Skip to main content
Log in

Mem-models and state event location algorithm for a prototypical aerospace system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a suite of dynamic models enhanced by mem-models. A prototypical pogo stick model might mimic a space hopper or a segmented telescope mirror actuator, while an extension of that prototype could simulate the terramechanics problem of a deformable soil model interacting with a penetrator. The inclusion of mem-models, including memristor and memcapacitor models, introduces an increased level of fidelity and a new and effective means of modeling memory effects and path dependence of nonlinear interacting dynamical systems. This challenging class of problems, which involves non-smooth dynamical systems posed as differential-algebraic equations, is formulated here as a hybrid dynamical system with both continuous and discrete states, and a state event location algorithm is successfully applied to track discontinuous changes in the system states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Bar-Cohen, Y. (ed.).: Automation, Miniature Robotics and Sensors for Nondestructive Evaluation and Testing. ASNT, Columbus (2000)

  2. Bar-Cohen, Y. (ed.): Electroactive Polymer (EAP) Actuators as Artificial Muscles-Reality, Potential and Challenges. SPIE Press, Bellingham (2001)

    Google Scholar 

  3. Bar-Cohen, Y. (ed.): Biomimetics-Biologically Inspired Technologies. CRC Press, Boca Raton (2005)

    Google Scholar 

  4. Bar-Cohen, Y. (ed.): Biomimetics: Nature-Based Innovation. CRC Press/Taylor & Francis Group LLC, Boca Raton (2011)

    Google Scholar 

  5. Bar-Cohen, Y. (ed.): High Temperature Materials and Mechanisms. CRC Press/Taylor & Francis Group LLC, Boca Raton (2014)

    Google Scholar 

  6. Bar-Cohen, Y. (ed.): Low Temperature Materials and Mechanisms. CRC Press/Taylor & Francis Group LLC, Boca Raton (2016)

    Google Scholar 

  7. Bar-Cohen, Y. (ed.): Advances in Manufacturing and Processing of Materials and Structures. CRC Press/Taylor & Francis Group LLC, Boca Raton (2018)

    Google Scholar 

  8. Bar-Cohen, Y., Breazeal, C. (eds.): Biologically Inspired Intelligent Robots. SPIE Press, Bellingham (2003)

    Google Scholar 

  9. Bar-Cohen, Y., Zacny, K. (eds.): Drilling in Extreme Environments-Penetration and Sampling on Earth and Other Planets. Wiley-VCH, Hoboken (2009)

    Google Scholar 

  10. Bar-Cohen, Y., Zacny, K. (eds).: Advances in Terrestrial and Extraterrestrial Drilling: Ground, Ice, and Underwater. CRC Press/Taylor & Francis Group LLC, in preparation (2019)

  11. Bar-Cohen, Y., Hanson, D., Marom, A. (eds.): The Coming Robot Revolution—Expectations and Fears About Emerging Intelligent, Humanlike Machines. Springer, New York (2009)

    Google Scholar 

  12. Berardi, M., Lopez, L.: On the continuous extension of Adams–Bashforth methods and the event location in discontinuous odes. Appl. Math. Lett. 25, 995–999 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Bernardo, Md, Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems Theory and Applications. Applied Mathematical Sciences, vol. 163. Springer, Berlin (2008)

    MATH  Google Scholar 

  14. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (1987)

    MATH  Google Scholar 

  15. Calvo, M., Higham, D.J., Montijano, J.I., Rández, L.: Global error estimation with adaptive explicit Runge-Kutta methods. IMA J. Numer. Anal. 16, 47–63 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Calvo, M., González-Pinto, S., Montijano, J.I.: Global error estimation based on the tolerance proportionality for some adaptive Runge-Kutta codes. J. Comput. Appl. Math. 218(2), 329–341 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Chua, L.O.: Memrister-the missing circuit element. IEEE Trans. Circuit Theory CT–18(5), 507–519 (1971)

    Google Scholar 

  18. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    MathSciNet  Google Scholar 

  19. Di Ventra, M., Pershin, Y.V., Chua, L.O.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97, 1717–1724 (2009)

    Google Scholar 

  20. Ecker, H.: The bouncing ball problem-modeling and simulation aspects. Simul. News Eur. 34, 9–14 (2002)

    Google Scholar 

  21. Gladwell, I., Shampine, L.F., Brankin, R.W.: Locating special events when solving odes. Appl. Math. Lett. 1(2), 153–156 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Goebel, R., Sanfelice, R., Teel, A.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Guckenheimer, J., Holmes, P.: Nonlinear Oscillators, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, New York (1983)

