Skip to main content
Log in

Image encryption based on hyper-chaotic multi-attractors

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Linear time-delay feedback method makes the stable system generate the infinite-dimensional hyper-chaos, which possesses more than one positive Lyapunov exponent, infinite-dimensional, a wider chaotic parameter range, and multi-attractors, including the single-scroll attractor, the double-scroll attractor, and the composite multi-scroll attractor. The infinite-dimensional hyper-chaotic multi-attractors Chen system generated by linear time-delay feedback (HCMACS) is used for image encryption. Firstly, the state time sequences of the infinite-dimensional HCMACS are preprocessed to achieve the ideal statistical property. Secondly, two random matrices generated by random number generators are used to expand the image size. Finally, the preprocessed chaotic sequences are used to confuse and diffuse the expanded digital image to obtain the encrypted image. The special feature of the proposed method is the theoretically infinite-dimensional secret key space. Results of analysis and computer simulation indicate that the encryption algorithm has good encryption performance, which can effectively resist various attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. El-Latif, A.A.A., Li, L., Wang, N., Han, Q., Niu, X.M.: A new approach to chaotic image encryption based on quantum chaotic system, exploiting color spaces. Signal Process. 93, 2986–3000 (2013)

    Article  Google Scholar 

  2. Xiao, D., Liao, X.F., Wong, K.W.: An efficient entire chaos-based scheme for deniable authentication. Chaos Solitons Fract. 23(4), 1327–1331 (2005)

    Article  MATH  Google Scholar 

  3. Hua, Z., Zhou, Y., Pun, C.M., Chen, C.P.: 2D Sine logistic modulation map for image encryption. Inf. Sci. 297, 80–942015 (2015)

    Article  Google Scholar 

  4. Natiq, H., Al-Saidi, N.M.G., Said, M.R.M., Kilicman, A.: A new hyper-chaotic map and its application for image encryption. Eur. Phys. J. Plus 133(1), 6 (2018)

    Article  Google Scholar 

  5. Zhang, Y.Q., Wang, X.Y.: A new image encryption algorithm based on non-adjacent coupled map lattices. Appl. Soft Comput. 26, 10–202015 (2015)

    Article  Google Scholar 

  6. Boriga, R., DăscăLescu, A.C., Priescu, I.: A new hyperchaotic map and its application in an image encryption scheme. Signal Process. 29(8), 887–901 (2014)

    Google Scholar 

  7. Zhang, W., Wong, K.W., Yu, H., Zhu, Z.L.: An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion. Commun. Nonlinear Sci. Numer. Simul. 18(8), 2066–2080 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, X.Y., Teng, L., Qin, X.: A novel colour image encryption algorithm based on chaos. Signal Process. 92(4), 1101–1108 (2012)

    Article  MathSciNet  Google Scholar 

  9. Solak, E., Cokal, C., Yildiz, O.T., Biyikoglu, T.: Cryptanalysis of Fridrich’s chaotic image encryption. Int. J. Bifurc. Chaos 20(5), 1405–1413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Short, K.M.: Steps toward unmasking secure communications. Int. J. Bifurc. Chaos 4(4), 959–977 (1994)

    Article  MATH  Google Scholar 

  11. Arroyo, D., Rhouma, R., Alvarez, G., Li, S.J., Fernandez, V.: On the security of a new image encryption scheme based on chaotic map lattices. Chaos 18(3), 033112 (2008)

    Article  Google Scholar 

  12. Awad, A., Assad, S.E., Wang, Q.X., Vladeanu, C.: Comparative study of 1-D chaotic generators for digital data encryption. Int. J. Comput. Sci. 35(4), 05 (2008)

    Google Scholar 

  13. Zhou, H., Ling, X.T.: Problems with the chaotic inverse system encryption approach. IEEE Trans. Circ. Syst. I 44(3), 268–271 (1997)

    Article  Google Scholar 

  14. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, S., Mou, X., Cai, Y., et al.: On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision. Comput. Phys. Commun. 153(1), 52–58 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ye, G.: Image scrambling encryption algorithm of pixel bit based on chaos map. Pattern Recogn. Lett. 31(5), 347–354 (2010)

    Article  Google Scholar 

  17. Rhouma, R., Solak, E., Belghith, S.: Cryptanalysis of a new substitution-diffusion based image cipher. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1887–1892 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Arroyo, D., Li, S.J., Amigó, J.M., Alvarez, G., Rhouma, R.: Comment on Image encryption with chaotically coupled chaotic maps. Phys. D 239(12), 1002–1006 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cokal, C., Solak, E.: Cryptanalysis of a chaos-based image encryption algorithm. Phys. Lett. A 373(15), 1357–1360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, S., Kuang, J., Li, J., et al.: Chaos-based secure communications in a large community. Phys. Rev. E 66(2), 065202 (2002)

