Skip to main content
Log in

Application of variable- and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Many physical processes in nature exhibit complex dynamics that result from a combination of multiscale, nonlinear, non-local, and memory effects. Recent experimental measurements conducted in a variety of physical domains have shown that, at the macroscale level, these effects typically result in significant deviations from the behavior predicted by classical models. Notably, the underlying dynamics was often shown to be of non-integer order and possibly better captured by fractional-order models. Fractional operators are intrinsically multiscale; thus, they provide a natural approach to account for non-local and memory effects. In this study, we present the possible application of variable-order (VO) and distributed-order (DO) fractional operators to a few classes of nonlinear lumped parameter models that have great practical relevance in mechanics and dynamics. More specifically, we present a methodology to define VO and DO fractional operators that are capable of capturing various physical transitions characteristic of contact dynamics, nonlinear reversible systems, hysteretic systems, and nonlinear damped oscillator systems. Despite using simplified lumped parameters models to illustrate the application of VO and DO operators to mechanics, we show numerical evidence of their unique modeling capabilities as well as their connection to more complex systems at the continuum scale. Further, for a selected problem involving distributed nonlinear damping, we provide approximate analytical solutions that are helpful to better understand the underlying dynamics and to quantify the accuracy of our numerical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bagley, Ronald L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)

    MATH  Google Scholar 

  2. Chatterjee, Anindya: Statistical origins of fractional derivatives in viscoelasticity. J. Sound Vib. 284(3–5), 1239–1245 (2005)

    Google Scholar 

  3. Hollkamp, John P., Sen, Mihir, Semperlotti, Fabio: Model-order reduction of lumped parameter systems via fractional calculus. J. Sound Vib. 419, 526–543 (2018)

    Google Scholar 

  4. Hollkamp, John P., Semperlotti, Fabio: Application of fractional order operators to the simulation of ducts with acoustic black hole terminations. J. Sound Vib. 465, 115035 (2020)

    Google Scholar 

  5. Podlubny, Igor: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  6. Glöckle, Walter G., Nonnenmacher, Theo F.: A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68(1), 46–53 (1995)

    Google Scholar 

  7. Klass, Donald L., Martinek, Thomas W.: Electroviscous fluids. i. rheological properties. J. Appl. Phys. 38(1), 67–74 (1967)

    Google Scholar 

  8. Davis, L.C.: Model of magnetorheological elastomers. J. Appl. Phys. 85(6), 3348–3351 (1999)

    Google Scholar 

  9. Samko, Stefan G., Ross, Bertram: Integration and differentiation to a variable fractional order. Integral Trans. Spec. Functions 1(4), 277–300 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Caputo, Michele: Mean fractional-order-derivatives differential equations and filters. Annali dell’Universita di Ferrara 41(1), 73–84 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Lorenzo, Carl F., Hartley, Tom T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1–4), 57–98 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Coimbra, Carlos F.M.: Mechanics with variable-order differential operators. Annalen der Physik 12(11–12), 692–703 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Atanacković, Teodor M., Oparnica, Ljubica, Pilipović, Stevan: On a nonlinear distributed order fractional differential equation. J. Math. Anal. Appl. 328(1), 590–608 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the Van der Pol equation. Nonlinear Dyn. 56(1–2), 145–157 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Morales-Delgado, V.F., Gomez-Aguilar, J.F., Taneco-Hernandez, M.A., Escobar-Jimenez, R.F.: A novel fractional derivative with variable-and constant-order applied to a mass-spring-damper system. Eur. Phys. J. Plus 133(2), 78 (2018)

    Google Scholar 

  16. Coronel-Escamilla, A., Gómez-Aguilar, J.F., Torres, L., Escobar-Jiménez, R.F., Valtierra-Rodríguez, M.: Synchronization of chaotic systems involving fractional operators of Liouville–Caputo type with variable-order. Phys. A Stat. Mech. Appl. 487, 1–21 (2017)

    MathSciNet  Google Scholar 

  17. Coronel-Escamilla, Antonio, Gómez-Aguilar, José Francisco, Torres, L., Valtierra-Rodriguez, Martin, Escobar-Jiménez, Ricardo Fabricio: Design of a state observer to approximate signals by using the concept of fractional variable-order derivative. Digital Signal Process. 69, 127–139 (2017)

    Google Scholar 

  18. Avalos-Ruiz, L.F., Zúñiga-Aguilar, C.J., Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., Romero-Ugalde, H.M.: FPGA implementation and control of chaotic systems involving the variable-order fractional operator with Mittag-Leffler law. Chaos Solitons Fractals 115, 177–189 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Sweilam, N.H., Nagy, A., Assiri, T., Ali, N.Y.: Numerical simulations for variable-order fractional nonlinear delay differential equations. J. Fract. Calc. Appl. 6(1), 71–82 (2015)

