Skip to main content
Log in

Zero-lag chaos synchronization properties in a hierarchical tree-type network consisting of mutually coupled semiconductor lasers

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Chaos synchronization properties in a novel hierarchical tree-type optical network consisting of semiconductor lasers (SLs) are investigated numerically. In such network, each child node is asymmetrically mutually coupled with the parent node. Zero-lag synchronization is found among the nodes belonging to the same layer, while the nodes belonging to different layers are not synchronized, which is denoted as hierarchical chaos synchronization (HCS). The effects of injection strength, asymmetrical injection parameters, bias currents and frequency detuning on the performance of HCS and chaotic complexity are studied in detail. Our results show that high-quality HCS can be obtained under moderate parameters. The stability of the network is also investigated systematically. Further, we explore the robustness of HCS by considering an asymmetrical network. Finally, output bit streams are generated from each SL at a tunable rate of up to about 10 Gbps with verified randomness. These results are enlightening to the multi-user chaotic communication and the synchronization mechanism in biological neuronal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  2. Kovanis, V., Gavrielides, A., Simpson, T.B., Liu, J.M.: Instabilities and chaos in optically injected semiconductor lasers. Appl. Phys. Lett. 67, 2780–2782 (1995)

    Article  Google Scholar 

  3. Liu, J.M., Chen, H.F., Tang, S.: Synchronized chaotic optical communications at high bit rates. IEEE J. Quantum Electron. 38, 1184–1196 (2002)

    Article  Google Scholar 

  4. Argyris, A., Syvridis, D., Larger, L., et al.: Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438, 346–346 (2005)

    Article  Google Scholar 

  5. Mengue, A.D., Essimbi, B.Z.: Secure communication using chaotic synchronization in mutually coupled semiconductor lasers. Nonlinear Dyn. 70, 1241–1253 (2012)

    Article  MathSciNet  Google Scholar 

  6. Oliver, N., Soriano, M.C., Sukow, D.W., Fischer, I.: Fast random bit generation using a chaotic laser: approaching the information theoretic limit. IEEE J. Quantum Electron. 49, 910–918 (2013)

    Article  Google Scholar 

  7. Xie, Y., Li, J., Kong, Z., Zhang, Y., Liao, X.: Exploiting optics chaos for image encryption-then-transmission. J. Lightwave Technol. 34, 5101–5109 (2016)

    Article  Google Scholar 

  8. Xue, C., Jiang, N., Lv, Y., Wang, C., Li, G.: Security-enhanced chaos communication with time-delay signature suppression and phase encryption. Opt. Lett. 41, 3690 (2016)

    Article  Google Scholar 

  9. Jiang, N., Xue, C., Lv, Y., Qiu, K.: Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers. Nonlinear Dyn. 86, 1–13 (2016)

    Article  Google Scholar 

  10. Wu, J.G., Huang, S.W., Huang, Y., Zhou, H., Yang, J., Liu, J.M., Yu, M., Lo, G., Kwong, D.L., Duan, S., Wong, C.W.: Mesoscopic chaos mediated by Drude electron–hole plasma in silicon optomechanical oscillators. Nat. Commun. 8, 15570 (2017)

  11. Naruse, M., Terashima, Y., Uchida, A.: Ultrafast photonic reinforcement learning based on laser chaos. Sci. Rep. 7, 8772 (2017)

    Article  Google Scholar 

  12. Ohtsubo, J.: Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback. IEEE J. Quantum Electron. 38, 1141–1154 (2002)

    Article  Google Scholar 

  13. Liu, H., Ren, B., Zhao, Q.C., Li, N.: Characterizing the optical chaos in a special type of small networks of semiconductor lasers using permutation entropy. Opt. Commun. 359, 79–84 (2016)

    Article  Google Scholar 

  14. Wu, J., Huang, S.W., Huang, Y., Zhou, H., Yang, J.: Dynamical chaos in chip-scale optomechanical oscillators. Nat. Commun. 8, 1–15 (2016)

    Google Scholar 

  15. Heil, T., Fischer, I., Elsasser, W.: Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. Phys. Rev. Lett. 86, 795–798 (2001)