    MATH  Google Scholar 

  24. Heinzl, B., Rößler, M., Köner, A., Zauner, G., Ecker, H., Breitenecker, F.: Bcp-a benchmark for teaching structural dynamical systems. IFAC Proc. 45, 896–901 (2012)

    Google Scholar 

  25. Higham, D.J.: Global error versus tolerance for explicit runge-kutta methods. IMA J. Numer. Anal. 11, 457–480 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. ASME J. Appl. Mech. 42(2), 440–445 (1975)

    Google Scholar 

  27. Jeltsema, D., Scherpen, JMA.: Multidomain modeling of nonlinear networks and systems Energy- and power-based perspectives. IEEE Control Syst. Mag. 29, 28–59 (2009)

  28. Karnovsky, I.A., Lebed, E. (eds.): Theory of Vibration Protection. Springer (2016)

  29. Körner, A., Breitenecker, F.: State events and structural-dynamic systems: definition of argesim benchmark c21. Simul. News Eur. 26(2), 117–122 (2016)

    Google Scholar 

  30. Lyke, J., Quadrelli, M.B., Ma, K., Forman, G., Edmondson, J.: Fabricsat. AIAA SPACE Forum, Pasadena (2016)

    Google Scholar 

  31. Marsden, J.E., Scheurle, J.: Lagrangian reduction and the double spherical pendulum. Zeitschrift für angewandte Mathematik und Physik ZAMP 44(1), 17–43 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Oster, G.F., Auslander, D.M.: The memristor: a new bond graph element. ASME J. Dyn. Syst. Meas. Control 94(3), 249–252 (1973)

    Google Scholar 

  33. Park, T., Barton, P.I.: State event location in differential-algebraic models. ACM Trans. Model. Comput. Simul. 6(2), 137–165 (1996)

    MATH  Google Scholar 

  34. Paynter, H.M.: Analysis and Design of Engineering Systems: Class Notes for MIT Course 2.751. MIT Press, Cambridge (1961)

    Google Scholar 

  35. Paynter, H.M.: The gestation and birth of bond graphs. http://www.me.utexas.edu/~longoria/paynter/hmp/Bondgraphs.html (2000)

  36. Pei, J.S.: Mem-spring models combined with hybrid dynamical system approach to represent material behavior. ASCE J. Eng. Mech. 144(12), 04015109 (2018)

    Google Scholar 

  37. Pei, J.S., Wright, J.P., Todd, M.D., Masri, S.F., Gay-Balmaz, F.: Understanding memristors and memcapacitors for engineering mechanical applications. Nonlinear Dyn. 80(1), 457–489 (2015)

    Google Scholar 

  38. Pei, J.S., Gay-Balmaz, F., Wright, J.P., Todd, M.D., Masri, S.F.: Dual input–output pairs for modeling hysteresis inspired by mem-models. Nonlinear Dyn. 88(4), 2435–2455 (2017)

    MathSciNet  Google Scholar 

  39. Pei, J.S., Wright, J.P., Gay-Balmaz, F., Beck, J.L., Todd, M.D.: On choosing state variables for piecewise-smooth dynamical system simulations. Nonlinear Dyn. 95(2), 1165–1188 (2019)

    Google Scholar 

  40. Quadrelli, M.B.: Effect of distributed rod and string flexibility on formation dynamic stability. J. Astronaut. Sci. 51(3), 339–357 (2003)

    MathSciNet  Google Scholar 

  41. Quadrelli, M.B.: Nutation time constant determination of on-axis diaphragm tanks on spinner spacecraft. J. Spacecr. Rockets 42(3), 530–542 (2005)

    Google Scholar 

  42. Quadrelli, M.B., Lyke, J.: Multifunctional systems for planetary exploration. In: AIAA SPACE Conference and Exposition, Long Beach (2016)

  43. Quadrelli, M.B., Backes, P., Wilkie, W.K., Giersch, L., Quijano, U., Keim, J., Scharf, D., Mukherjee, R., Bradford, S.C., McKee, M.: Investigation of phase transition-based tethered systems for small body sample capture. Acta Astronaut. 68, 947–973 (2011)

    Google Scholar 

  44. Quadrelli, M.B., Balaram, J.B., Jain, A., Cameron, J., Myint, S., Devalla, A.: Modeling and simulation of vehicle dynamics on the surface of phobos. In: AIAA SPACE Conference & Exposition, Pasadena (2015)

