Skip to main content
Log in

Lax pair, binary Darboux transformation and dark solitons for the three-component Gross–Pitaevskii system in the spinor Bose–Einstein condensate

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the dark solitons for the three-component Gross–Pitaevskii system, which describes the \(F=1\) spinor Bose–Einstein condensate, with F denoting the atom’s spin. We construct a Lax pair and a binary Darboux transformation for such a system. Based on a nonzero seed solution, we obtain the kink and dark solitons corresponding to the ferromagnetic and polar states, respectively. Moreover, we obtain the W-shaped dark soliton. Interactions between the two dark solitons are discussed. We find that the interaction is inelastic if a kink soliton is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Finding the node \(x_0=(2\lambda _1-k)t+\frac{\varsigma _2}{2i\mu _1}\) for Density Functions t, and then setting \(x'=x-x_0\), we obtain that Spin (16) are the odd functions of \(x'\).

References

  1. Deng, G.F., Gao, Y.T., Su, J.J., Ding, C.C.: Multi-breather wave solutions for a generalized (3 + 1)-dimensional Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid. Appl. Math. Lett. 98, 177–183 (2019). https://doi.org/10.1016/j.aml.2019.05.037

    Article  MathSciNet  MATH  Google Scholar 

  2. Su, J.J., Gao, Y.T., Deng, G.F., Jia, T.T.: Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow. Phys. Rev. E 100(4), 042210 (2019). https://doi.org/10.1103/PhysRevE.100.042210

    Article  MathSciNet  Google Scholar 

  3. Ding, C.C., Gao, Y.T., Deng, G.F.: Breather and hybrid solutions for a generalized (3+ 1)-dimensional B-type Kadomtsev-Petviashvili equation for the water waves. Nonlinear Dyn. 97(4), 2023–2040 (2019). https://doi.org/10.1007/s11071-019-05093-4

    Article  MATH  Google Scholar 

  4. Ding, C.C., Gao, Y.T., Li, L.Q.: Breathers and rogue waves on the periodic background for the Gerdjikov–Ivanov equation for the Alfvén waves in an astrophysical plasma. Chaos Soliton Fract. 120, 259–265 (2019). https://doi.org/10.1016/j.chaos.2019.01.007

    Article  Google Scholar 

  5. Gao, X.Y.: Mathematical view with observational/experimental consideration on certain (2 + 1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl. Math. Lett. 91, 165–172 (2019). https://doi.org/10.1016/j.aml.2018.11.020

    Article  MathSciNet  MATH  Google Scholar 

  6. Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints. IEEE T. Fuzzy Syst. 27(8), 1587–1601 (2019). https://doi.org/10.1109/TFUZZ.2018.2883374

    Article  Google Scholar 

  7. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE T. Fuzzy Syst. 27(11), 2152–2162 (2019). https://doi.org/10.1109/TFUZZ.2019.2895560

    Article  Google Scholar 

  8. Qiu, J., Sun, K., Rudas, I.J., Gao, H.: Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2944761

    Article  Google Scholar 

  9. Kuzovkov, V.N., Popov, A.I.: Theoretical analysis of the kinetics of low-temperature defect recombination in alkali halide crystals. Low Temp. Phys. 42(7), 588–593 (2016)

    Article  Google Scholar 

  10. Fadel, M., Zibold, T., Decamps, B., Treutlein, P.: Spatial entanglement patterns and Einstein–Podolsky–Rosen steering in Bose–Einstein condensates. Science 360(6387), 409–413 (2018). https://doi.org/10.1126/science.aao1850

    Article  MathSciNet  MATH  Google Scholar 

  11. Lerario, G., Fieramosca, A., Barachati, F., et al.: Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13(9), 837 (2017)

    Article  Google Scholar 

  12. Anderson, M.H., Ensher, J.R., Matthews, M.R., et al.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995)

    Article  Google Scholar 

  13. Bradly, C.C., Sackett, C.A., Hulet, R.G.: Bose–Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78(6), 985 (1997)