    Article  Google Scholar 

  16. Tang, S., Liu, J.M.: Experimental verification of anticipated and retarded synchronization in chaotic semiconductor lasers. Phys. Rev. Lett. 90, 194101 (2003)

    Article  Google Scholar 

  17. Porte, X., Soriano, M.C., Brunner, D., Fischer, I.: Bidirectional private key exchange using delay-coupled semiconductor lasers. Opt. Lett. 41, 2871 (2016)

    Article  Google Scholar 

  18. Argyris, A., Pikasis, E., Syvridis, D.: Gb/s one-time-pad data encryption with synchronized chaos-based true random bit Generators. J. Lightwave Technol. 34, 5325–5331 (2016)

    Article  Google Scholar 

  19. Yoshimura, K., Muramatsu, J., Davis, P.: Secure key distribution using correlated randomness in lasers driven by common random light. Phys. Rev. Lett. 108, 602 (2012)

    Article  Google Scholar 

  20. Jiang, N., Pan, W., Yan, L., Luo, B., Zhang, W., Xiang, S., Yang, L., Zheng, D.: Chaos synchronization and communication in mutually coupled semiconductor lasers driven by a third laser. IEEE J. Lightwave Technol. 28, 1978–1986 (2010)

    Article  Google Scholar 

  21. Kanter, I., Butkovski, M., Peleg, Y.: Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography. Opt. Express 18, 292–302 (2010)

    Article  Google Scholar 

  22. Zamoramunt, J., Masoller, C., Garciaojalvo, J., Roy, R.: Crowd synchrony and quorum sensing in delay-coupled lasers. Phys. Rev. Lett. 105, 264101 (2010)

    Article  Google Scholar 

  23. Soriano, M.C., Garcaojalvo, J., Mirasso, C.R., Fischer, I.: Complex photonics: dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85, 421–470 (2013)

    Article  Google Scholar 

  24. Koizumi, H., Morikatsu, S., Aida, H.: Information-theoretic secure key distribution based on common random-signal induced synchronization in unidirectionally-coupled cascades of semiconductor lasers. Opt. Express 21, 86–93 (2013)

    Google Scholar 

  25. Li, N., Kim, B., Chizhevsky, V.N., et al.: Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser. Opt. Express 22, 34–46 (2014)

    Google Scholar 

  26. Li, N., Susanto, H., Cemlyn, B., Henning, I.D., Adams, M.J.: Secure communication systems based on chaos in optically pumped spin-VCSELs. Opt. Lett. 42, 3494–3497 (2017)

    Article  Google Scholar 

  27. Li, J.F., Xiang, S.Y., Wang, H.N., Gong, J.K., Wen, A.J.: A novel image encryption algorithm based on synchronized random bit generated in cascade-coupled chaotic semiconductor ring lasers. Opt. Laser Eng. 102, 170–180 (2018)

    Article  Google Scholar 

  28. Xu, M., Pan, W., Xiang, S., Zhang, L.: Cluster synchronization in symmetric VCSELs networks with variable-polarization optical feedback. Opt. Express 26, 10754–10761 (2018)

    Article  Google Scholar 

  29. Zhong, D.Z., Xiao, Z.Z., Yang, G.Z.: Criterion of globally complete chaos synchronization for diverse threenode VCSEL networks with coupling delays. Appl. Phys. B 26, 1–8 (2019)

    Google Scholar 

  30. Ohtsubo, J., Ozawa, R., Nanbu, M.: Synchrony of small nonlinear networks in chaotic semiconductor lasers. Jpn. J. Appl. Phys. 54, 072702 (2015)

    Article  Google Scholar 

  31. Bourmpos, M., Argyris, A., Syvridis, D.: Sensitivity analysis of a star optical network based on mutually coupled semiconductor lasers. J. Lightwave Technol. 30, 2618–2624 (2012)

    Article  Google Scholar 

  32. Argyris, A., Syvridis, D., Bourmpos, M.: Experimental synchrony of semiconductor lasers in coupled networks. Opt. Express 24, 5600–5614 (2016)

    Article  Google Scholar 

  33. Xiang, S., Gong, J., Zhang, H., Guo, X., Wang, H., Zhang, Y., Wen, A.: Zero-lag intensity correlation properties in small ring laser network with heterogeneous delays. J. Opt. Soc. Am. B 35, 287–294 (2018)