  45. Quadrelli, M.B., Basinger, S., Palacios, D., Arumugam, D.: Dynamics and control of granular imaging systems. In: AIAA SPACE Conference and Exposition, Pasadena (2015)

  46. Quadrelli, M.B., Stoica, A., Ingham, M., Thakur, A.: Flexible electronics-based transformers for extreme environments. In: AIAA SPACE Forum, Pasadena (2015)

  47. Quadrelli, M.B., Ono, M., Jain, A.: Modeling of active tether system concepts for planetary exploration. Acta Astronaut. 138, 512–529 (2017)

    Google Scholar 

  48. van der Shaft, A., Jeltsema, D.: Port-hamiltonian systems: from geometric network modeling to control. In: EECI, pp 1–187 (2009)

  49. Shampine, L., Thompson, S.: Event location for ordinary differential equations. Comput. Math. Appl. 39, 43–54 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Shampine, L.F., Gladwell, I., Brankin, R.W.: Reliable solution of special event location problems for odes. ACM Trans. Math. Softw. 17(1), 11–25 (1991)

    MathSciNet  MATH  Google Scholar 

  51. Shampine, L.F., Gladwell, I., Thompson, S.: Solving ODEs with MATLAB. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  52. Sherrit, S.: Analytical model for the strain-field and polarization-field hysteresis curves for ferroic materials. In: Dapino MJ (ed) Proceedings of the SPIE, vol. 6526, pp 1956–1957 (2007)

  53. Shields J, Sirlin S, Wette M (2002) Starlight pointing sub- system for the formation interferometer testbed (fit). In: Proceedings, IEEE Aerospace Conference, Big Sky, MT

  54. Skrinjar, L., Slavic̆, J., Boltez̆ar, M.: A review of continuous contact-force models in multibody dynamics. Int. J. Mech. Sci. 145, 171–187 (2018)

  55. van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences (Book 251), Springer, Berlin (1999)

  56. Wright, J.P., Pei, J.S.: Solving dynamical systems involving piecewise restoring force using state event location. ASCE J. Eng. Mech. 138(8), 997–1020 (2012)

    Google Scholar 

Download references

Acknowledgements

\({\copyright }\,2019\) California Institute of Technology. Government sponsorship acknowledged. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration: JPL Center for Academic Partnership (CAP) Program. Dr. David Bayard, Dr. Yoseph Bar-Cohen, Dr. Stewart Sherrit, and Dr. Joel Shields are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Song Pei.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Programming details

Appendix A: Programming details

This Appendix summarizes programming details related to Sects. 3, 4 and 5. The code was adapted from the mixed formulation (M) for the bilinear hysteresis model discussed in [39], given that there are two modes to switch between. Nonetheless, the number of details that must be implemented is significant. As an adaptive time stepping scheme, ode45 in MATLAB does not have fixed time steps. Control of time stepping is done through specifying \({{\,\mathrm{RelTol}\,}}\) plus \({{\,\mathrm{MaxStep}\,}}\) and \({{\,\mathrm{InitialStep}\,}}\) via odeset.

1.1 A.1 1-D pogo stick basic model

The flow map in Eqs. (41) and (42) is obtained from Eqs. (18) and (19) into the following states and state equations:

$$\begin{aligned} \mathbf {y}_F&= \left\{ \begin{array}{c} y_F(1) \\ y_F(2) \\ y_F(3) \\ y_F(4) \\ y_F(5) \end{array} \right\} = \left\{ \begin{array}{l} {\bar{x}} \\ {\dot{x}} \\ y \\ {\dot{y}} \\ z \end{array} \right\} , \end{aligned}$$
(41)
$$\begin{aligned} {\dot{\mathbf {y}}}_F&= \left\{ \begin{array}{c} {\dot{y}}_F(1) \\ {\dot{y}}_F(2) \\ {\dot{y}}_F(3) \\ {\dot{y}}_F(4) \\ {\dot{y}}_F(5) \end{array} \right\} = \left\{ \begin{array}{l} {\dot{x}} \\ \ddot{x} \\ {\dot{y}} \\ \ddot{y} \\ {\dot{z}} \end{array} \right\} \end{aligned}$$
(42)
$$\begin{aligned}&= \left\{ \begin{array}{l} y_F(2) \\ s \left( - \frac{c}{m} y_F(2) - \frac{k }{m} ( y_F(1) - x_i) - g \right) \\ y_F(4) \\ (1 - s) (- g) + s \left( - \frac{c}{m} y_F(4) - \frac{k }{m} ( y_F(3) - x_i) - g \right) \\ (1 - s) (y_F(4) - y_F(2)) \end{array} \right\} \end{aligned}$$
(43)

where s is the mode indicator: \(s = 0\) for non-contact mode, \(s = 1\) for contact mode.