    Article  Google Scholar 

  14. Cornish, S.L., Claussen, N.R., Roberts, J.L., Cornell, E.A., Wieman, C.E.: Stable 85 Rb Bose–Einstein condensates with widely tunable interactions. Phys. Rev. Lett. 85(9), 1795 (2000)

    Article  Google Scholar 

  15. Sun, W.R.: Breather-to-soliton transitions and nonlinear wave interactions for the nonlinear Schrödinger equation with the sextic operators in optical fibers. Ann. Phys. 529(1–2), 1600227 (2017)

    Article  Google Scholar 

  16. Meng, G.Q., Pan, Y.S., Tian, H., Xie, X.Y.: Analytic solutions for the (2 + 1)-dimensional generalized sine-Gordon equations in nonlinear optics. Comput. Math. Appl. 76(6), 1535–1543 (2018). https://doi.org/10.1016/j.camwa.2018.07.005

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, Y.J., Gao, Y.T., Li, L.Q., Jia, T.T.: Bilinear form and solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow-water waves. Appl Anal. (2019). https://doi.org/10.1080/00036811.2019.1652734

    Article  Google Scholar 

  18. Lan, Z.Z., Su, J.J.: Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 96(4), 2535–2546 (2019). https://doi.org/10.1007/s11071-019-04939-1

    Article  Google Scholar 

  19. Gao, X.Y., Guo, Y.J., Shan, W.R.: Water-wave symbolic computation for the Earth, Enceladus and Titan: Higher-order Boussinesq–Burgers system, auto- and non-auto-Backlund transformations. Appl. Math. Lett. (2019). https://doi.org/10.1016/j.aml.2019.106170

    Article  Google Scholar 

  20. Rao, J., Cheng, Y., Porsezian, K., Mihalache, D., He, J.: \(PT\)-symmetric nonlocal Davey–Stewartson I equation: soliton solutions with nonzero background. Physica D 401, 132180 (2020). https://doi.org/10.1016/j.physd.2019.132180

    Article  MathSciNet  Google Scholar 

  21. Lü, X., Ma, W.X., Yu, J., Lin, F., Khalique, C.M.: Envelope bright-and dark-soliton solutions for the Gerdjikov–Ivanov model. Nonlinear Dyn. 82(3), 1211–1220 (2015)

    Article  MathSciNet  Google Scholar 

  22. Deng, G.F., Gao, Y.T., Su, J.J., Ding, C.C., Jia, T.T.: Solitons and periodic waves for the (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics. Nonlinear Dyn. 99(2), 1039–1052 (2020). https://doi.org/10.1007/s11071-019-05328-4

    Article  Google Scholar 

  23. Adhikari, S.K.: Stabilization of bright solitons and vortex solitons in a trapless three-dimensional Bose–Einstein condensate by temporal modulation of the scattering length. Phys. Rev. A 69(6), 063613 (2004)

    Article  Google Scholar 

  24. Zhao, L.C., Ling, L., Yang, Z.Y., Yang, W.L.: Tunneling dynamics between atomic bright solitons. Nonlinear Dyn. 88(4), 2957–2967 (2017)

    Article  MathSciNet  Google Scholar 

  25. Burger, S., Bongs, K., Dettmer, S., et al.: Dark solitons in Bose–Einstein condensates. Phys. Rev. Lett. 83(25), 5198 (1999)

    Article  Google Scholar 

  26. Engels, P., Atherton, C.: Stationary and nonstationary fluid flow of a Bose–Einstein condensate through a penetrable barrier. Phys. Rev. Lett. 99(16), 160405 (2007)

    Article  Google Scholar 

  27. Baym, G., Pethick, C.J.: Ground-state properties of magnetically trapped Bose-condensed rubidium gas. Phys. Rev. Lett. 76(1), 6 (1996)