    Article  Google Scholar 

  34. Nixon, M., Fridman, M., Ronen, E., Friesem, A.A., Davidson, N., Kanter, I.: Synchronized cluster formation in coupled laser networks. Phys. Rev. Lett. 106, 223901 (2011)

  35. Nixon, M., Fridman, M., Ronen, E., Friesem, A.A., Davidson, N., Kanter, I.: Controlling synchronization in large laser networks. Phys. Rev. Lett. 108, 214101 (2011)

  36. Majhi, S., Perc, M., Ghosh, D.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27, 073109 (2017)

  37. Stama, C.J., Tewariea, P., Dellenab, E.V., van Straatena, E.C.W., Hillebranda, A., Van Mieghemc, P.: The trees and the forest: characterization of complex brain networks with minimum spanning trees. Int. J. Psychophysiol. 92, 129–138 (2014)

    Article  Google Scholar 

  38. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002)

  39. Uchida, A.: Optical Communication with Chaotic Lasers. Wiley, Hoboken (2012)

    Book  Google Scholar 

  40. Pecora, L.M., Sorrentino, F., Hagerstrom, A.M., Murphy, T.E., Roy, R.: Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5, 4079 (2014)

    Article  Google Scholar 

  41. Zhang, L., Pan, W., Xiang, S., Yan, L., Luo, B., Zou, X.: Common-injection-induced isolated desynchronization in delay-coupled VCSELs networks with variable-polarization optical feedback. Opt. Lett. 44, 3845–3848 (2019)

    Article  Google Scholar 

  42. Li, X.Z., Li, S.S., Chan, S.C.: Correlated random bit generation using chaotic semiconductor lasers under unidirectional optical injection. IEEE Photon. J. 9, 1505411 (2017)

  43. Kanter, I., Aviad, Y., Reidler, I., Cohen, E., Rosenbluh, M.: An optical ultrafast random bit generator. Nat. Photon. 4, 58–61 (2009)

    Article  Google Scholar 

  44. Wang, L., Guo, Y., Sun, Y., Zhao, Q.: Synchronization-based key distribution utilizing information reconciliation. IEEE J. Quantum Electron. 51, 1–8 (2015)

    Google Scholar 

  45. Farmer, J.D.: Chaotic attractors of an infinite-dimensional dynamical system. Physica D 4, 366–393 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (No. 61674119), in part by the Postdoctoral innovation talent program in China (No. BX201600118), in part by the project funded by China Postdoctoral Science Foundation (No. 2017M613072) and in part by Postdoctoral Science Foundation in Shaanxi Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuiying Xiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: the method of calculating the largest Lyapunov exponent

In calculating the largest Lyapunov exponent, the linearized form of the coupled Lang–Kobayashi equations is required. For simplicity, the electric-field amplitude and phase of the coupled Lang–Kobayashi equations are derived from the complex electric-field equations, and k is used instead of \(k_{{\mathrm{II,III}}}\): (take \({{\mathrm{SL}}_4}\) as an example)

$$\begin{aligned} \frac{{\mathrm{d}\mathbf{E }_{4}(t)}}{{\mathrm{d}t}}= & {} \frac{{1}}{2}\left[ \frac{g(N_4(t)-N_0)}{1+s{|\mathbf{E }_4(t)|}^2} - {\tau _p}\right] \mathbf{E }_4(t)\nonumber \\&+\,k\mathbf{E }_2(t - {\tau _d})\exp (-i\omega \tau _d) \end{aligned}$$
(A.1)

The complex electric fields \(\mathbf{E }_{2}(t)\) and \(\mathbf{E }_{4}(t)\) can be presented by the real values of the amplitudes \(E_{2}(t)\) and \(E_{4}(t)\) and the real values of the phases \(\varPhi _{2}(t)\) and \(\varPhi _{4}(t)\):

$$\begin{aligned} \mathbf{E }_{2}(t)= & {} E_{2}(t)\exp (i\varPhi _2(t)) \end{aligned}$$
(A.2)
$$\begin{aligned} \mathbf{E }_{4}(t)= & {} E_{4}(t)\exp (i\varPhi _4(t)) \end{aligned}$$
(A.3)