    MathSciNet  Google Scholar 

  20. Parsa Moghaddam, B., Yaghoobi, Sh, Tenreiro Machado, J.A.: An extended predictor–corrector algorithm for variable-order fractional delay differential equations. J. Comput. Nonlinear Dyn. 11(6), 061001 (2016)

    Google Scholar 

  21. Hartley, Tom T., Lorenzo, Carl F.: Fractional-order system identification based on continuous order-distributions. Signal Process. 83(11), 2287–2300 (2003)

    MATH  Google Scholar 

  22. Zhuang, J., Chen, Y., Podlubny, I.: Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives, vol. 13. 01 (2012)

  23. Wahi, Pankaj, Chatterjee, Anindya: Averaging oscillations with small fractional damping and delayed terms. Nonlinear Dyn. 38(1–4), 3–22 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Shen, Yongjun, Yang, Shaopu, Xing, Haijun, Gao, Guosheng: Primary resonance of Duffing oscillator with fractional-order derivative. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3092–3100 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Lorenzo, C.F., Hartley, T.T.: Initialization, conceptualization, and application in the generalized (fractional) calculus. Crit. \(\text{Rev.}^{{\rm TM}}\) Biomed. Eng. 35(6), 447--553(2007)

  26. Wilson, James F., Callis, Eric G.: The dynamics of loosely jointed structures. Int. J. Non-Linear Mech. 39(3), 503–514 (2004)

    MATH  Google Scholar 

  27. Chunduru, Seshu P., Kim, Meung J., Mirman, Cliff: Failure analysis of railroad couplers of AAR type E. Eng. Fail. Anal. 18(1), 374–385 (2011)

    Google Scholar 

  28. Chondros, T.G., Dimarogonas, Andrew D., Yao, J.: Vibration of a beam with a breathing crack. J. Sound Vib. 239(1), 57–67 (2001)

    Google Scholar 

  29. Semperlotti, F., Wang, K.W., Smith, E.C.: Localization of a breathing crack using super-harmonic signals due to system nonlinearity. AIAA J. 47(9), 2076–86 (2009)

    Google Scholar 

  30. Kim, Gi-Woo, Johnson, David R., Semperlotti, F., Wang, K.W.: Localization of breathing cracks using combination tone nonlinear response. Smart Mater. Struct. 20(5), 055014 (2011)

    Google Scholar 

  31. Lamberti, Alfredo, Semperlotti, Fabio: Detecting closing delaminations in laminated composite plates using nonlinear structural intensity and time reversal mirrors. Smart Mater. Struct. 22(12), 125006 (2013)

    Google Scholar 

  32. Hopkinson, Bertram, Williams, Trevor G.: The elastic hysteresis of steel. Proc. R. Soc. Lond. Ser. A Contain. Papers Math. Phys. Character 87(598), 502–511 (1912)

    Google Scholar 

  33. Zhang, J., Lin, Z., Wong, Aea, Kikuchi, N., Li, V.C., Yee, A.F., Nusholtz, G.S.: Constitutive modeling and material characterization of polymeric foams. J. Eng. Mater. Technol. 119(3), 284–291 (1997)

    Google Scholar 

  34. Srinivas, K., Lakshmana Rao, C., Parameswaran, Venkitanarayanan: Experimental investigation of rate sensitive mechanical response of pure polyurea. In: Dynamic Behavior of Materials, Vol. 1, pp. 173–179. Springer, (2019)

  35. Baber, Thomas T., Noori, Mohammed N.: Modeling general hysteresis behavior and random vibration application. J. Vib. Acoust. Stress Reliab. Des. 108(4), 411–420 (1986)

    Google Scholar 

  36. Bhattacharjee, Arindam, Chatterjee, Anindya: Dissipation in the Bouc-Wen model: small amplitude, large amplitude and two-frequency forcing. J. Sound Vib. 332(7), 1807–1819 (2013)

    Google Scholar 

  37. Moon, Francis C., Kalmár-Nagy, Tamás: Nonlinear models for complex dynamics in cutting materials. Philos. Trans. R. Soc. Lond.Ser. A Math. Phys. Eng. Sci. 359(1781), 695–711 (2001)

    MATH  Google Scholar 

  38. Onoda, Junjiro, Minesugi, Kenji: Semiactive vibration suppression by variable-damping members. AIAA J. 34(2), 355–361 (1996)

    MATH  Google Scholar 

  39. Symans, M.D., Constantinou, M.C.: Passive fluid viscous damping systems for seismic energy dissipation. ISET J. Earthq. Technol. 35(4), 185–206 (1998)