    Article  Google Scholar 

  28. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a Trap: A Rigorous Derivation of the Gross–Pitaevskii Energy Functional. Springer, Berlin (2005)

    MATH  Google Scholar 

  29. Kanna, T., Lakshmanan, M., Dinda, P.T., Akhmediev, N.: Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrödinger equations. Phys. Rev. E 73(2), 026604 (2006)

    Article  MathSciNet  Google Scholar 

  30. Jia, T.T., Gao, Y.T., Deng, G.F., Hu, L.: Quintic time-dependent-coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics: bilinear forms and dark/anti-dark/gray solitons. Nonlinear Dyn. 98(1), 269–282 (2019). https://doi.org/10.1007/s11071-019-05188-y

    Article  MATH  Google Scholar 

  31. Su, J.J., Gao, Y.T.: Solitons for a (2 + 1)-dimensional coupled nonlinear Schrodinger system with time-dependent coefficients in an optical fiber. Wave. Random Complex 28(4), 708–723 (2018). https://doi.org/10.1080/17455030.2017.1388549

    Article  MathSciNet  Google Scholar 

  32. Stamper-Kurn, D.M., Andrews, M.R., Chikkatur, A.P., et al.: Optical confinement of a Bose–Einstein condensate. Phys. Rev. Lett. 80(10), 2027 (1998)

    Article  Google Scholar 

  33. Kawaguchi, Y., Ueda, M.: Spinor Bose–Einstein condensates. Phys. Rep. 520(5), 253–381 (2012)

    Article  MathSciNet  Google Scholar 

  34. Yu, F., Li, L.: Vector dark and bright soliton wave solutions and collisions for spin-1 Bose–Einstein condensate. Nonlinear Dyn. 87(4), 2697–2713 (2017)

    Article  MathSciNet  Google Scholar 

  35. Zhang, W., Müstecaplioglu, Ö.E., You, L.: Solitons in a trapped spin-1 atomic condensate. Phys. Rev. A 75(4), 043601 (2007)

    Article  Google Scholar 

  36. Ieda, J., Miyakawa, T., Wadati, M.: Exact analysis of soliton dynamics in spinor Bose–Einstein condensates. Phys. Rev. Lett. 93(19), 194102 (2004)

    Article  Google Scholar 

  37. Uchiyama, M., Ieda, J., Wadati, M.: Dark solitons in \(F=1\) spinor Bose–Einstein condensate. J. Phys. Soc. Jpn. 75(6), 064002 (2006)

    Article  Google Scholar 

  38. Prinari, B., Demontis, F., Li, S., Horikis, T.P.: Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions. Physica D 368, 22–49 (2018). https://doi.org/10.1016/j.physd.2017.12.007

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, W.R., Wang, L.: Matter rogue waves for the three-component Gross–Pitaevskii equations in the spinor Bose–Einstein condensates. Proc. R. Soc. A: Math. Phys. Eng. Sci. 474(2209), 20170276 (2018). https://doi.org/10.1098/rspa.2017.0276

    Article  MathSciNet  MATH  Google Scholar 

  40. Nimmo, J.J., Gilson, C.R., Ohta, Y.: Applications of Darboux transformations to the self-dual Yang–Mills equations. Theor. Math. Phys. 122(2), 239–246 (2000)

    Article  MathSciNet  Google Scholar 

  41. Nimmo, J.J., Yilmaz, H.: Binary Darboux transformation for the Sasa–Satsuma equation. J. Phys. A 48(42), 425202 (2015)