The following detail concerns the domain of this hybrid system: Since a rigid surface is impenetrable, \(y(t) > 0\) must hold for all t for physically meaningful results; similarly \(y > z\) and \({\bar{x}} > 0\). Also, the spring never extends, so \(x(t) \le 0\). Such physically implied conditions were established initially and maintained throughout all simulations.

See Figs. 21 and 22 for the assessment of computational efficiency and stability.

Fig. 21
figure 21

Tolerance proportionality (upper left) and work-accuracy diagrams (the rest) for the linear dashpot combined with linear spring in parallel simulated using the “event option” under MATLAB ode45 as given in Fig. 3, where \({{\,\mathrm{AbsTol}\,}}= 10^{-12}\) and \({{\,\mathrm{MaxStep}\,}}= 0.01\), \(m = 1\), \(k = 100\), \(c = 0.5\), \(x_i= 1\), \({\bar{x}}(0) = 1\), \({\dot{x}}(0) = 0\), \(y(0) = 1.5\), \({\dot{y}}(0) = 0\), \(z(0) = 0.5\). Refer to Table 2 for the definitions of the two types of events. GE and FE stand for global error and function evaluation, respectively

Fig. 22
figure 22

Number of state events and their event time values plotted against MATLAB ode45 \({{\,\mathrm{RelTol}\,}}\) for the linear dashpot combined with linear spring in parallel simulated using the “event option” under MATLAB ode45 as given in Fig. 3, where \({{\,\mathrm{AbsTol}\,}}= 10^{-12}\) and \({{\,\mathrm{MaxStep}\,}}= 0.01\), \(m = 1\), \(k = 100\), \(c = 0.5\), \(x_i= 1\), \({\bar{x}}(0) = 1\), \({\dot{x}}(0) = 0\), \(y(0) = 1.5\), \({\dot{y}}(0) = 0\), \(z(0) = 0.5\). Refer to Table 2 for the definitions of the two types of events

1.2 A.2 1-D pogo stick with mem-models

For the pogo stick with mem-models in Sect. 4, we generalized the basic model by implementing a module that includes all combinations of linear elements and mem-elements where the restoring force r is defined as described in Sect. 4 (the basic model being a special case here).

While other hybrid dynamical system components follow those in the basic model, the states and state equations in Eqs. (44) and (45) were implemented as the flow map:

$$\begin{aligned} \mathbf {y}_F&= \left\{ \begin{array}{c} y_F(1) \\ y_F(2) \\ y_F(3) \\ y_F(4) \\ y_F(5) \\ y_F(6) \end{array} \right\} = \left\{ \begin{array}{l} a \\ {\bar{x}} \\ {\dot{x}} \\ y \\ {\dot{y}} \\ z \end{array} \right\} , \end{aligned}$$
(44)
$$\begin{aligned} {\dot{\mathbf {y}}}_F&= \left\{ \begin{array}{c} {\dot{y}}_F(1) \\ {\dot{y}}_F(2) \\ {\dot{y}}_F(3) \\ {\dot{y}}_F(4) \\ {\dot{y}}_F(5) \\ {\dot{y}}_F(6) \end{array} \right\} = \left\{ \begin{array}{l} x \\ {\dot{x}} \\ \ddot{x} \\ {\dot{y}} \\ \ddot{y} \\ {\dot{z}} \end{array} \right\} = \left\{ \begin{array}{l} y_F(2) - x_i \\ y_F(3) \\ s \left( \frac{-r }{m} - g \right) \\ y_F(5) \\ (1 - s) (- g) + s \left( \frac{-r }{m} - g \right) \\ (1 - s) (y_F(5) - y_F(3)) \end{array} \right\} \end{aligned}$$
(45)

where s is the mode indicator, defined previously for the basic model.