    Google Scholar 

  40. Maiti, Soumyabrata, Bandyopadhyay, Ritwik, Chatterjee, Anindya: Vibrations of an Euler-Bernoulli beam with hysteretic damping arising from dispersed frictional microcracks. J. Sound Vib. 412, 287–308 (2018)

    Google Scholar 

  41. Li, Changpin, Zeng, Fanhai: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, London (2015)

    MATH  Google Scholar 

  42. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer, Berlin (1985)

    MATH  Google Scholar 

  43. Nayfeh, Ali H., Mook, Dean T.: Nonlinear Oscillations. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  44. Meerschaert, Mark M., Nane, Erkan, Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379(1), 216–228 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Crisfield, M.A.: An arc-length method including line searches and accelerations. Int. J. Numer. Methods Eng. 19(9), 1269–1289 (1983)

    MathSciNet  MATH  Google Scholar 

  46. Wahi, Pankaj, Chatterjee, Anindya: Self-interrupted regenerative metal cutting in turning. Int. J. Non-Linear Mech. 43(2), 111–123 (2008)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Science Foundation (NSF) under the grant #1825837, and the Defense Advanced Research Project Agency (DARPA) under grant #D19AP00052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sansit Patnaik.

Ethics declarations

Conflicts of interest

F.S. is the founder of M3SIM LLC, and the research results may potentially benefit the business scope and activities of the company. The terms of this arrangement have been reviewed and approved by the Purdue University in accordance with its conflict of interest policies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Consider the averaging integral given in Eq. (30):

$$\begin{aligned} I=\lim \limits _{T\rightarrow \infty }\frac{1}{T}\int _0^T\frac{\cos (\omega _0t+\phi )}{\varGamma [1-\alpha (x)]}\bigg \{\int _{0}^{t}\frac{\cos (\omega _0\tau +\phi )}{(t-\tau )^{\alpha (x)}}\mathrm {d}\tau \bigg \}\mathrm {d}t. \end{aligned}$$
(48)

Using the coordinate transformation \(\tau =t-s\), and trigonometric relations for double angles, we obtain:

$$\begin{aligned} I=&\lim \limits _{T\rightarrow \infty }\frac{1}{2T}\int _0^T\frac{1+\cos (2\omega _0t+2\phi )}{\varGamma [1-\alpha (x)]}\bigg \{\int _{0}^{t}\frac{\cos (\omega _0s)}{s^{\alpha (x)}}\mathrm {d}s\bigg \}\mathrm {d}t\nonumber \\&+ \lim \limits _{T\rightarrow \infty }\frac{1}{2T}\int _0^T\frac{\sin (2\omega _0t+2\phi )}{\varGamma [1-\alpha (x)]}\bigg \{\int _{0}^{t}\frac{\sin (\omega _0s)}{s^{\alpha (x)}}\mathrm {d}s\bigg \}\mathrm {d}t. \end{aligned}$$
(49)

The right-hand side of the above equation consists of two integrals which we denote as \(I_1\) (containing \(\cos (\cdot )\) terms) and \(I_2\) (containing \(\sin (\cdot )\) terms). Note that \(\alpha (x)\) is an implicit function of time such that \(\alpha (x)=\alpha (x(t))\). We first evaluate \(I_1\) by using integration by parts in the following manner:

$$\begin{aligned}&I_1\nonumber \\&\quad =\lim \limits _{T\rightarrow \infty }\frac{1}{4T}\bigg |\frac{2\omega _0 t+\sin (2\omega _0 t+ 2\phi )}{\omega _0\varGamma [1-\alpha (x)]}\bigg \{\int _{0}^{t}\frac{\cos (\omega _0s)}{s^{\alpha (x)}}\mathrm {d}s\bigg \}\bigg |^{T}_{0}\nonumber \\&\qquad -\lim \limits _{T\rightarrow \infty }\frac{1}{4T}\int _0^T \frac{2\omega _0 t+\sin (2\omega _0 t+ 2\phi )}{\omega _0}\frac{\mathrm {d}}{\mathrm {d}t}\nonumber \\&\quad \qquad \bigg [\frac{1}{{\varGamma [1-\alpha (x)]}} \times \int _{0}^{t}\frac{\cos (\omega _0s)}{s^{\alpha (x)}}\mathrm {d}s\bigg ]\mathrm {d}t. \end{aligned}$$
(50)