    Article  MathSciNet  Google Scholar 

  42. Zhang, H.Q., Wang, Y., Ma, W.X.: Binary Darboux transformation for the coupled Sasa–Satsuma equations. Chaos 27(7), 073102 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023, 11471050 and 11805020, by the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02, and by the Beijing University of Posts and Telecommunications Excellent Ph.D. Students Foundation (No. CX2019321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Qiang Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Substituting Expressions (10) and (11) in Binary DT (6), we derive the dark one-soliton solutions

$$\begin{aligned}&\phi _{+1}=e^{i\theta _0}\left( \beta -2\frac{g_1}{|\Omega _{[1]}|}\right) ,\nonumber \\&\phi _{0}=e^{i\theta _0}\left( \alpha -2\frac{g_2}{|\Omega _{[1]}|}\right) ,\nonumber \\&\phi _{-1}=-e^{i\theta _0}\left( \beta +2\frac{g_4}{|\Omega _{[1]}|}\right) , \end{aligned}$$
(A.1)

where

$$\begin{aligned} g_1= & {} e^{4i\theta _1}\left( 2a_1c_{11}^*l_1{-}b_1c_{11}^{*2}{+}b_1^* l_1^2\right) \nonumber \\&{+}\,e^{{-}4i\theta _1}\left( 2a_2c_{12}^*l_3{-}b_2 c_{12}^{*2}{+}b_2^*l_3^2\right) \nonumber \\&{+}\,e^{2i\theta _1}[l_1^2m_1^*{+}c_{11}^*(2a_1l_3\nonumber \\&{-}\,2b_1 c_{12}^*{-}c_{11}^*m_1){+}2l_1\left( a_1c_{12}^*{+}b_1^*l_3{+}c_{11}^*p_1\right) ]\nonumber \\&{+}\,e^{{-}2i\theta _1}[c_{12}^*\left( 2a_2l_1{-}2b_2c_{11}^*{-}c_{12}^*m_1\right) \nonumber \\&{+}\,2l_3\left( a_2c_{11}^*{+}b_2^*l_1{+}c_{12}^*p_1\right) {+}l_3^2 m_1^*]\nonumber \\&{+}\,c_{11}^*(2a_2l_1{+}2p_1l_3{-}b_2c_{11}^*){+}c_{12}^*(2a_1l_3{+}2p_1l_1\nonumber \\&{-}\,b_1c_{12}^*){-}2m_1c_{11}^*c_{12}^*\nonumber \\&{+}\,l_1^2b_2^*{+}l_3^2b_1^*{+}2l_1l_3m_1^*, \end{aligned}$$
(A.2a)
$$\begin{aligned} g_2= & {} e^{4i\theta _1}\left[ l_1(a_1c_{21}^*{+}b_1^*l_2){+}c_{11}^*(a_1l_2{-}b_1c_{21}^*)\right] \nonumber \\&{+}\,e^{{-}4i\theta _1}\left[ l_3(a_2c_{22}^*{+}b_2^*l_4){+}c_{12}^*(a_2l_4{-}b_2c_{22}^*)\right] \nonumber \\&{+}\,e^{2i\theta _1}[l_2(c_{11}^*p_1{+}l_1m_1^*{+}a_1c_{12}^*{+}b_1^*l_3)\nonumber \\&{+}\,l_1(a_1c_{22}^*{+}b_1^*l_4{+}c_{21}^*p_1){+}a_1c_{11}^*l_4{+}a_1c_{21}^*l_3\nonumber \\&{-}\,b_1c_{22}^*c_{11}^*{-}b_1c_{12}^*c_{21}^*{-}c_{21}^*c_{11}^*m_1]\nonumber \\&{+}\,e^{{-}2i\theta _1}[l_4(c_{12}^*p_1{+}l_3m_1^*{+}a_2c_{11}^*{+}b_2^*l_1)\nonumber \\&{+}\,l_3(a_2c_{21}^*{+}b_2^*l_2\nonumber \\&{+}\,c_{22}^*p_1){+}a_2c_{12}^*l_2{+}a_2c_{22}^*l_1{-}b_2c_{21}^*c_{12}^*\nonumber \\&{-}\,b_2c_{11}^*c_{22}^*{-}c_{22}^*c_{12}^*m_1]{+}(l_1l_4{+}l_2l_3)m_1^*{+}l_1l_2b_2^*\nonumber \\&{+}\,l_3l_4b_1^*{+}c_{11}^*(a_2l_2{+}p_1l_4{-}b_2c_{21}^*{-}m_1c_{22}^*)\nonumber \\&{+}\,c_{12}^*(a_1l_4{+}p_1l_2{-}b_1c_{22}^*{-}m_1c_{21}^*){+}c_{21}^*(a_2l_1\nonumber \\&{+}\,p_1l_3){+}c_{22}^*(a_1l_3{+}p_1l_1), \end{aligned}$$
(A.2b)
$$\begin{aligned} g_4= & {} e^{4i\theta _1}\left( 2a_1c_{21}^*l_2{-}b_1c_{21}^{*2}{+}b_1^* l_2^2\right) \nonumber \\&{+}\,e^{{-}4i\theta _1}\left( 2a_2c_{22}^*l_4{-}b_2 c_{22}^{*2}{+}b_2^*l_4^2\right) \nonumber \\&{+}\,e^{2i\theta _1}[l_2^2m_1^*{+}c_{21}^*(2a_1l_4\nonumber \\&{-}\,2b_1c_{22}^*{-}c_{21}^*m_1){+}2l_2\left( a_1c_{22}^*{+}b_1^*l_4{+}c_{21}^*p_1\right) ]\nonumber \\&{+}\,e^{{-}2i\theta _1}[c_{22}^*\left( 2a_2l_2{-}2b_2c_{21}^*{-}c_{22}^*m_1\right) \nonumber \\&{+}\,2l_4\left( a_2c_{21}^*{+}b_2^*l_2{+}c_{22}^*p_1\right) {+}l_4^2 m_1^*]\nonumber \\&{+}\,c_{21}^*(2a_2l_2{+}2p_1l_4{-}b_2c_{21}^*){+}c_{22}^*(2a_1l_4{+}2p_1l_2\nonumber \\&{-}\,b_1c_{22}^*){-}2m_1c_{21}^*c_{22}^*{+}l_2^2b_2^*\nonumber \\&{+}\,l_4^2b_1^*{+}2l_2l_4m_1^*, \end{aligned}$$
(A.2c)
$$\begin{aligned} |\Omega _{[1]}|= & {} (a_1^2{+}|b_1|^2)e^{4i\theta _1}{+}(a_2^2{+}|b_2|^2)e^{{-}4i\theta _1}\nonumber \\&{+}\,(b_1m_1^*{+}b_1^*m_1{+}2a_1p_1)e^{2i\theta _1}{+}(b_2m_1^*{+}b_2^*m_1\nonumber \\&{+}\,2a_2p_1)e^{{-}2i\theta _1}{+}2a_1a_2\nonumber \\&{+}\,b_1b_2^*{+}b_1^*b_2{+}p_1^2{+}|m_1|^2, \end{aligned}$$
(A.2d)

with noting \(\varphi _{11} = c_{11}e^{i\theta _1}{+}c_{12}e^{{-}i\theta _1}\), \(\varphi _{12} = c_{21}e^{i\theta _1}{+}c_{22}e^{{-}i\theta _1}\), \(A_{11,1}=a_1e^{2i\theta _1}{+}a_{2}e^{{-}2i\theta _1}{+}p_1\) and \(A_{11,3}= b_{1}e^{i\theta _1}{+}b_{2}e^{{-}i\theta _1}{+}m_1\) for simplicity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, YQ., Tian, B., Qu, QX. et al. Lax pair, binary Darboux transformation and dark solitons for the three-component Gross–Pitaevskii system in the spinor Bose–Einstein condensate. Nonlinear Dyn 99, 3001–3011 (2020). https://doi.org/10.1007/s11071-020-05483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05483-z

Keywords

Navigation