Skip to main content

An Approximate Method for Solving a Vibration Equation Involving Fractional Derivatives

  • Conference paper
  • First Online:
Acoustics and Vibration of Mechanical Structures—AVMS-2017

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 198))

Abstract

The response of one-degree-of-freedom systems with fractional distributed-order damping is studied. The dynamics of such systems constitutes the problem of the fractional distributed-order oscillator. This paper presents a new numerical method for solving this fractional distributed order oscillator. The method is based on using fractional Taylor vector approximation. The operational matrix of the fractional integration for fractional Taylor vector is given and is utilized to reduce the solution of the fractional distributed order oscillator to a system of algebraic equations. An illustrative example is included to demonstrate the validity and applicability of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)

    MATH  Google Scholar 

  2. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)

    MATH  Google Scholar 

  3. J.T. Machado, V. Kiryakova, F. Mainardi, Recently history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. R.L. Bagley, P.J. Torvik, Fractional calculus in the transient analysis of viscoelastically damped structures. AIAA J. 23(1985), 918–925 (1985)

    Article  ADS  MATH  Google Scholar 

  5. R.T. Baillie, Long memory processes and fractional integration in econometrics. J. Econom. 73, 5–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Mainardi, Fractional calculus, Some basic problems in continuum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics, ed. by A. Carpinteri, F. Mainardi (Springer, New York, 1997), pp. 291–348

    Chapter  Google Scholar 

  7. Y.A. Rossikhin, M.V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997)

    Article  ADS  Google Scholar 

  8. K.B. Oldham, Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41, 9–12 (2010)

    Article  MATH  Google Scholar 

  9. V.S. Erturk, Z.M. Odibat, S. Momani, An approximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4 + T-cells. Comput. Math Appl. 62, 996–1002 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. S.A. El-Wakil, E.M. Abulwafa, E.K. El-Shewy, A.A. Mahmoud, Ion-acoustic waves in un- magnetized collisionless weakly relativistic plasma of warm-ion and isothermal-electron using time-fractional KdV equation. Adv. Space Res. 49, 1721–1727 (2012)

    Article  ADS  Google Scholar 

  11. M. Khader, N.H. Sweilam, On the approximate solutions for system of fractional integro-differential equations using Chebyshev pseudo-spectral method. Appl. Math. Model. 37, 9819–9828 (2013)

    Article  MathSciNet  Google Scholar 

  12. I.M. Atanackovic, A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mech. 159, 77–86 (2002)

    Article  MATH  Google Scholar 

  13. T.M. Atanackovic, M. Budincevic, S. Pilipovic, On a fractional distributed-order oscillator. J. Phys. A, Math. Gen. 38, 6703–6713 (2005)

    Google Scholar 

  14. T.M. Atanackovic, Fractional distributed order oscillator. A numerical solution. J. Serb. Soc. Comput. Mech. 6, 148–159 (2012)

    Google Scholar 

  15. J.T. Katsikadelis, Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)

    Google Scholar 

  16. S. Mashayekhi, M. Razzaghi, Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 315, 169–181 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Razzaghi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Razzaghi, M. (2018). An Approximate Method for Solving a Vibration Equation Involving Fractional Derivatives. In: Herisanu, N., Marinca, V. (eds) Acoustics and Vibration of Mechanical Structures—AVMS-2017. Springer Proceedings in Physics, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-319-69823-6_2

Download citation

Publish with us

Policies and ethics