We use Leibniz’s rule to perform the differentiation in the second integral of \(I_1\). Further, under the limiting condition \(T\rightarrow \infty \), the above integral simplifies to the following:

$$\begin{aligned} I_1=&\lim \limits _{T\rightarrow \infty }\frac{1}{2\varGamma [1-\alpha (x(T))]}\int _{0}^{T}\frac{\cos (\omega _0s)}{s^{\alpha (x(T))}}\mathrm {d}s\nonumber \\&-\lim \limits _{T\rightarrow \infty }\frac{1}{2T}\Bigg [\int _0^T \bigg \{\frac{t^{1-\alpha (x)}\cos (\omega _0t)}{\varGamma [1-\alpha (x)]}+\dot{x}tg(x,t)\bigg \}\mathrm {d}t\Bigg ] \end{aligned}$$
(51)

where

$$\begin{aligned} g(x,t)= & {} \frac{\alpha '(x)}{\varGamma [1-\alpha (x)]}\int _{0}^{t}\big [\psi (1-\alpha (x))-\log s)\big ]\nonumber \\&\quad \frac{\cos (\omega _0s)}{s^{\alpha (x)}}\mathrm {d}s. \end{aligned}$$
(52)

In the above equation, \(\psi (x)\) is the digamma function and is defined as the logarithmic derivative of the gamma function, i.e., \(\psi (x)=\varGamma '(x)/\varGamma (x)\). Now consider the following part of the integration in Eq. (51) denoted as \(I_3\):

$$\begin{aligned} I_3=\lim \limits _{T\rightarrow \infty }\frac{1}{2T}\int _0^T\dot{x}tg(x,t)\mathrm {d}t. \end{aligned}$$
(53)

For \(\alpha (x)\in (0,1)\) and a smooth variation of \(\alpha (x)\) (as already assumed in Sect. 5), it can be shown that g(xt) is bounded. Note that g(xt) is an implicit function of time. Assuming \(M=\sup |g(x,t)|~\forall ~t\in (0,T)\) and using the slow flow \(\dot{x}\) from Eq. (25), we obtain the inequality:

$$\begin{aligned} |I_3|<\lim \limits _{T\rightarrow \infty }\frac{MR\omega _0}{2T}\bigg |\int _0^Tt\cos (\omega _0 t+\phi )\mathrm {d}t\bigg |. \end{aligned}$$
(54)

which under the slow flow constraint simplifies to:

$$\begin{aligned} |I_3|<\lim \limits _{T\rightarrow \infty }\omega _0Mx(T). \end{aligned}$$
(55)

Thus, \(|I_3|\rightarrow 0\) as \(\lim \limits _{T\rightarrow \infty }x(T)\rightarrow 0\). This simplifies Eq. (51) to:

$$\begin{aligned} I_1= & {} \lim \limits _{T\rightarrow \infty }\frac{1}{2\varGamma [1-\alpha (x(T))]}\int _{0}^{T}\frac{\cos (\omega _0s)}{s^{\alpha (x(T))}}\mathrm {d}s\nonumber \\&-\lim \limits _{T\rightarrow \infty }\frac{1}{2T}\int _0^T \frac{t^{1-\alpha (x)}\cos (\omega _0t)}{\varGamma [1-\alpha (x)]}\mathrm {d}t. \end{aligned}$$
(56)

Applying integration by parts to the second integral above and by repeating the arguments used to obtain the Eqs. (5355), it can be shown that the second integral similarly simplifies to zero. Now, using the standard integration result:

$$\begin{aligned} \int _{0}^{\infty }\frac{\cos (\omega _0s)}{s^{m}}\mathrm {d}s=\omega _0^{m-1}\varGamma (1-m)\sin \Big (\frac{m\pi }{2}\Big ) \end{aligned}$$
(57)

we obtain:

$$\begin{aligned} I_1=\frac{\omega _0^{\alpha _{\infty }-1}}{2}\sin \Big (\frac{\alpha _{\infty }\pi }{2}\Big ) \end{aligned}$$
(58)

where \(\alpha _{\infty }=\lim \limits _{T\rightarrow \infty }\alpha (x(T))\). Similarly, it can be shown that the integral \(I_2\) in Eq. (49) simplifies to zero. Now collecting all the above terms the integral I in Eq. (48) is obtained as:

$$\begin{aligned} I=\frac{\omega _0^{\alpha _{\infty }-1}}{2}\sin \Big (\frac{\alpha _{\infty }\pi }{2}\Big ). \end{aligned}$$
(59)

The above integration procedure becomes fairly straightforward when the order \(\alpha \) of the Caputo operator is a constant and can be found in [23, 24].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patnaik, S., Semperlotti, F. Application of variable- and distributed-order fractional operators to the dynamic analysis of nonlinear oscillators. Nonlinear Dyn 100, 561–580 (2020). https://doi.org/10.1007/s11071-020-05488-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05488-8

Keywords

Navigation