(8), 788–797 (2010)

    Article  MathSciNet  Google Scholar 

  12. Badr, A.A.: Finite element method for linear multiterm fractional differential equations. J. Appl. Math. 2012 (2012). https://doi.org/10.1155/2012/482890

  13. Rostamy, D., Alipour, M., Jafari, H., Baleanu, D.: Solving multi-term orders fractional differential equations by operational matrices of BPs with convergence analysis. Rom. Rep. Phys. 65(2), 334–349 (2013)

    Google Scholar 

  14. Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16(1), 9–25 (2013)

    Article  MathSciNet  Google Scholar 

  15. Bhrawy, A.H., Alofi, A.S.: An accurate spectral Galerkin method for solving multiterm fractional differential equations. Math. Prob. Eng. 2014(4), 728736 (2014). https://doi.org/10.1155/2014/728736

    Article  MathSciNet  MATH  Google Scholar 

  16. Alvarez-Pardo, E., Lizama, C.: Mild solutions for multi-term time-fractional differential equations with nonlocal initial conditions. Electron. J. Differ. Equ. 2014(39), 1–10 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Abd-Elhameed, W.M., Youssri, Y.H.: New spectral solutions of multi-term fractional order initial value problems with error analysis. Comput. Model. Eng. Sci 105(5), 375–398 (2015)

    Google Scholar 

  18. Khader, M.M., El Danaf, T.S., Hendy, A.S.: Efficient spectral collocation method for solving multi-term fractional differential equations based on the generalized Laguerre polynomials. Fract. Calc. Appl. 3(13), 1–14 (2012)

    Google Scholar 

  19. Li, G., Sun, C., Jia, X., Dianhu, D.: Numerical solution to the multi-term time fractional diffusion equation in a finite domain. Numer. Math. Theory Methods Appl. 9(3), 337–357 (2016)

    Article  MathSciNet  Google Scholar 

  20. Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput. Methods Appl. Mech. Eng. 327, 478–502 (2017)

    Article  MathSciNet  Google Scholar 

  21. Al-Srihin, M.K., Al-Refai, M.: An efficient series solution for nonlinear multiterm fractional differential equations. Discrete Dyn. Nat. Soc. 2017, 5234151 (2017). https://doi.org/10.1155/2017/5234151

    Article  MathSciNet  MATH  Google Scholar 

  22. Popolizio, M.: Numerical solution of multiterm fractional differential equations using the matrix Mittag–Leffler functions. Mathematics 6(1), 7 (2018)

    Article  MathSciNet  Google Scholar 

  23. Shen, Y.-J., Wei, P., Yang, S.-P.: Primary resonance of fractional-order van der Pol oscillator. Nonlinear Dyn. 77(4), 1629–1642 (2014)

    Article  MathSciNet  Google Scholar 

  24. Shen, Y., Wei, P., Sui, C., Yang, S.: Subharmonic resonance of van der Pol oscillator with fractional-order derivative. Math. Prob. Eng. 2014(24), 738087 (2014). https://doi.org/10.1155/2014/738087

    Article  MathSciNet  MATH  Google Scholar 

  25. Shen, Y., Yang, S., Xing, H., Gao, G.: Primary resonance of Duffing oscillator with fractional-order derivative. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3092–3100 (2012)

    Article  MathSciNet  Google Scholar 

  26. Shen, Y., Yang, S., Xing, H., Ma, H.: Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives. Int. J. Non-Linear Mech. 47(9), 975–983 (2012)

    Article  Google Scholar 

  27. Shen, Y.-J., Yang, S.-P., Xing, H.-J.: Dynamical analysis of linear SDOF oscillator with fractional-order derivative. Acta. Physica. Sinica. 61(11), 110505 (2012)

    Google Scholar 

  28. Kavyanpoor, S.S.M.: Dynamic behavior of fractional order nonlinear oscillator. J. King Saud Univ. Sci. 31(1), 14–20 (2019)

    Article  Google Scholar 

  29. Narayanan, M.D., Narayanan, S., Padmanabhan, C.: Multiharmonic excitation for nonlinear system identification. J. Sound Vib. 311(3–5), 707–728 (2008)

    Article  Google Scholar 

  30. Narayanan, M.D., Narayanan, S., Padmanabhan, C.: Parametric identification of nonlinear systems using multiple trials. Nonlinear Dyn. 48(4), 341–360 (2007)

    Article  Google Scholar 

  31. Mani, A.K., Narayanan, M.D.: Solution of nonlinear fractional differential equation using harmonic balance method and comparison with power series expansion method. In: Proceedings of the 1st International and 18th ISME Conference, NIT Warangal

  32. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979). MATH Google Scholar

    MATH  Google Scholar 

  33. Murdock, J., Sanders, A., Verhulst, F.: Averaging methods in nonlinear dynamical systems. Appl. Math. Sci. (2007). https://doi.org/10.1007/978-0-387-48918-6

    Article  MATH  Google Scholar 

  34. Burd, V.: Method of Averaging for Differential Equations on an Infinite Interval: Theory and Applications. Chapman and Hall/CRC, New York (2007)

    Book  Google Scholar 

  35. Den Hartog, J.P.: Mechanical Vibrations. Courier Corporation, North Chelmsford (1985)

    MATH  Google Scholar 

  36. Weaver Jr., W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering. Wiley, New York (1990)

    Google Scholar 

  37. Kougioumtzoglou, I.A., Fragkoulis, V.C., Pantelous, A.A., Pirrotta, A.: Random vibration of linear and nonlinear structural systems with singular matrices: a frequency domain approach. J. Sound Vib. 404, 84–101 (2017)

    Article  Google Scholar 

Download references

Funding

This study was not funded by any agency or government firms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajith Kuriakose Mani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, A.K., Narayanan, M.D. Analytical and numerical solution of an \(\varvec{n}\)-term fractional nonlinear dynamic oscillator. Nonlinear Dyn 100, 999–1012 (2020). https://doi.org/10.1007/s11071-020-05539-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05539-0

Keywords

Navigation