Fig. 23
figure 23

A linear dashpot combined with a softening mem-spring defined in Eq. (25) in parallel simulated using the “event option” under MATLAB ode45, where \({{\,\mathrm{RelTol}\,}}= 10^{-3}\), \({{\,\mathrm{AbsTol}\,}}= 10^{-12}\) and \({{\,\mathrm{MaxStep}\,}}= 0.01\): time histories of solved continuous and discrete variable indicating an equivalent coefficient of restitution factor smaller than the linear counterpart with a drift in y, where \(m = 1\), \(k = 100\), \(c = 0.5\), \(x_i= 1\), \({\bar{x}}(0) = 1\), \({\dot{x}}(0) = 0\), \(y(0) = 1.5\), \({\dot{y}}(0) = 0\), \(z(0) = 0.5\). Refer to Table 2 for the definitions of the two types of events

The SMA model was a good test of allowable forms of state event functions. We developed two different techniques. For Event Type #3, we have:

$$\begin{aligned}&y_F(3) + 2*\mathrm{abs}(y_F(2) - x_i -x_1)/(y_F(2)\nonumber \\&\qquad - x_i -x_1) + 2 = 0 \end{aligned}$$
(46)

so that we could satisfy both terms equal to zero simultaneously. The factor of 2 was decided in a trial-and-error fashion. The other technique used the built-in, i.e., the type number of the state events as follows. For Event Type #5, we have:

$$\begin{aligned} y_F(2)-x_i-H_l-(x_3-x_1)+{ie}(\hbox {end})-3 = 0 \end{aligned}$$
(47)

\(H_l\) stores all displacement values when Event Type #3 occurs and was made a global variable. For Event Type #6, we have:

$$\begin{aligned} y_F(2)-x_i-x_3+{ie}(\hbox {end})-5 = 0 \end{aligned}$$
(48)

1.3 A.3 1-D pogo stick with HC soil model

For the pogo stick with soil model in Sect. 5, the states and state equations in Eqs. (49) and (50) were implemented:

$$\begin{aligned}&\mathbf {y}_F = \left\{ \begin{array}{c} y_F(1) \\ y_F(2) \\ y_F(3) \end{array} \right\} = \left\{ \begin{array}{l} y \\ {\dot{y}} \\ \delta \end{array} \right\} ,~~~~~~~~~~~~~~~~~~\end{aligned}$$
(49)
$$\begin{aligned}&{\dot{\mathbf {y}}}_F = \left\{ \begin{array}{c} {\dot{y}}_F(1) \\ {\dot{y}}_F(2) \\ {\dot{y}}_F(3) \end{array} \right\} = \left\{ \begin{array}{l} {\dot{y}} \\ \ddot{y} \\ {\dot{\delta }} \end{array} \right\} = \left\{ \begin{array}{l} y_F(2) \\ (1 - s) (- g) + s \left( -g - \frac{k}{m} (y_F(1) + y_F(3)) + \frac{k}{m} x_i - \frac{c}{m} \left( y_F(2) + \right. \right. \\ \left. \left. \left( \frac{-k y_F(1) - c y_F(2) - K \max (0,y_F(3))^n - k y_F(3) + k x_i}{K \frac{3}{2} \frac{1-c_r}{{\dot{\delta }}_0} \max (0,y_F(3))^n + c} \right) \right) \right) \\ s \left( \frac{-k y_F(1) - c y_F(2) - K \max (0,y_F(3))^n - k y_F(3) + k x_i}{K \frac{3}{2} \frac{1-c_r}{{\dot{\delta }}_0} \max (0,y_F(3))^n + c} \right) \end{array} \right\} ~~~~~~~~~~~~~~~~~ \end{aligned}$$
(50)

It was a non-trivial challenge to calculate \(\delta ^n\) with \(n = \frac{3}{2}\) (or other non-integer exponent) as \(\delta \) approaches zero during a state event with continuous extension, which is the situation with the HC soil model during a transition from contact to non-contact. There were a couple of options tested by us, all aimed at avoiding \(\delta \) becoming negative during extension. Replacing \(\delta ^n\) by \(\max (0, \delta )^n\) (coded as \(\max (0, y_F(3))^n\)) worked well and was adopted in this study. Continuous approximations of sign and abs functions lead to the loss of the switching behavior, which is what the event function tries to capture. For this reason, we do not recommend such a course of action.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, JS., Quadrelli, M.B. & Wright, J.P. Mem-models and state event location algorithm for a prototypical aerospace system. Nonlinear Dyn 100, 203–224 (2020). https://doi.org/10.1007/s11071-020-05494-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05494-w

Keywords

Navigation