By substituting Eqs. (A.2) and (A.3) into Eq. (A.1) and using Euler’s formula \(\exp (-ix)=\cos (x)-i\sin (x)\), the real and imaginary parts can be separated as:

$$\begin{aligned} \frac{{\mathrm{d}E_{4}(t)}}{{\mathrm{d}t}}= & {} \frac{{1}}{2}\left[ \frac{g(N_4(t)-N_0)}{1+sE_4^2(t)} - {\tau _p}\right] E_4(t) \nonumber \\&+\, kE_2(t - {\tau _d})\cos (\varTheta _{42}(t)) \end{aligned}$$
(A.4)
$$\begin{aligned} \frac{{\mathrm{d}\varPhi _{4}(t)}}{{\mathrm{d}t}}= & {} \frac{{\alpha }}{2}\left[ \frac{g(N_4(t)-N_0)}{1+sE_4^2(t)} - {\tau _p}\right] \nonumber \\&-\, k\frac{E_2(t - {\tau _d})}{E_4(t)}\sin (\varTheta _{42}(t)) \end{aligned}$$
(A.5)
$$\begin{aligned} \frac{{\mathrm{d}N_{4}(t)}}{{\mathrm{d}t}}= & {} J_4-\frac{{N_{4}(t)}}{\tau _s}-\frac{{g(N_4(t)-N_0)}}{1+sE_4^2(t)}E_4^2(t) \end{aligned}$$
(A.6)
$$\begin{aligned} \varTheta _{42}= & {} \omega \tau _d+\varPhi _4(t)-\varPhi _2(t-\tau _d) \end{aligned}$$
(A.7)

Then, the variables that describe the small linear deviations from the oscillatory trajectory on the attractor can be expressed by the linearized form:

$$\begin{aligned} \varDelta x={{\mathrm{Ja}}}\cdot \mathrm{d}x \end{aligned}$$
(A.8)

where Ja denotes the Jacobian matrix of the considered system. Note that for dynamical systems with time delay, the time delay has an extra degree of freedom, because the dynamics are governed by all the initial conditions of the variables within the delay time \(\tau \) [39, 45]. It is thus very important to consider all the contributions from the time-delayed variables at different delay times. According to Ref. [45], a continuous equation of the small separations \(\delta x\) which represent a difference between two functions can be derived as:

$$\begin{aligned} \frac{{\mathrm{d}\delta x}}{{\mathrm{d}t}}=\frac{{\partial F(x,x_\tau )}}{\partial x}\delta x+\frac{{\partial F(x,x_\tau )}}{\partial x_\tau }\delta x_\tau \end{aligned}$$
(A.9)

In the network we have seven nodes of three dimensions each, namely \(\mathrm{d}E\), \(\mathrm{d}\varPhi \), \(\mathrm{d}N\), and two time-delayed dimensions \(\mathrm{d}E_\tau \), \(\mathrm{d}\varPhi _\tau \). So the Jacobian matrix has a size of \(3 \times 7\) (21) rows and \(3 \times 7+2 \times 7\) (35) columns. Then, the Jacobian matrix can be obtained by calculating the partial derivatives of each separation variable at time t. The largest Lyapunov exponent is calculated from the above linearized equations [44, 45]:

$$\begin{aligned} \lambda _{\max }=\frac{{1}}{L\tau } \sum \nolimits _{k=1}^{L}\log \frac{{\parallel \delta _ {x(k)}\parallel }}{\parallel \delta _{x(k-1)}\parallel } \end{aligned}$$
(A.10)

where \(\tau \) is the delay time, and L is the steps repeated in the algorithm. In the continuous time system, the norm \(\parallel \cdot \parallel \) that describes the deviation from t to \(t+\tau \) is defined as the Euclidean distance of the linearized variables:

$$\begin{aligned} D(t)=\sqrt{\sum \limits _{k=0}^{M-1}\left( \delta _x^2(t+kh)+\delta _{x\tau }^2(t+kh) \right) } \end{aligned}$$
(A.11)

where \(M=\tau /h\). The norm that describes the deviation from \(t+\tau \) to \(t+2\tau \) can be expressed as

$$\begin{aligned} D(t+\tau )=\sqrt{\sum \limits _{k=0}^{M-1}\left( \delta _x^2(t+\tau +kh)+\delta _{x\tau }^2(t+\tau +kh) \right) } \end{aligned}$$
(A.12)