    Article  Google Scholar 

  21. Ren, H.P., Liu, D., Han, C.Z.: Anticontrol of chaos via direct time delay feedback. Acta Phys. Sin-Ch. ED. 55(06), 2694–08 (2006)

    Google Scholar 

  22. Ren, H.P., Li, W.C.: Heteroclinic orbits in Chen circuit with time delay. Commun. Nonlinear Sci. Numer. Simul. 15(10), 3058–3066 (2010)

    Article  Google Scholar 

  23. Ren, H.P., Bai, C., Tian, K., Grebogi, C.: Dynamics of delay induced composite multi-scroll attractor and its application in encryption. Int. J. Nonlin. Mech. 94, 334–342 (2017)

    Article  Google Scholar 

  24. Ren, H.P., Bai, C., Huang, Z.Z.: Secure communication with hyper-chaotic Chen system. Int. J. Bifurc. Chaos 14(5), 1750076 (2017)

    Article  MATH  Google Scholar 

  25. Chen, G.R., Tetsushi, U.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(07), 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tetsushi, U., Chen, G.R.: Bifurcation analysis of Chen’s equation. Int. J. Bifurc. Chaos 10(08), 1917–1931 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, J., Chen, G., Zhang, S.: Dynamical analysis of a new chaotic attractor. Int. J. Bifurc. Chaos 12(05), 1001–1015 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, Y.C., Bao, L., Chen, C.P.: A new 1D chaotic system for image encryption. Signal Process. 97(7), 172–182 (2014)

    Article  Google Scholar 

  29. Wu, Y., Yang, G.L., Jin, H.X., Noonan, P.J.: Image encryption using the two-dimensional logistic chaotic map. J. Electron. Image 21(1), 013014 (2012)

    Article  Google Scholar 

  30. Chen, J.X., Zhu, Z.L., Zhang, L.B., Zhang, Y.S., Yang, B.Q.: Exploiting self-adaptive permutation-diffusion and DNA random encoding for secure and efficient image encryption. Signal Process. 142(1), 340–353 (2018)

    Article  Google Scholar 

  31. Ye, G.D., Pan, C., Huang, X.L., Mei, Q.X.: An efficient pixel-level chaotic image encryption algorithm. Nonlinear Dyn. 94(1), 745–756 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported in part by the Shaanxi Provincial Special Support Program for Science and Technology Innovation Leader.

Funding

The funding was provided partially by National Natural Science Foundation of China (Grant No. 60804040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Peng Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The sensitivity of the initial conditions of HCMACS

Appendix: The sensitivity of the initial conditions of HCMACS

Fig. 14
figure 14

Time domain waveform of x(t) with different initial conditions

Fig. 15
figure 15

The cross-correlation of two sequences x(t) generated initial condition cases (1) and (2)

Since time delay is introduced, HCMACS generates hyper-chaos with theoretically infinite dimension in the sense that a continuum of initial conditions over the interval \(-\tau \le t < 0\) is required to specify the dynamical behavior, that is, when \(t > 0\), the behavior of the system is not only dependent on the states at time 0, but also related to the state on [\(-\tau \), 0]. So the initial state space of the system is infinite dimensional.

HCMACS is sensitively dependent on the state on [\(-0.3, 0\)]. To show this point, assume \(\tau = 0.3\), \(a = 35\), \(b = 3\), \(c = 18.5\), \(k = 3.8\), \(x(0) = 0.1\), \(y(0) = 0.1\), and \(z (0) = 0.1\), the state of z(t) for \(-\tau \le t < 0\) is given as two slightly different cases:

  1. (1)

    \(z(t) = 0\) for \(-\tau \le t < 0\).

  2. (2)

    \(z(t) = 0\) for \(-\tau \le t < -0.0195\) and \(-0.0195< t < 0\), while, \(z(-0.0195) = 2^{-32}\).

The time domain waveforms of the state x of the system for slightly different initial condition are given in Fig. 14. From Fig. 14, we can see that two time sequences are quite different. The cross-correlation of the time sequences with different initial conditions is given in Fig. 15, from which, we know that the cross-correlation is near zero. This indicates that the system is sensitive on the initial condition in the time-delay continuum. Therefore, the time-delay continuum can be used as key to expand the key space.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, CF., Ren, HP. Image encryption based on hyper-chaotic multi-attractors. Nonlinear Dyn 100, 679–698 (2020). https://doi.org/10.1007/s11071-020-05526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05526-5

Keywords

Navigation