The ratio of two norms that describes the expansion rate of the separation is

$$\begin{aligned} d_j=\frac{{D(t+\tau )}}{D(t)} \end{aligned}$$
(A.13)

The normalization of the linearized variables is necessary as to keep the linearity of the stability analysis, namely to make sure a small deviation from the trajectory [39]:

$$\begin{aligned} \delta _{x,x\tau }(t+\tau +kh)=\frac{{\delta _{x,x\tau }(t+\tau +kh)}}{D(t+\tau )} \end{aligned}$$
(A.14)

Hence, according to Eqs. (A.10A.14), we can calculate the largest Lyapunov exponent, as presented in Fig. 9.

Appendix B: the method of calculating the conditional Lyapunov exponent

In calculating the conditional Lyapunov exponent \(\lambda _c\) that describes the synchronization stability of two SLs, the linearized form of the deviation variables is required. For simplicity, the stability of synchronization between \({{\mathrm{SL}}_4}\) and \({{\mathrm{SL}}_5}\) is analyzed as an example. The deviation variables are defined as:

$$\begin{aligned} \varDelta _E= & {} E_4(t)-E_5(t) \end{aligned}$$
(B.1)
$$\begin{aligned} \varDelta _{\varPhi }= & {} \varPhi _{4}(t)-\varPhi _{5}(t) \end{aligned}$$
(B.2)
$$\begin{aligned} \varDelta _N= & {} N_4(t)-N_5(t) \end{aligned}$$
(B.3)

For simplicity, we assume the gain saturation coefficient s equals to 0. Then, the differential equations of \({{\mathrm{SL}}_4}\) and \({{\mathrm{SL}}_5}\) (nodes 4 and 5) can be written as:

$$\begin{aligned} \frac{{\mathrm{d}E_{4}(t)}}{{\mathrm{d}t}}= & {} \frac{{1}}{2}\left[ g(N_4(t)-N_0) - {\tau _p}\right] E_4(t) \nonumber \\&+\, kE_2(t - {\tau _d})\cos (\varTheta _{42}(t)) \end{aligned}$$
(B.4)
$$\begin{aligned} \frac{{\mathrm{d}E_{5}(t)}}{{\mathrm{d}t}}= & {} \frac{{1}}{2}\left[ g(N_4(t)-N_0) - {\tau _p}\right] E_5(t) \nonumber \\&+\, kE_2(t - {\tau _d})\cos (\varTheta _{52}(t)) \end{aligned}$$
(B.5)
$$\begin{aligned} \frac{{\mathrm{d}\varPhi _{4}(t)}}{{\mathrm{d}t}}= & {} \frac{{\alpha }}{2}\left[ g(N_4(t)-N_0) - {\tau _p}\right] \nonumber \\&-\, k\frac{E_2(t - {\tau _d})}{E_4(t)}\sin (\varTheta _{42}(t)) \end{aligned}$$
(B.6)
$$\begin{aligned} \frac{{\mathrm{d}\varPhi _{5}(t)}}{{\mathrm{d}t}}= & {} \frac{{\alpha }}{2}\left[ g(N_5(t)-N_0) - {\tau _p}\right] \nonumber \\&-\, k\frac{E_2(t - {\tau _d})}{E_5(t)}\sin (\varTheta _{52}(t)) \end{aligned}$$
(B.7)
$$\begin{aligned} \frac{{\mathrm{d}N_{4}(t)}}{{\mathrm{d}t}}= & {} J-\frac{{N_{4}(t)}}{\tau _s}-g(N_4(t)-N_0)E_4^2(t) \end{aligned}$$
(B.8)
$$\begin{aligned} \frac{{\mathrm{d}N_{5}(t)}}{{\mathrm{d}t}}= & {} J-\frac{{N_{5}(t)}}{\tau _s}-g(N_5(t)-N_0)E_5^2(t) \end{aligned}$$
(B.9)
$$\begin{aligned} \varTheta _{ij}= & {} \omega \tau _d+\varPhi _i(t)-\varPhi _j(t-\tau _d) \end{aligned}$$
(B.10)

What we finally need are the linearized equations:

$$\begin{aligned} \begin{aligned} \frac{{\mathrm{d}\varDelta _{E}(t)}}{{\mathrm{d}t}}= & {} [\bullet ]\varDelta _E(t)+[\bullet ]\varDelta _{\varPhi }(t)+[\bullet ]\varDelta _N(t)\\ \frac{{\mathrm{d}\varDelta _{\varPhi }(t)}}{{\mathrm{d}t}}= & {} [\bullet ]\varDelta _E(t)+[\bullet ]\varDelta _{\varPhi }(t)+[\bullet ]\varDelta _N(t)\\ \frac{{\mathrm{d}\varDelta _{N}(t)}}{{\mathrm{d}t}}= & {} [\bullet ]\varDelta _E(t)+[\bullet ]\varDelta _{\varPhi }(t)+[\bullet ]\varDelta _N(t) \end{aligned} \end{aligned}$$
(B.11)

The linearized equations can be obtained by using Eqs. (B.1B.10):

$$\begin{aligned} \left( \begin{array}{ccccccc} \dfrac{{\mathrm{d}\varDelta _E(t)}}{{\mathrm{d}t}}\\ \dfrac{{\mathrm{d}\varDelta _{\varPhi }(t)}}{{\mathrm{d}t}}\\ \dfrac{{\mathrm{d}\varDelta _N(t)}}{{\mathrm{d}t}}\\ \end{array} \right)= & {} \left( \begin{array}{ccccccc} \dfrac{{\partial f_{\varDelta _E}}}{{\partial \varDelta _E}} &{}\quad \dfrac{{\partial f_{\varDelta _E}}}{{\partial \varDelta _{\varPhi }}} &{}\quad \dfrac{{\partial f_{\varDelta _E}}}{{\partial \varDelta _N}} \\ \dfrac{{\partial f_{\varDelta _{\varPhi }}}}{{\partial \varDelta _E}} &{}\quad \dfrac{{\partial f_{\varDelta _{\varPhi }}}}{{\partial \varDelta _{\varPhi }}} &{}\quad \dfrac{{\partial f_{\varDelta _{\varPhi }}}}{{\partial \varDelta _N}} \\ \dfrac{{\partial f_{\varDelta _N}}}{{\partial \varDelta _E}} &{}\quad \dfrac{{\partial f_{\varDelta _N}}}{{\partial \varDelta _{\varPhi }}} &{}\quad \dfrac{{\partial f_{\varDelta _N}}}{{\partial \varDelta _N}} \\ \end{array} \right) \nonumber \\&\times \,\left( \begin{array}{ccccccc} \varDelta _E(t)\\ \varDelta _{\varPhi }(t)\\ \varDelta _N(t)\\ \end{array} \right) \end{aligned}$$
(B.12)

The first term at the right side of Eq. (B.12) is the Jacobian matrix of the linearized system:

$$\begin{aligned} \left( \begin{array}{ccccccc} \dfrac{{1}}{2}\!\left[ g(N_4(t)-N_0)-{\tau _p}\right] &{}\quad -\, kE_2(t - \tau _d)\sin (\varTheta _{52}(t)) &{}\quad \dfrac{{1}}{2}g E_5(t)\\ k\dfrac{E_2(t - {\tau _d})}{E_5^2(t)}\!\sin (\varTheta _{52}(t)) &{}\quad -\, k \dfrac{E_2(t -{\tau _d})}{E_5(t)}\!\cos (\varTheta _{52}(t)) &{}\quad \dfrac{{\alpha g}}{2}\\ 2gE_5(t)\left( N_5(t)-N_0 \right) &{}\quad 0 &{}\quad \dfrac{{1}}{-\tau _s}-gE_5^2\\ \end{array} \right) \end{aligned}$$
(B.13)

Then, the conditional Lyapunov exponent \( \lambda _c\) can be calculated using similar methods as introduced in “Appendix A.” The result is shown in Fig. 10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Han, Y., Wang, H. et al. Zero-lag chaos synchronization properties in a hierarchical tree-type network consisting of mutually coupled semiconductor lasers. Nonlinear Dyn 99, 2893–2906 (2020). https://doi.org/10.1007/s11071-020-05479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05479-9

Keywords

Navigation